Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = dish of the day

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1419 KiB  
Article
Bioconversion of Olive Pomace: A Solid-State Fermentation Strategy with Aspergillus sp. for Detoxification and Enzyme Production
by Laura A. Rodríguez, María Carla Groff, Sofía Alejandra Garay, María Eugenia Díaz, María Fabiana Sardella and Gustavo Scaglia
Fermentation 2025, 11(8), 456; https://doi.org/10.3390/fermentation11080456 - 6 Aug 2025
Abstract
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which [...] Read more.
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which limit its direct reuse due to phytotoxicity. A native strain of Aspergillus sp., isolated from OP, was employed as the biological agent, while grape pomace (GP) was added as a co-substrate to enhance substrate structure. Fermentations were conducted at two scales, Petri dishes (20 g) and a fixed-bed bioreactor (FBR, 2 kg), under controlled conditions (25 °C, 7 days). Key parameters monitored included dry and wet weight loss, pH, color, phenolic content, and enzymatic activity. Significant reductions in color and polyphenol content were achieved, reaching 68% in Petri dishes and 88.1% in the FBR, respectively. In the FBR, simultaneous monitoring of dry and wet weight loss enabled the estimation of fungal biotransformation, revealing a hysteresis phenomenon not previously reported in SSF studies. Enzymes such as xylanase, endopolygalacturonase, cellulase, and tannase exhibited peak activities between 150 and 180 h, with maximum values of 424.6 U·g−1, 153.6 U·g−1, 67.43 U·g−1, and 6.72 U·g−1, respectively. The experimental data for weight loss, enzyme production, and phenolic reduction were accurately described by logistic and first-order models. These findings demonstrate the high metabolic efficiency of the fungal isolate under SSF conditions and support the feasibility of scaling up this process. The proposed strategy offers a low-cost and sustainable solution for OP valorization, aligning with circular economy principles by transforming agro-industrial residues into valuable bioproducts. Full article
Show Figures

Figure 1

16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

16 pages, 20542 KiB  
Article
Establishment of Agrobacterium-Mediated Transient Transformation System in Sunflower
by Fangyuan Chen, Lai Wang, Qixiu Huang, Run Jiang, Wenhui Li, Xianfei Hou, Zihan Tan, Zhonghua Lei, Qiang Li and Youling Zeng
Plants 2025, 14(15), 2412; https://doi.org/10.3390/plants14152412 - 4 Aug 2025
Viewed by 26
Abstract
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient [...] Read more.
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient transformation system, which can rapidly validate gene function, shows promising prospects in research. In this study, we established an efficient transient expression transformation system for sunflower using three methods: Agrobacterium-mediated infiltration, injection, and ultrasonic-vacuum. The detailed procedures were as follows: Agrobacterium GV3101 carrying a GUS reporter gene on the pBI121 vector with an OD600 of 0.8 as the bacterial suspension and 0.02% Silwet L-77 as the surfactant were utilized in all three approaches. For the infiltration method, seedlings grown hydroponically for 3 days were immersed in a bacterial suspension containing 0.02% Silwet L-77 for 2 h; for the injection method, the same solution was injected into the cotyledons of seedlings grown in soil for 4 to 6 days. Subsequently, the seedlings were cultured in the dark at room temperature for three days; for the ultrasonic-vacuum method, seedlings cultured in Petri dishes for 3 days were first subjected to ultrasonication at 40 kHz for 1 min, followed by vacuum infiltration at 0.05 kPa for 5–10 min. Agrobacterium-mediated transient transformation efficiency achieved by the three methods exceeded 90%, with gene expression being sustained for at least 6 days. Next, we employed the infiltration-based sunflower transient transformation technology with the Arabidopsis stable transformation platform to confirm salt and drought stress tolerance of candidate gene HaNAC76 from sunflower responding to various abiotic stresses. Altogether, this study successfully established an Agrobacterium-mediated transient transformation system for sunflower using these three methods, which can rapidly identify gene function and explore the molecular mechanisms underlying sunflower’s resistance traits. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

10 pages, 1309 KiB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 154
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
by Vytautas Bunevičius, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė and Neringa Rasiukevičiūtė
Agronomy 2025, 15(7), 1728; https://doi.org/10.3390/agronomy15071728 - 17 Jul 2025
Viewed by 358
Abstract
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental [...] Read more.
Horticulture and agriculture are facing the challenge of growing healthy and high-quality crops. Plant extracts are currently being widely investigated as an alternative means of plant protection. Interest in these measures has increased in order to reduce the use of chemical pesticides, environmental pollution, and adverse effects on human health. Also, due to the goals of the European Green Deal and the decreasing use of chemical pesticides, it has become essential to look for safer alternatives. The aim of this study was to investigate the inhibitory effect of plant extracts of clove (Syzygium aromaticum L.) and rosemary (Rosmarinus officinalis L.) against Colletotrichum acutatum and Botrytis cinerea plant pathogens and to evaluate fungal pathogens recovery after the exposure to the extract. The plant extracts (PEs) were obtained by subcritical CO2 extraction. The inhibitory effect of PEs was investigated in vitro at concentrations of 1200, 1600, 2000, 2400, 2800, and 3000 μL/L. Petri dishes were incubated at 25 ± 2 °C, and the mycelial growth of fungal pathogens was evaluated at 2, 4, and 7 days after inoculation (DAI). Reinoculation was then performed. The research showed that both plant extracts had an antifungal effect. However, clove PE was more effective. This allows us to say that plant-based measures can inhibit plant pathogens, but it is essential to determine the optimal concentrations and test them with different pathogens. Full article
Show Figures

Figure 1

38 pages, 11057 KiB  
Article
Beware of Sealing Film of Petri Dishes!—Alters the Expression of a Large Number of Genes
by Yun Ma, Fang Li, Xuyang Wang, Qingpeng Sun, Ronghuan Wang and Jiuran Zhao
Int. J. Mol. Sci. 2025, 26(12), 5484; https://doi.org/10.3390/ijms26125484 - 7 Jun 2025
Viewed by 582
Abstract
Arabidopsis seedlings grown in Petri dishes sealed with PE plastic wrap, PP parafilm, or NF surgical tape showed differences in growth, with PE plastic wrap resulting in a smaller size and fresh weight, followed by PP parafilm, compared to unsealed or NF surgical [...] Read more.
Arabidopsis seedlings grown in Petri dishes sealed with PE plastic wrap, PP parafilm, or NF surgical tape showed differences in growth, with PE plastic wrap resulting in a smaller size and fresh weight, followed by PP parafilm, compared to unsealed or NF surgical tape-sealed dishes. To investigate the basis of these phenotypic changes, transcriptome sequencing was performed. The results indicated that seedlings in dishes sealed with PE plastic wrap and PP parafilm exhibited over 1000 differentially expressed genes (DEGs) at 7 days. By 14 days, the number of DEGs had increased to over 2000 for each sealed condition. GO analysis showed that DEGs were commonly enriched in biological processes associated with the response to hypoxia under PE plastic wrap and PP parafilm sealing at both 7 and 14 days, as well as under NF surgical tape at 14 days. While O2 levels showed no significant differences between sealed and unsealed conditions, CO2 concentrations were notably lower in plates sealed with PE plastic wrap and PP parafilm. Furthermore, specific genes related to reduced size and delayed growth under sealed conditions were identified. In summary, sealing films negatively affect seedling growth, leading to significant shifts in gene expression profiles. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

32 pages, 101984 KiB  
Article
Studying the Impact of Cement-Based and Geopolymer Concrete on the Proliferation of Escherichia coli and Staphylococcus aureus in Water-Related Applications
by Beata Figiela, Bożena Tyliszczak, Magdalena Bańkosz, Aleksandar Nikolov and Kinga Korniejenko
Materials 2025, 18(11), 2560; https://doi.org/10.3390/ma18112560 - 29 May 2025
Viewed by 524
Abstract
The main aim of this research was to synthesize the new geopolymer composite and test its antibacterial properties. The new composites are based on a geopolymer matrix, with the addition of carbon fiber, nano-silica and antibacterial nanopowder. The first stage of this research [...] Read more.
The main aim of this research was to synthesize the new geopolymer composite and test its antibacterial properties. The new composites are based on a geopolymer matrix, with the addition of carbon fiber, nano-silica and antibacterial nanopowder. The first stage of this research was the synthesis of geopolymer composites containing variable proportions of nano-additives and, as a reference material, cement. The next step was bacterial cultivation. Two different bacterial strains were selected, Gram-positive and Gram-negative (Escherichia coli and Staphylococcus aureus). In this stage, the agar microbiological medium is used for the evaluation of bacterial growth inhibition by cement and geopolymers. In the final stage, the growth of the colony was observed and the pH measurements were taken. The final assessment of efficiency was made by using optical microscopy and a colony counter based on the Petri dish. The test performed showed that the main mineralogical components are quartz, 55.0%, and mullite, with 42.1% of crystalline ingredients. EDS analysis shows that the main oxide component is SiO2, about 50.9%. The obtained results connected with bacteria growth show the growth of both types of bacteria on materials; however, after several days, the growth was inhibited. An assessment of microorganism growth inhibition by cement and geopolymers shows the better efficiency of geopolymer composites in this area for both types of colonies (Gram-positive and Gram-negative). The new element in this research was to plan the research from the point of view of its application in the water environment. The provided research can be useful for the inhibition of biofouling phenomena on marine and inland water infrastructure. Full article
Show Figures

Figure 1

13 pages, 2641 KiB  
Article
Characterization and Biotechnology of Three New Strains of Basidial Fungi as Promising Sources of Biologically Active Substances
by Maria Alexandrovna Sysoeva, Ilyuza Shamilevna Prozorova, Elena Vladislavovna Sysoeva, Tatyana Vladimirovna Grigoryeva and Ruzilya Kamilevna Ismagilova
BioTech 2025, 14(2), 30; https://doi.org/10.3390/biotech14020030 - 25 Apr 2025
Viewed by 1102
Abstract
The study of new strains of basidiomycetes as sources of biologically active substances is a promising direction in modern biotechnology. This work aims to isolate new cultures of the fungi Daedaleopsis tricolor, Pycnoporellus fulgens and Trichaptum abietinum from natural fruiting bodies and [...] Read more.
The study of new strains of basidiomycetes as sources of biologically active substances is a promising direction in modern biotechnology. This work aims to isolate new cultures of the fungi Daedaleopsis tricolor, Pycnoporellus fulgens and Trichaptum abietinum from natural fruiting bodies and to improve their growth conditions on solid nutrient media. The identification of fungi was performed based on their morphological features and using the Sanger sequencing method. Cultivation was carried out by placing inoculum in the middle of a Petri dish and at the edge, which provided a more comprehensive definition of the characteristics of colonies and fungus hyphae. New strains were registered in Genbank Overview. The optimal cultivation temperature was 27 °C for all studied strains. The highest radial growth was observed on synthetic medium for D. tricolor (5.26 mm/day) and T. abietinum (7.5 mm/day), and on synthetic medium with lignin for P. fulgens (2.98 mm/day). The biomass amount of D. tricolor KS11 was 133.25 mg at 9 days of cultivation, that of P. fulgens KS12 was 86.73 mg at 16 days, and that of T. abietinum KS10 was 227.33 mg at 6 days. New strains of fungi can be used to obtain biologically active substances for the food, pharmaceutical and cosmetic industries. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

13 pages, 2399 KiB  
Article
Transcriptome Analysis of Pepper Leaves in Response to Tomato Brown Rugose Fruit Virus Infection
by Boshen Zhang, Donghai Wang, Mangle Chen, Jiali Yang, Junmin Li, Jianping Chen, Fei Yan and Shaofei Rao
Plants 2025, 14(9), 1280; https://doi.org/10.3390/plants14091280 - 23 Apr 2025
Viewed by 826
Abstract
Chili pepper (Capsicum annuum L.) is a very important vegetable crop, commonly used as a spice or seasoning in various dishes. With the growth of the global population, the demand for chili peppers has also increased exponentially. Tomato brown rugose fruit virus [...] Read more.
Chili pepper (Capsicum annuum L.) is a very important vegetable crop, commonly used as a spice or seasoning in various dishes. With the growth of the global population, the demand for chili peppers has also increased exponentially. Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that has spread to dozens of countries worldwide. Its infection in chili peppers can severely impact yield and quality, posing a significant threat to the chili pepper industry. However, the transcriptional response of chili peppers to ToBRFV infection has not been studied yet. This research utilized RNA-Seq technology to analyze the transcriptional profiles of chili pepper leaves (‘Haonong 11’) 13 days post-infection with ToBRFV or mock treatment, identifying a total of 1468 differentially expressed genes (DEGs), of which 1366 were upregulated and 102 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the DEGs were involved in biological processes such as defense response, response to reactive oxygen species, protein folding, and plant-pathogen interaction. Twelve DEGs were validated by RT-qPCR, with their expression trends consistent with the transcriptome data, indicating the reliability of the high-throughput data. Our systematic analysis provides a molecular basis for the response of chili pepper leaves to ToBRFV infection at the transcriptomic level and offers potential candidate genes for further research into the interaction mechanisms between ToBRFV and plant hosts. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 1038 KiB  
Article
The Influence of Different Cooking Techniques on the Biochemical, Microbiological, and Sensorial Profile of Fish-Based Catering Products
by Adrian Măzărel, Raluca-Ștefania Rădoi-Encea, Vasile Pădureanu, Alina Maier and Florentina Matei
Appl. Sci. 2025, 15(8), 4417; https://doi.org/10.3390/app15084417 - 17 Apr 2025
Viewed by 535
Abstract
The present study aims to characterize five fish-based catering dishes, cooked by sous vide, by convection and microwaves in terms of their biochemical content, microbial load, and sensory analysis. The product cooked by using convection had the highest levels of MUFAs, PUFAs, and [...] Read more.
The present study aims to characterize five fish-based catering dishes, cooked by sous vide, by convection and microwaves in terms of their biochemical content, microbial load, and sensory analysis. The product cooked by using convection had the highest levels of MUFAs, PUFAs, and SFAs and the lowest levels of vitamin PP, riboflavin, and niacin. The sous vide maintained the highest levels of retinol, tocopherol, riboflavin, and niacin. Microwaves triggered the greatest decrease in vitamin content. All microbiological indicators exhibited levels below the acceptable limits, except for the level of fungi in the sous vide cooked product. Shelf life was estimated at 5 days for the product cooked by convection and immediately refrigerated and at 50 days for the product cooked by convection and immediately frozen. The most appreciated product from the sensory standpoint, which falls under fine dining, was the one cooked by convection and served immediately. The sous vide dish, the microwaved dish, and those refrigerated/frozen after cooking were undervalued. Full article
(This article belongs to the Special Issue Biosystems Engineering: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 5601 KiB  
Article
Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics
by Qihan Shi, Ying Xiao, Yiming Zhou, Jinhong Wu, Xiaoli Zhou, Yanping Chen and Xiaodan Liu
Foods 2025, 14(7), 1106; https://doi.org/10.3390/foods14071106 - 22 Mar 2025
Viewed by 703
Abstract
Traditional tomato-braised beef brisket with potatoes is celebrated for its rich, complex flavors and culinary appeal but requires lengthy preparation. Pre-packaged versions of the dish rely on thermal sterilization for safety; however, high-temperature processing accelerates protein and lipid oxidation, thereby compromising its sensory [...] Read more.
Traditional tomato-braised beef brisket with potatoes is celebrated for its rich, complex flavors and culinary appeal but requires lengthy preparation. Pre-packaged versions of the dish rely on thermal sterilization for safety; however, high-temperature processing accelerates protein and lipid oxidation, thereby compromising its sensory quality. As the demand for ready-to-eat meals grows, the food industry faces the challenge of ensuring microbial safety while preserving flavor integrity. In this study, low-temperature plasma sterilization (LTPS) (160 KV, 450 s) was evaluated as a non-thermal alternative to conventional high-temperature short-time (HSS) sterilization. Furthermore, a comprehensive analysis was conducted over a 10-day storage period, assessing microbial viability, physicochemical properties (pH, shear force, and water-holding capacity), oxidative markers (TBARS, TVB-N, and protein carbonyls), volatile compounds (GC-MS), and electronic nose (e-nose) responses. The results revealed that LTPS (160 kV, 450 s) successfully maintained bacterial counts below regulatory limits (5 lg CFU/g) for 72 h, ensuring that the microbial indicators of short-term processed products sold to supermarkets through cold chain logistics were in the safety range. Additionally, LTPS-treated samples showed a 4.2% higher water-holding capacity (p < 0.05) during storage, indicating improved preservation of texture. Furthermore, LTPS-treated samples exhibited 32% lower lipid oxidation (p < 0.05) and retained 18% higher sulfhydryl content (p < 0.05) compared to HSS, indicating reduced protein oxidation. GC-MS and e-nose analyses showed that LTPS preserved aldehydes and ketones associated with meaty aromas, while HSS contributed to sulfur-like off-flavors. Principal component analysis showed that the LTPS samples had shorter distances across various storage periods compared to HSS, indicating reduced differences in aroma difference. The findings of this study demonstrate LTPS’s dual efficacy in microbial control and aroma preservation. The technology presents a viable strategy for extending the shelf life of pre-prepared meat dishes while reducing oxidative and flavor deterioration, thereby establishing a solid foundation for LTPS application in the pre-prepared food sector. Full article
Show Figures

Figure 1

19 pages, 1173 KiB  
Article
Acrylamide Intake in Senior Center Canteens: A Total Exposure Assessment Applying the Duplicate Diet Approach
by Marta Mesias, Lucía González-Mulero, Francisco J. Morales and Cristina Delgado-Andrade
Foods 2025, 14(6), 1073; https://doi.org/10.3390/foods14061073 - 20 Mar 2025
Viewed by 446
Abstract
This study conducted a total acrylamide exposure assessment through the daily diet in two Spanish senior centers using the duplicate diet method. Among foods regulated in Europe, only instant coffee provided at senior center 1 (2831 µg/kg) exceeded the benchmark value of 850 [...] Read more.
This study conducted a total acrylamide exposure assessment through the daily diet in two Spanish senior centers using the duplicate diet method. Among foods regulated in Europe, only instant coffee provided at senior center 1 (2831 µg/kg) exceeded the benchmark value of 850 µg/kg. The primary contributors to acrylamide intake were French fries (27.3 µg/serving) and Spanish omelet (21.6 µg/serving), followed by stews, soups, and creams (16.1–5.8 µg/serving). Total acrylamide exposure was estimated under lower bound (LB) and upper bound (UB) scenarios, being 0.36–0.40 and 0.48–0.54 µg/kg bw/day, respectively. In the LB scenario, cereal-based products were the largest contributors (≤90.4%), whereas in the UB scenario, other foods/meals, including stews and vegetal dishes, became the main contributors (≤83.4%). The margin of exposure (MOE) for neoplastic effects ranged between 314 and 474, indicating a potential health risk for consumers. These findings emphasize the need to integrate nutritional and food safety considerations when designing diets for elderly populations. Full article
Show Figures

Figure 1

16 pages, 2898 KiB  
Article
The Determination of Eight Biogenic Amines Using MSPE-UHPLC-MS/MS and Their Application in Regard to Changes in These Biogenic Amines in Traditional Chinese Dish-Pickled Swimming Crabs
by Peipei Li, Yu Chen, Junlu Bai, Huicheng Yang, Pengfei He and Junjie Zeng
Molecules 2025, 30(6), 1353; https://doi.org/10.3390/molecules30061353 - 18 Mar 2025
Viewed by 845
Abstract
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), [...] Read more.
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), using a magnetic solid-phase extraction (MSPE) pretreatment, without derivatization, and the content changes in regard to these eight biogenic amines in the traditional Chinese dish, pickled swimming crabs, were investigated. The samples were purified via MSPE, using C nanofiber-coated magnetic nanoparticles (Fe3O4@C-NFs) as sorbents. The experimental variables involved in the MSPE, including the solution pH, adsorption and desorption time, adsorbent usage, and type and volume of the eluent, were investigated and optimized. Method validation indicated that the developed method showed good linearity (R2 > 0.995); the average recovery rates were 84.7% to 115%, with the intra-day and inter-day relative standard deviations (RSD, n = 6) ranging from 3.7% to 7.5% and 4.2% to 7.7%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the eight BAs were 0.1 mg/kg~1.0 mg/kg and 0.3 mg/kg~3.0 mg/kg, respectively. Finally, this method was applied to determine the changes in the eight biogenic amines in pickled swimming crabs (Portunus trituberculatus) during storage at 20 °C and 400 BAC. Among the BAs evaluated, Cad, Put, and Tyr were the predominant amines formed during storage. The final content of Cad, Put, and Tyr reached 22.9, 20.1, and 29.0 mg/100 g at 4 °C for 16 d, and 47.1, 52.3, and 72.0 mg/100 g at 20 °C for 96 h, respectively. The results from this study can be used to expand the application range of magnetic materials in biogenic amine pretreatment and to strengthen the quality control of the traditional Chinese dish, pickled swimming crabs. Full article
Show Figures

Figure 1

9 pages, 647 KiB  
Proceeding Paper
Preliminary Study on Plate Waste from “Daily Dish” in Restaurants
by Miguel Castro, Kamila Soares, Carlos Ribeiro and Alexandra Esteves
Biol. Life Sci. Forum 2024, 40(1), 45; https://doi.org/10.3390/blsf2024040045 - 11 Mar 2025
Viewed by 403
Abstract
Food waste (FW) is a pressing global challenge, with food service establishments playing a significant role in exacerbating the issue. Efforts to tackle food waste are driven by growing concerns over its far-reaching impacts, including resource depletion, food security risks, and environmental, social, [...] Read more.
Food waste (FW) is a pressing global challenge, with food service establishments playing a significant role in exacerbating the issue. Efforts to tackle food waste are driven by growing concerns over its far-reaching impacts, including resource depletion, food security risks, and environmental, social, and economic costs. Our study aimed to quantify and analyze plate waste (PW) in three Portuguese restaurants, focusing on waste composition and reduction strategies. Data was collected over 10 days in each restaurant, categorizing waste into carbohydrate-based foods, protein-based foods, and vegetables. Statistical analyses were used to compare waste patterns. Results showed that carbohydrate-based foods, such as rice and potatoes, were the most wasted (16.3% to 21.9% of total waste). Despite serving portions 43% smaller than those in comparable studies, the percentage of PW (10–13%) was similar, indicating higher relative waste. Significant differences were found among food categories (p < 0.05) but not between restaurants or dish types (meat vs. fish). In conclusion, menu optimization and portion control are essential to reduce PW, particularly for less popular dishes. This study highlights the challenges of implementing food waste reduction measures in restaurants and provides insights for aligning with global sustainability goals. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

12 pages, 1440 KiB  
Article
Consumption in a Full-Course Meal Manner Is Associated with a Reduced Mean Amplitude of Glycemic Excursions in Young Healthy Women: A Randomized Controlled Crossover Trial
by Shizuo Kajiyama, Yuki Higuchi, Kaoru Kitta, Takashi Miyawaki, Shinya Matsumoto, Neiko Ozasa, Shintaro Kajiyama, Yoshitaka Hashimoto, Michiaki Fukui and Saeko Imai
Appl. Sci. 2025, 15(6), 2895; https://doi.org/10.3390/app15062895 - 7 Mar 2025
Viewed by 1564
Abstract
This study aimed to evaluate the acute effects of consuming in a full-course meal manner over one hour, with intervals between courses, on glycemic and insulin parameters in young healthy women, with a randomized controlled crossover study design. Experiment 1: Fifteen participants consumed [...] Read more.
This study aimed to evaluate the acute effects of consuming in a full-course meal manner over one hour, with intervals between courses, on glycemic and insulin parameters in young healthy women, with a randomized controlled crossover study design. Experiment 1: Fifteen participants consumed a test meal under two eating conditions: fast eating manner for 10 min, and eating in a full-course meal manner for 60 min. In both conditions, the food order was standardized: vegetables first, followed by the main dish, and carbohydrates last. Blood glucose and insulin concentrations were measured at 0, 40, 80, 120, and 180 min on two separate days. Postprandial blood glucose and insulin levels at 40 min, as well as the incremental area under the curve (IAUC) at 40 min for glucose and the IAUC at both 40 and 80 min for insulin, were significantly lower for the full-course meal manner compared to the fast eating manner, due to delayed consumption of the carbohydrate dish in the former condition at these time points. To continuously monitor postprandial blood glucose responses over a 24 h period, Experiment 2 was conducted using an intermittent continuous glucose monitoring system (isCGM). Eighteen participants wore isCGM devices and consumed the same test meals under the two different eating conditions as in Experiment 1. The mean amplitude of glycemic excursions (MAGE; p < 0.05) and IAUC for glucose were significantly lower for the full-course meal manner compared to the fast eating manner. These findings suggest that consuming meals in a full-course meal manner, with intervals between courses, is associated with a reduced MAGE in young healthy women. Full article
(This article belongs to the Special Issue Potential Health Benefits of Fruits and Vegetables—4th Edition)
Show Figures

Figure 1

Back to TopTop