Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,988)

Search Parameters:
Keywords = discrete element modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3715 KB  
Article
A Meso-Scale Modeling Framework Using the Discrete Element Method (DEM) for Uniaxial and Flexural Response of Ultra-High Performance Concrete (UHPC)
by Pu Yang, Aashay Arora, Christian G. Hoover, Barzin Mobasher and Narayanan Neithalath
Appl. Sci. 2026, 16(3), 1230; https://doi.org/10.3390/app16031230 (registering DOI) - 25 Jan 2026
Abstract
This study addresses a key limitation in meso-scale discrete element modeling (DEM) of ultra-high performance concrete (UHPC). Most existing DEM frameworks rely on extensive macroscopic calibration and do not provide a clear, transferable pathway to derive contact law parameters from measurable micro-scale properties, [...] Read more.
This study addresses a key limitation in meso-scale discrete element modeling (DEM) of ultra-high performance concrete (UHPC). Most existing DEM frameworks rely on extensive macroscopic calibration and do not provide a clear, transferable pathway to derive contact law parameters from measurable micro-scale properties, limiting reproducibility and physical interpretability. To bridge this gap, we develop and validate a micro-indentation-informed, poromechanics-consistent calibration framework that links UHPC phase-level micromechanical measurements to a flat-joint DEM contact model for predicting uniaxial compression, direct tension, and flexural response. Elastic moduli and Poisson’s ratios of the constituent phases are obtained from micro-indentation and homogenization relations, while cohesion (c) and friction angle (α) are inferred through a statistical treatment of the indentation modulus and hardness distributions. The tensile strength limit (σₜ) is identified by matching the simulated flexural stress–strain peak and post-peak trends using a parametric set of (c, α, σₜ) combinations. The resulting DEM model reproduces the measured UHPC responses with strong agreement, capturing (i) compressive stress–strain response, (ii) flexural stress–strain response, and (iii) tensile stress–strain response, while also recovering the experimentally observed failure modes and damage localization patterns. These results demonstrate that physically grounded micro-scale measurements can be systematically upscaled to meso-scale DEM parameters, providing a more efficient and interpretable route for simulating UHPC and other porous cementitious composites from indentation-based inputs. Full article
24 pages, 25014 KB  
Article
DEM-Based Investigation of Sand Mixing Ratio and Recoating Speed Effects on Recoating Performance and Mechanical Properties in 3D Sand Printing
by Guili Gao, Jialin Guo, Jie Liu, Dequan Shi and Huajun Zhang
Materials 2026, 19(3), 473; https://doi.org/10.3390/ma19030473 (registering DOI) - 24 Jan 2026
Abstract
Based on the discrete element method (DEM), a sand particle contact force model and a motion model for the 3D sand printing (3DSP) process were developed. By accounting for the viscous support force and contact force between sand particles, and gravity acting on [...] Read more.
Based on the discrete element method (DEM), a sand particle contact force model and a motion model for the 3D sand printing (3DSP) process were developed. By accounting for the viscous support force and contact force between sand particles, and gravity acting on each individual sand particle, the displacement of sand particles was calculated, enabling the simulation of the 3DSP process using sand particle ensembles. Furthermore, the effects of the ratio of silica sand to ceramsite sand and the recoating speed on sand-recoating performances and mechanical properties were investigated. Irregularly shaped sand particles (primarily silica sand) were constructed via the multi-sphere filling method. The simulation was performed on a virtual sand-recoating device (180 mm in length, 100 mm in width, 70 mm in height) with reference to the EXONE S-MAX printer. Meanwhile, the EXONE S-MAX was utilized to print the bending samples for experimental validation. Simulation and experimental results indicate that as the ratio increases, the porosity first decreases and then increases, whereas mechanical properties exhibit an initial increase followed by a decrease. At a ratio of 3:7, the porosity reaches a minimum of 21.3%; correspondingly, the shear force of bonding bridges peaks at 908 mN, and the bending strength of specimens attains a maximum of 2.87 MPa. With the increasing recoating speed, the porosity rises consistently, while the shear force of bonding bridges and the bending strength of specimens first increase and then decrease, which is primarily attributed to the penetration behavior of the binder under capillary force. At a recoating speed of 160 mm·s−1, the shear force of bonding bridges reaches its maximum, and the specimens achieve a maximum bending strength of 2.89 MPa. The simulation results are well-validated by the experiments. The DEM-based simulation method proposed in this study offers a practical and convenient tool for parameter optimization in 3DSP process. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

29 pages, 11156 KB  
Article
Mesoscopic Heterogeneous Modeling Method for Polyurethane-Solidified Ballast Bed Based on Virtual Ray Casting Algorithm
by Yang Xu, Zhaochuan Sheng, Jingyu Zhang, Hongyang Han, Xing Ling, Xu Zhang and Luchao Qie
Materials 2026, 19(3), 474; https://doi.org/10.3390/ma19030474 (registering DOI) - 24 Jan 2026
Abstract
This study introduces a mesoscale modeling methodology for polyurethane-solidified ballast beds (PSBBs) that eliminates reliance on X-ray computed tomography (XCT) and addresses constraints in specimen size, capital cost, and post-processing complexity. The approach couples the Discrete Element Method (DEM) with the Finite Element [...] Read more.
This study introduces a mesoscale modeling methodology for polyurethane-solidified ballast beds (PSBBs) that eliminates reliance on X-ray computed tomography (XCT) and addresses constraints in specimen size, capital cost, and post-processing complexity. The approach couples the Discrete Element Method (DEM) with the Finite Element Method (FEM). A high-fidelity discrete-element geometry is reconstructed from three-dimensional laser scans of ballast particles. The virtual-ray casting algorithm is then employed to identify the spatial distribution of ballast and polyurethane and map this information onto the finite-element mesh, enabling heterogeneous material reconstruction at the mesoscale. The accuracy of the model and mesh convergence are validated through comparisons with laboratory uniaxial compression tests, determining the optimal mesh size to be 0.4 times the minimum particle size (0.4 Dmin). Based on this, a parametric study on the effect of sleeper width on ballast bed mechanical responses is conducted, revealing that when the sleeper width is no less than 0.73 times the ballast bed width (0.73 Wb) an optimal balance between stress diffusion and displacement control is achieved. This method demonstrates excellent cross-material applicability and can be extended to mesoscale modeling and performance evaluation of other multiphase particle–binder composite systems. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

13 pages, 5817 KB  
Case Report
Forensic Diagnostics of Cigarette Burns in a Case of Domestic Abuse: Clinical Evidence and Ex-Vivo Tests Using Porcine Skin
by Matteo Antonio Sacco, Lucia Tarda, Saverio Gualtieri, Maria Cristina Verrina and Isabella Aquila
Forensic Sci. 2026, 6(1), 7; https://doi.org/10.3390/forensicsci6010007 (registering DOI) - 23 Jan 2026
Viewed by 24
Abstract
Background: Cigarette burns represent a well-established forensic indicator of inflicted injury, frequently encountered in cases of domestic violence. Clinical significance: Their morphological consistency and anatomical distribution offer valuable elements for differentiating between intentional and accidental trauma. Case Presentation: In this study, we report [...] Read more.
Background: Cigarette burns represent a well-established forensic indicator of inflicted injury, frequently encountered in cases of domestic violence. Clinical significance: Their morphological consistency and anatomical distribution offer valuable elements for differentiating between intentional and accidental trauma. Case Presentation: In this study, we report the case of a 40-year-old woman who presented with multiple cutaneous lesions attributed to repeated assaults by her intimate partner. The forensic medical examination revealed five discrete scars characterized by sharply demarcated borders, circular to oval shapes, and dimensions ranging from 0.7 to 1.5 cm. These lesions were anatomically located in regions not typically accessible for self-infliction. To reinforce the diagnostic interpretation and assess reproducibility, a controlled experimental protocol was conducted using porcine skin matrices. Cigarette burns were recreated under variable conditions of contact pressure and exposure duration. The lesions produced on the biological substrate exhibited morphological features consistent with those observed in the patient, suggesting compatibility with cigarette-induced thermal injury. Conclusions: These findings provide circumstantial support for the forensic interpretation but must be considered within the limitations of the experimental model. This integrated approach underscores the relevance of combining clinical forensic documentation with experimental validation to support medico-legal conclusions in cases of suspected interpersonal violence. Full article
Show Figures

Figure 1

20 pages, 6000 KB  
Article
A Study on the Interaction Mechanism Between Disc Coulters and Maize Root-Soil Composites Based on DEM-MBD Coupling Simulation
by Xuanting Liu, Zhanhong Guo, Zhenwei Tong, Miao He, Peng Gao, Yunhai Ma and Zihe Xu
Agriculture 2026, 16(2), 270; https://doi.org/10.3390/agriculture16020270 - 21 Jan 2026
Viewed by 44
Abstract
To solve the problems of high resistance and blockage in stubble-breaking operations, it is necessary to reveal the interaction mechanism between disc coulters and crop root–soil composites. This study developed a discrete element method–multi-body dynamics (DEM-MBD) coupling model of the stubble-breaking operation and [...] Read more.
To solve the problems of high resistance and blockage in stubble-breaking operations, it is necessary to reveal the interaction mechanism between disc coulters and crop root–soil composites. This study developed a discrete element method–multi-body dynamics (DEM-MBD) coupling model of the stubble-breaking operation and verified the accuracy of the model through soil bin tests (error < 20%) and field experiments (error < 32%). The model was used to investigate the effects of different design parameters (coulter type and disc radius) and operating parameters (tillage speed and depth) on the stubble-breaking operation. The results showed that due to the significant strengthening effect of roots on soil, the resistance of disc coulter stubble-breaking operation was high; the number of roots in contact with the blade edge and the amount of root deformation significantly affected the resistance of the disc coulter; irreversible deformation of roots and soil could easily lead to the holes and root hairpin effects in the seeding furrow; compared to plain disc coulters, the difference in the time of deformation and fracture of the roots made the resistance of the notched coulter lower. The wavy disc coulter with a longer edge curve made its resistance higher; the disc coulter with a greater radius, higher tillage speed, and deeper tillage depth significantly increased the tillage resistance. However, the disc coulter with a greater radius or a higher tillage speed was beneficial for improving stubble-breaking performance. This study revealed the interaction mechanism between disc coulters and maize root-soil composites, providing a theoretical basis for the optimization design of no-till stubble-breaking devices. Full article
Show Figures

Figure 1

31 pages, 4217 KB  
Review
Overview of Platinum Group Minerals (PGM): A Statistical Perspective and Their Genetic Significance
by Federica Zaccarini, Giorgio Garuti, Maria Economou-Eliopoulos, John F. W. Bowles, Hannah S. R. Hughes, Jens C. Andersen and Saioa Suárez
Minerals 2026, 16(1), 108; https://doi.org/10.3390/min16010108 (registering DOI) - 21 Jan 2026
Viewed by 56
Abstract
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are [...] Read more.
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are divided into the following: (1) the Ir subgroup (IPGE) = Os, Ir, and Ru and (2) the Pd subgroup (PPGE) = Rh, Pt, and Pd. The IPGE are more refractory and less chalcophile than the PPGE. High concentrations of PGE led, in rare cases, to the formation of mineral deposits. The PGE are carried in discrete phases, the platinum group minerals (PGM), and are included as trace elements into the structure of base metal sulphides (BM), such as pentlandite, chalcopyrite, pyrite, and pyrrhotite. Similarly to PGE, the PGM are also divided into two main groups, i.e., IPGM composed of Os, Ir, and Ru and PPGM containing Rh, Pt, and Pd. The PGM occur both in mafic and ultramafic rocks and are mainly hosted in stratiform reefs, sulphide-rich lenses, and placer deposits. Presently, there are only 169 valid PGM that represent about 2.7% of all 6176 minerals discovered so far. However, 496 PGM are listed among the valid species that have not yet been officially accepted, while a further 641 are considered as invalid or discredited species. The main reason for the incomplete characterization of PGM resides in their mode of occurrence, i.e., as grains in composite aggregates of a few microns in size, which makes it difficult to determine their crystallography. Among the PGM officially accepted by the IMA, only 13 (8%) were discovered before 1958, the year when the IMA was established. The highest number of PGM was discovered between 1970 and 1979, and 99 PGM have been accepted from 1980 until now. Of the 169 PGM accepted by the IMA, 44% are named in honour of a person, typically a scientist or geologist, and 31% are named after their discovery localities. The nomenclature of 25% of the PGM is based on their chemical composition and/or their physical properties. PGM have been discovered in 25 countries throughout the world, with 64 from Russia, 17 from Canada and South Africa (each), 15 from China, 12 from the USA, 8 from Brazil, 6 from Japan, 5 from Congo, 3 from Finland and Germany (each), 2 from the Dominican Republic, Greenland, Malaysia, and Papua New Guinea each, and only 1 from Argentine, Australia, Bulgaria, Colombia, Czech Republic, England, Ethiopia, Guyana, Mexico, Serbia, and Tanzania each. Most PGM phases contain Pd (82 phases, 48% of all accepted PGM), followed, in decreasing order of abundances, by those of Pt 35 phases (21%), Rh 23 phases (14%), Ir 18 phases (11%), Ru 7 phases (4%), and Os 4 phases (2%). The six PGE forming the PGM are bonded to other elements such as Fe, Ni, Cu, S, As, Te, Bi, Sb, Se, Sn, Hg, Ag, Zn, Si, Pb, Ge, In, Mo, and O. Thirty-two percent of the 169 valid PGM crystallize in the cubic system, 17% are orthorhombic, 16% hexagonal, 14% tetragonal, 11% trigonal, 3% monoclinic, and only 1% triclinic. Some PGM are members of a solid-solution series, which may be complete or contain a miscibility gap, providing information concerning the chemical and physical environment in which the mineral was formed. The refractory IPGM precipitate principally in primitive, high-temperature, mantle-hosted rocks such as podiform and layered chromitites. Being more chalcophile, PPGE are preferentially collected and concentrated in an immiscible sulphide liquid, and, under appropriate conditions, the PPGM can precipitate in a thermal range of about 900–300 °C in the presence of fluids and a progressive increase of oxygen fugacity (fO2). Thus, a great number of Pt and Pd minerals have been described in Ni-Cu sulphide deposits. Two main genetic models have been proposed for the formation of PGM nuggets: (1) Detrital PGM represent magmatic grains that were mechanically liberated from their primary source by weathering and erosion with or without minor alteration processes, and (2) PGM reprecipitated in the supergene environment through a complex process that comprises solubility, the leaching of PGE from the primary PGM, and variation in Eh-pH and microbial activity. These two models do not exclude each other, and alluvial deposits may contain contributions from both processes. Full article
Show Figures

Figure 1

15 pages, 595 KB  
Article
Collision of an Obstacle by an Elastic Bar in a Gravity Field: Solution with Discontinuous Velocity and Space-Time Primal-Dual Active Set Algorithm
by Victor A. Kovtunenko
Algorithms 2026, 19(1), 88; https://doi.org/10.3390/a19010088 - 20 Jan 2026
Viewed by 58
Abstract
A class of one-dimensional dynamic impact models is investigated with respect to non-smooth velocities using variational inequalities and space-time finite element approximation. For the problem of collision of a rigid obstacle by an elastic bar in the gravitational field, a benchmark based on [...] Read more.
A class of one-dimensional dynamic impact models is investigated with respect to non-smooth velocities using variational inequalities and space-time finite element approximation. For the problem of collision of a rigid obstacle by an elastic bar in the gravitational field, a benchmark based on particular solutions to the wave equation is constructed on a partition of rectangle domains. The full discretization of the collision problem is carried out over a uniform space-time triangulation and extended to distorted meshes. For the solution of the corresponding variational inequality, a semi-smooth Newton-based primal-dual active set algorithm is applied. Numerical experiments demonstrate advantages over time-step approximation: a high-precision numerical solution is computed in a few iterations without any spurious oscillations. Full article
(This article belongs to the Special Issue Nonsmooth Optimization and Its Applications)
Show Figures

Figure 1

22 pages, 6012 KB  
Article
Fracture Expansion and Closure in Overburden: Mechanisms Controlling Dynamic Water Inflow to Underground Reservoirs in Shendong Coalfield
by Shirong Wei, Zhengjun Zhou, Duo Xu and Baoyang Wu
Processes 2026, 14(2), 355; https://doi.org/10.3390/pr14020355 - 19 Jan 2026
Viewed by 207
Abstract
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to [...] Read more.
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to the dynamic “expansion–closure” behavior of mining-induced fractures. This study focuses on the Shendong mining area, where repeated multi-seam mining occurs, and employs a coupled Finite Discrete Element Method (FDEM) and Computational Fluid Dynamics (CFD) numerical model, combined with in situ tests such as drilling fluid loss and groundwater level monitoring, to quantify the evolution of overburden fractures and their impact on reservoir water inflow during mining, 8 months post-mining, and after 7 years. The results demonstrate that the height of the water-conducting fracture zone decreased from 152 m during mining to 130 m after 7 years, while fracture openings in the key aquifer and aquitard were reduced by over 50%. This closure process caused a dramatic decline in water inflow from 78.3 m3/h to 2.6 m3/h—a reduction of 96.7%. The CFD-FDEM simulations showed a deviation of only 10.6% from field measurements, confirming fracture closure as the dominant mechanism driving inflow attenuation. This study reveals how fracture closure shifts water flow patterns from vertical to lateral recharge, providing a theoretical basis for optimizing the design and sustainable operation of underground reservoirs. Full article
Show Figures

Figure 1

30 pages, 9931 KB  
Article
Simulation and Parameter Optimization of Inserting–Extracting–Transporting Process of a Seedling Picking End Effector Using Two Fingers and Four Needles Based on EDEM-MFBD
by Jiawei Shi, Jianping Hu, Wei Liu, Mengjiao Yao, Jinhao Zhou and Pengcheng Zhang
Plants 2026, 15(2), 291; https://doi.org/10.3390/plants15020291 - 18 Jan 2026
Viewed by 151
Abstract
This paper aims to address the problem of the low success rate of seedling picking and throwing, and the high damage rate of pot seedling, caused by the unclear interaction and parameter mismatch between the seedling picking end effector and the pot seedling [...] Read more.
This paper aims to address the problem of the low success rate of seedling picking and throwing, and the high damage rate of pot seedling, caused by the unclear interaction and parameter mismatch between the seedling picking end effector and the pot seedling during the seedling picking and throwing process of automatic transplanters. An EDEM–RecurDyn coupled simulation was conducted, through which the disturbance of substrate particles in the bowl body during the inserting, extracting, and transporting processes by the seedling picking end effector was visualized and analyzed. The force and motion responses of the particles during their interaction with the seedling picking end effector were explored, and the working parameters of the seedling picking end effector were optimized. A seedling picking end effector using two fingers and four needles is taken as the research object, a kinematic mathematical model of the seedling picking end effector is established, and the dimensional parameters of each component of the end effector are determined. Physical characteristic tests are conducted on Shanghai bok choy pot seedlings to obtain relevant parameters. A discrete element model of the pot seedling is established in EDEM 2022 software, and a virtual prototype model of the seedling picking end effector is established in Recurdyn 2024 software. Through EDEM-Recurdyn coupled simulation, the force and movement of the substrate particles in the bowl body during the inserting, extracting, and transporting processes of the seedling picking end effector under different operating parameters were explored, providing a theoretical basis for optimizing the working parameters of the end effector. The inserting and extracting velocity, transporting velocity, and inserting depth of the seedling picking end effector were used as experimental factors, and the success rate of seedling picking and throwing, and the loss rate of substrate, were used as evaluation indicators; single-factor tests and three-factor, three-level Box–Behnken bench tests were conducted. Variance analysis, response surface methodology, and multi-objective optimization were performed using Design-Expert 13 software to obtain the optimal parameter combination: when the inserting and extracting velocity was 228 mm/s, the transporting velocity was 264 mm/s, the inserting depth was 37 mm, the success rate of seedling picking and throwing was 97.48%, and the loss rate of substrate was 2.12%. A verification experiment was conducted on the bench, and the success rate of seedling picking and throwing was 97.35%, and the loss rate of substrate was 2.34%, which was largely consistent with the optimized results, thereby confirming the rationality of the established model and optimized parameters. Field trial showed the success rate of seedling picking and throwing was 97.04%, and the loss rate of substrate was 2.41%. The error between the success rate of seedling picking and throwing and the optimized result was 0.45%, indicating that the seedling picking end effector has strong anti-interference ability, and verifying the feasibility and practicality of the established model and optimized parameters. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production—2nd Edition)
Show Figures

Figure 1

23 pages, 869 KB  
Article
Predicting Employee Turnover Based on Improved ADASYN and GS-CatBoost
by Shuigen Hu and Kai Dong
Mathematics 2026, 14(2), 313; https://doi.org/10.3390/math14020313 - 16 Jan 2026
Viewed by 159
Abstract
In corporate management practices, human resources are among the most active and critical elements, and frequent employee turnover can impose substantial losses on firms. Accurately predicting employee turnover dynamics and identifying turnover propensity in advance is therefore of significant importance for organizational development. [...] Read more.
In corporate management practices, human resources are among the most active and critical elements, and frequent employee turnover can impose substantial losses on firms. Accurately predicting employee turnover dynamics and identifying turnover propensity in advance is therefore of significant importance for organizational development. To improve turnover prediction performance, this study proposes an employee turnover prediction model that integrates an improved ADASYN data rebalancing algorithm with a grid-search-optimized CatBoost classifier. In practice, turnover instances typically constitute a minority class; severe class imbalance may lead to overfitting or underfitting and thus degrade predictive performance. To mitigate imbalance, we employ ADASYN oversampling to reduce skewness in the dataset. However, because ADASYN is primarily designed for continuous features, it may generate invalid or meaningless values when discrete variables are present. Accordingly, we improve ADASYN by introducing a new distance metric and an enhanced sample generation strategy, making it applicable to turnover data with mixed (continuous and discrete) features. Given CatBoost’s strong predictive capability in high-dimensional settings, we adopt CatBoost as the base learner. Nonetheless, CatBoost performance is highly sensitive to hyperparameter choices, and different parameter combinations can yield markedly different results. Therefore, we apply grid search (GS) to efficiently optimize CatBoost hyperparameters and obtain the best-performing configuration. Experimental results on three datasets demonstrate that the proposed improved-ADASYN GS-CatBoost model effectively enhances turnover prediction performance, exhibiting strong robustness and adaptability. Compared with existing models, our approach improves predictive accuracy by approximately 4.6112%. Full article
(This article belongs to the Section E5: Financial Mathematics)
Show Figures

Figure 1

3 pages, 141 KB  
Correction
Correction: Li et al. The Establishment of a High-Moisture Corn Ear Model Based on the Discrete Element Method and the Calibration of Bonding Parameters. Agriculture 2025, 15, 752
by Chunrong Li, Zhounan Liu, Ligang Geng, Tianyue Xu, Weizhi Feng, Min Liu, Da Qiao, Yang Wang and Jingli Wang
Agriculture 2026, 16(2), 233; https://doi.org/10.3390/agriculture16020233 - 16 Jan 2026
Viewed by 115
Abstract
In the original publication [...] Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
18 pages, 13458 KB  
Article
Damage Mechanism and Sensitivity Analysis of Cement Sheath Integrity in Shale Oil Wells During Multi-Stage Fracturing Based on the Discrete Element Method
by Xuegang Wang, Shiyuan Xie, Hao Zhang, Zhigang Guan, Shengdong Zhou, Jiaxing Mu, Weiguo Sun and Wei Lian
Eng 2026, 7(1), 48; https://doi.org/10.3390/eng7010048 - 15 Jan 2026
Viewed by 190
Abstract
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment [...] Read more.
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment approaches. In response to the limitations of conventional finite element methods in representing mesoscopic damage, in this study, we determined the mesoscopic parameters of cement paste via laboratory calibrations; constructed a 3D casing–cement sheath–formation composite model using the discrete element method; addressed the restriction of the continuum assumption; and numerically simulated the microcrack initiation, propagation, and interface debonding behaviors of cement paste from a mesomechanical viewpoint. The model’s reliability was validated using a full-scale cement sheath sealing integrity assessment apparatus, while the influences of fracturing location, stage count, and internal casing pressure on cement sheath damage were analyzed systematically. Our findings indicate that the DEM model can precisely capture the dynamic evolution features of microcracks under cyclic loading, and the results agree well with the results of the cement sheath sealing integrity evaluation. During the first internal casing pressure loading phase, the microcracks generated account for 84% of the total microcracks formed during the entire loading process. The primary interface (casing–cement sheath interface) is fully debonded after the second internal pressure loading, demonstrating that the initial stage of cyclic internal casing pressure exerts a decisive impact on cement sheath integrity. The cement sheath in the horizontal well section is subjected to high internal casing pressure and high formation stress, resulting in more frequent microcrack coalescence and a rapid rise in the interface debonding rate, whereas the damage progression in the vertical well section is relatively slow. Full article
Show Figures

Figure 1

19 pages, 6121 KB  
Article
Study on Particle Wear Mechanism of Slurry Pumps Based on Computational Fluid Dynamics-Discrete Element Method Coupling
by Meng Xue, Jianjun Peng, Xiangchen Ku and Guanhua Dong
Lubricants 2026, 14(1), 38; https://doi.org/10.3390/lubricants14010038 - 15 Jan 2026
Viewed by 170
Abstract
To investigate the influence of particle characteristics on wear in slurry pump flow-through components, this study established a computational fluid dynamics-discrete element method (CFD-DEM) coupled with the Archard wear model for numerical simulation of solid-liquid two-phase flow characteristics and wear mechanisms within the [...] Read more.
To investigate the influence of particle characteristics on wear in slurry pump flow-through components, this study established a computational fluid dynamics-discrete element method (CFD-DEM) coupled with the Archard wear model for numerical simulation of solid-liquid two-phase flow characteristics and wear mechanisms within the pump. Focusing on the correlation between wear contour distribution and particle collision frequency, the study systematically analyzed the influence mechanisms of particle concentration, size distribution, and shape on wear patterns within the pump. The reliability of the coupled model was validated through external characteristic tests. Results indicate that wear severity on both the impeller and volute increases significantly with rising particle concentration, while wall particle collision frequency exhibits a positive correlation with concentration. Particles of 1.5 mm diameter cause the most severe localized wear on the impeller, whereas the presence of mixed particles partially mitigates the wear effect of larger particles. Both total and localized wear on the volute peak at a particle diameter of 1 mm. Low-sphericity particles intensified overall wear on both the impeller and volute; while high-sphericity particles reduced overall wear, they induced more severe localized wear on the impeller. Volute localized wear was most pronounced at a sphericity of 0.84. This study elucidates the mechanism by which particle characteristics influence wear on slurry pump flow-through components, providing a theoretical basis for optimizing slurry pump design. Full article
Show Figures

Figure 1

23 pages, 2829 KB  
Article
Calibration and Experimental Determination of Parameters for the Discrete Element Model of Shells
by Tong Wang, Xin Du, Shufa Chen, Qixin Sun, Yue Jiang and Hengjie Dong
Appl. Mech. 2026, 7(1), 6; https://doi.org/10.3390/applmech7010006 - 14 Jan 2026
Viewed by 119
Abstract
This study conducts systematic experimental and numerical investigations to address the parameter calibration issue in the discrete element model of seashells, aiming to establish a high-fidelity numerical model that accurately characterizes their macroscopic mechanical behavior, thereby providing a basis for optimizing parameters of [...] Read more.
This study conducts systematic experimental and numerical investigations to address the parameter calibration issue in the discrete element model of seashells, aiming to establish a high-fidelity numerical model that accurately characterizes their macroscopic mechanical behavior, thereby providing a basis for optimizing parameters of seashell crushing equipment. Firstly, intrinsic parameters of seashells were determined through physical experiments: density of 2.2 kg/m3, Poisson’s ratio of 0.26, shear modulus of 1.57 × 108 Pa, and elastic modulus of 6.5 × 1010 Pa. Subsequently, contact parameters between seashells and between seashells and 304 stainless steel, including static friction coefficient, rolling friction coefficient, and coefficient of restitution, were obtained via the inclined plane method and impact tests. The reliability of these contact parameters was validated by the angle of repose test, with a relative error of 5.1% between simulation and measured results. Based on this, using ultimate load as the response indicator, the PlackettBurman experimental design was employed to identify normal stiffness per unit area and tangential stiffness per unit area as the primary influencing parameters. The Bonding model parameters were then precisely calibrated through the steepest ascent test and design, resulting in an optimal parameter set. The error between simulation results and physical experiments was only 3.8%, demonstrating the high reliability and accuracy of the established model and parameter calibration methodology. Full article
Show Figures

Figure 1

22 pages, 3398 KB  
Article
Calibration of Discrete Element Method Parameters for Cabbage Stubble–Soil Interface Using In Situ Pullout Force
by Wentao Zhang, Zhi Li, Qinzhou Cao, Wen Li and Ping Jiang
Agriculture 2026, 16(2), 205; https://doi.org/10.3390/agriculture16020205 - 13 Jan 2026
Viewed by 137
Abstract
Cabbage stubble left in fields after harvest forms a mechanically complex stubble–soil composite that hinders subsequent tillage and crop establishment. Although the Discrete Element Method (DEM) is widely used to model soil-root systems, calibrated contact parameters for taproot-dominated vegetables like cabbage remain unreported. [...] Read more.
Cabbage stubble left in fields after harvest forms a mechanically complex stubble–soil composite that hinders subsequent tillage and crop establishment. Although the Discrete Element Method (DEM) is widely used to model soil-root systems, calibrated contact parameters for taproot-dominated vegetables like cabbage remain unreported. This study addresses this gap by calibrating a novel DEM framework that couples the JKR model and the Bonding V2 model to represent adhesion and mechanical interlocking at the stubble–soil interface. Soil intrinsic properties and contact parameters were determined through triaxial tests and angle-of-repose experiments. Physical pullout tests on ‘Zhonggan 21’ cabbage stubble yielded a mean peak force of 165.5 N, used as the calibration target. A three-stage strategy—factor screening, steepest ascent, and Box–Behnken design (BBD)—identified optimal interfacial parameters: shear stiffness per unit area = 4.40 × 108 N·m−3, normal strength = 6.26 × 104 Pa, and shear strength = 6.38 × 104 Pa. Simulation predicted a peak pullout force of 162.0 N, showing only a 2.1% deviation from experiments and accurately replicating the force-time trend. This work establishes the first validated DEM framework for cabbage stubble–soil interaction, enabling reliable virtual prototyping of residue management implements and supporting low-resistance, energy-efficient tillage tool development for vegetable production. Full article
Show Figures

Figure 1

Back to TopTop