Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (784)

Search Parameters:
Keywords = discontinuity characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3189 KiB  
Article
Improved Block Element Method for Simulating Rock Failure
by Yan Han, Qingwen Ren, Lei Shen and Yajuan Yin
Appl. Sci. 2025, 15(15), 8636; https://doi.org/10.3390/app15158636 (registering DOI) - 4 Aug 2025
Abstract
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids [...] Read more.
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids for discrete modeling. This approach mitigates the distortion of damage paths caused by regular grids through the randomness of the Voronoi grids. As the innovation of this work, the iterative algorithm is combined with polygonal geometric features so that the area–perimeter fractal dimension can be introduced to optimize random Voronoi grids. The iterative control index can effectively improve the geometric characteristics of the grid while maintaining the necessary randomness. On this basis, a constitutive relation model that considers both normal and tangential damage is proposed. The entire process from damage initiation to macroscopic fracture failure in rocks is described using two independent damage surfaces and a damage relationship based on geometric mapping relationships. The analysis results are in good agreement with existing experimental data. Furthermore, the sensitivity method is used to analyze the influence of key mechanical parameters in the constitutive model. Full article
Show Figures

Figure 1

17 pages, 1754 KiB  
Article
A Fuzzy Five-Region Membership Model for Continuous-Time Vehicle Flow Statistics in Underground Mines
by Hao Wang, Maoqua Wan, Hanjun Gong and Jie Hou
Processes 2025, 13(8), 2434; https://doi.org/10.3390/pr13082434 - 31 Jul 2025
Viewed by 222
Abstract
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to [...] Read more.
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to address this issue by subdividing time intervals into five characteristic regions and constructing a composite Gaussian–quadratic membership function. The model dynamically assigns weights to adjacent segments based on temporal distances, ensuring smooth transitions between time intervals while preserving flow conservation. When validated on a 29-day RFID dataset from a large coal mine, FZFM eliminated conservation bias, reduced the boundary mutation index by 11.1% compared with traditional absolute segmentation, and maintained high computational efficiency, proving suitable for real-time systems. The method effectively mitigates abrupt flow jumps at segment boundaries, providing continuous and robust flow distributions for intelligent scheduling algorithms in complex underground logistics systems. Full article
(This article belongs to the Special Issue Data-Driven Analysis and Simulation of Coal Mining)
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 138
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

32 pages, 6681 KiB  
Article
Spatial Distribution Characteristics and Cluster Differentiation of Traditional Villages in the Central Yunnan Region
by Tao Chen, Sisi Zhang, Juan Chen, Jiajing Duan, Yike Zhang and Yaoning Yang
Land 2025, 14(8), 1565; https://doi.org/10.3390/land14081565 - 30 Jul 2025
Viewed by 291
Abstract
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects [...] Read more.
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects the Central Yunnan region of Southwest China—characterized by its complex geography and multi-ethnic habitation—as the research area. Employing ArcGIS spatial analysis techniques alongside clustering algorithms, we examine the spatial distribution characteristics and clustering patterns of 251 traditional villages within this region. The findings are as follows. In terms of spatial distribution, traditional villages in Central Yunnan are unevenly dispersed, predominantly aggregating on mid-elevation gentle slopes; their locations are chiefly influenced by rivers and historical courier routes, albeit with only indirect dependence on waterways. Regarding single-cluster attributes, the spatial and geomorphological features exhibit a composite “band-and-group” pattern shaped by river valleys; culturally, two dominant modes emerge—“ancient-route-dependent” and “ethnic-symbiosis”—reflecting an economy-driven cultural mechanism alongside latent marginalization risks. Concerning construction characteristics, the “Qionglong-Ganlan” and Han-style “One-seal” residential features stand out, illustrating both adaptation to mountainous environments and the cumulative effects of historical culture. Based on these insights, we propose a three-tiered clustering classification framework—“comprehensive-element coordination”, “feature-led”, and “potential-cultivation”—to inform the development of contiguous and typological protection strategies for traditional villages in highland, multi-ethnic regions. Full article
Show Figures

Figure 1

24 pages, 7001 KiB  
Article
VAM-Based Equivalent Cauchy Model for Accordion Honeycomb Structures with Zero Poisson’s Ratio
by Yuxuan Lin, Mingfang Chen, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Rong Liu
Materials 2025, 18(15), 3502; https://doi.org/10.3390/ma18153502 - 25 Jul 2025
Viewed by 438
Abstract
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is [...] Read more.
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is validated via quasi-static compression experiments on 3D-printed specimens and detailed 3D finite element simulations (3D-FEM), showing a strong correlation between simulation and experimental data. Parametric analyses reveal that the re-entrant angle, ligament-to-strut length ratio, and thickness ratios significantly affect the equivalent elastic moduli, providing insights into geometric optimization strategies for targeted mechanical performance. Comparative experiments among honeycomb structures with positive, negative, and zero Poisson’s ratios show that the accordion honeycomb achieves superior dimensional stability and tunable stiffness but exhibits lower energy-absorption efficiency due to discontinuous buckling and recovery processes. Further comparison among different ZPR honeycombs confirms that the accordion design offers the highest equivalent modulus in the re-entrant direction. The findings underscore the accordion honeycomb’s promise in scenarios demanding structural reliability, tunable stiffness, and moderate energy absorption. Full article
(This article belongs to the Special Issue Lightweight and High-Strength Sandwich Panel (2nd Edition))
Show Figures

Figure 1

14 pages, 857 KiB  
Article
Leaving School: A Healthy Transition in Late Adolescence?
by Max Herke
Eur. J. Investig. Health Psychol. Educ. 2025, 15(8), 146; https://doi.org/10.3390/ejihpe15080146 - 25 Jul 2025
Viewed by 253
Abstract
Background: Adolescents’ subjective well-being (SWB) is a key indicator of quality of life. While its development during schooling has been widely studied, few studies have examined changes in SWB after leaving school due to the need for longitudinal data. This study investigates changes [...] Read more.
Background: Adolescents’ subjective well-being (SWB) is a key indicator of quality of life. While its development during schooling has been widely studied, few studies have examined changes in SWB after leaving school due to the need for longitudinal data. This study investigates changes in SWB among adolescents in Germany over the two years before and after leaving school, focusing on school type, socioeconomic position, gender, and family structure. Methods: We use data from the ninth-grade cohort of the German National Educational Panel Study, first surveyed in 2010 and followed annually. Growth modeling (specifically, a multilevel discontinuity model) is applied to analyze SWB trajectories and potential moderation by background characteristics. The final sample includes 19,767 observations from 6599 individuals. Results: SWB increases notably after leaving school and remains stable before and after the transition. The increase is smaller for adolescents completing higher secondary education, living in nuclear families, or identifying as male. These groups report higher SWB prior to the transition, so post-school changes reduce group differences. Conclusion: The findings suggest that schools may lack adequate resources to support adolescents in mastering key developmental challenges. While school is a critical environment, it may also impose pressures that are associated with lower well-being. Full article
Show Figures

Figure 1

23 pages, 8003 KiB  
Article
Study on Meso-Mechanical Evolution Characteristics and Numerical Simulation of Deep Soft Rock
by Anying Yuan, Hao Huang and Tang Li
Processes 2025, 13(8), 2358; https://doi.org/10.3390/pr13082358 - 24 Jul 2025
Viewed by 285
Abstract
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and [...] Read more.
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and particle flow code (PFC) numerical simulation to investigate the failure evolution characteristics and AE quantitative representation of soft rocks. Key findings include the following: Localized high-strain zones emerge on specimen surfaces before macroscopic crack visualization, with crack tip positions guiding both high-strain zones and crack propagation directions. Strong force chain evolution exhibits high consistency with the macroscopic stress response—as stress increases and damage progresses, force chains concentrate near macroscopic fracture surfaces, aligning with crack propagation directions, while numerous short force chains coalesce into longer chains. The spatial and temporal distribution characteristics of acoustic emissions were explored, and the damage types were quantitatively characterized, with ring-down counts demonstrating four distinct stages: sporadic, gradual increase, stepwise growth, and surge. Shear failures predominantly occurred along macroscopic fracture surfaces. At the same time, there is a phenomenon of acoustic emission silence in front of the stress peak in the surrounding rock of deep soft rock roadway, as a potential precursor indicator for engineering disaster early warning. These findings provide critical theoretical support for deep engineering disaster prediction. Full article
Show Figures

Figure 1

18 pages, 4365 KiB  
Article
Analytical and Numerical Investigation of Adhesive-Bonded T-Shaped Steel–Concrete Composite Beams for Enhanced Interfacial Performance in Civil Engineering Structures
by Tahar Hassaine Daouadji, Fazilay Abbès, Tayeb Bensatallah and Boussad Abbès
Inventions 2025, 10(4), 61; https://doi.org/10.3390/inventions10040061 - 23 Jul 2025
Viewed by 254
Abstract
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. [...] Read more.
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. It captures the nonlinear distribution of shear stresses over the entire depth of the composite section, making it applicable to various material combinations. The approach accounts for both continuous and discontinuous bonding conditions at the bonded steel–concrete interface. The analysis focuses on the top flange of the steel section, using a T-beam configuration commonly employed in bridge construction. This configuration stabilizes slab sliding, making the composite beam rigid, strong, and resistant to deformation. The numerical results demonstrate the advantages of the proposed solution over existing steel beam models and highlight key characteristics at the steel–concrete interface. The theoretical predictions are validated through comparison with existing analytical and experimental results, as well as finite element models, confirming the model’s accuracy and offering a deeper understanding of critical design parameters. The comparison shows excellent agreement between analytical predictions and finite element simulations, with discrepancies ranging from 1.7% to 4%. This research contributes to a better understanding of the mechanical behavior at the interface and supports the design of hybrid steel–concrete structures. Full article
Show Figures

Figure 1

12 pages, 300 KiB  
Article
Prevalence, Appropriateness, and Outcomes of Colistin Use in Multidrug-Resistant Pseudomonas aeruginosa Infections: Insights from Hospital Data
by Rana K. Abu-Farha, Savana Sobh, Khawla Abu Hammour, Feras Darwish El-Hajji, Sireen A. Shilbayeh and Rania Itani
Medicina 2025, 61(7), 1275; https://doi.org/10.3390/medicina61071275 - 15 Jul 2025
Viewed by 257
Abstract
Background and Objectives: This study aimed to assess the prevalence of colistin prescriptions among patients with multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) infections admitted to a tertiary teaching hospital in Jordan. Additionally, the study evaluated the appropriateness of colistin prescriptions and [...] Read more.
Background and Objectives: This study aimed to assess the prevalence of colistin prescriptions among patients with multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) infections admitted to a tertiary teaching hospital in Jordan. Additionally, the study evaluated the appropriateness of colistin prescriptions and assessed resistance levels of this strain. Materials and Methods: In this retrospective study, adult patients who were infected with MDR P. aeruginosa and were admitted to Jordan University Hospital between January 2018 and March 2024 were included. Data on demographics, clinical characteristics, sources of infection, antibiotic therapy, and clinical outcomes were collected. Results: Out of the 85 patients who met the inclusion criteria for having MDR P. aeruginosa, colistin was administered to 16 patients (18.8%). Notably, approximately two-thirds (68.7%) of the isolates from patients who received colistin were classified as extensively drug-resistant (XDR). Among the isolates, 15 out of 16 (93.8%) were resistant to both ciprofloxacin and imipenem. Among the patients requiring colistin, five (31.3%) discontinued therapy, while two (12.5%) remained on colistin despite the availability of safer alternatives. No significant difference was observed in 30-day all-cause mortality between patients treated with colistin (0%) and those who were not (4.3%, p = 1.00). Similarly, the incidence of acute kidney injury did not differ significantly between the colistin group (0%) and the non-colistin group (p = 1.00). No significant difference was found in the hospital stay between colistin-treated patients (median 10.5 days, IQR [5.0–14.0]) and those not treated with colistin (median 13.0 days, IQR [7.0–21.0]), (p = 0.22). Conclusions: This study demonstrated that colistin was selectively initiated in high-risk patients, particularly those with XDR P. aeruginosa. However, its inappropriate continuation despite safer alternatives, as well as its discontinuation when no other options existed, raise concerns about antibiotic de-escalation practices. Interestingly, no significant differences in mortality or acute kidney injury were observed between patients who were treated with colistin and those who were not. These findings emphasize the need for antimicrobial stewardship programs and highlight the importance of large-scale trials to evaluate colistin’s efficacy and safety in MDR infections. Full article
(This article belongs to the Section Infectious Disease)
17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 353
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Rhinosinusitis as an Immune-Related Adverse Event: Clinical Characteristics, Management, and Prognostic Implications in Metastatic Melanoma Patients
by Amalia Anastasopoulou, Aikaterini Gkoufa, Panagiotis Kouzis, Georgios Kyriakakis, Michail Belivanis, Georgia Sypsa, Spyridon Bouros, Helen Gogas and Panagiotis T. Diamantopoulos
Cancers 2025, 17(14), 2297; https://doi.org/10.3390/cancers17142297 - 10 Jul 2025
Viewed by 202
Abstract
Background: Melanoma management has been revolutionized by the use of immune checkpoint inhibitors (ICIs). However, ICIs are associated with immune-related adverse events (irAEs), including rhinosinusitis, which remains underexplored. This study evaluated the incidence, characteristics, management, and prognostic implications of rhinosinusitis in patients [...] Read more.
Background: Melanoma management has been revolutionized by the use of immune checkpoint inhibitors (ICIs). However, ICIs are associated with immune-related adverse events (irAEs), including rhinosinusitis, which remains underexplored. This study evaluated the incidence, characteristics, management, and prognostic implications of rhinosinusitis in patients with melanoma under ICIs. Methods: A retrospective analysis was conducted on adult patients with melanoma treated with ICIs. Demographic, clinical, laboratory, treatment, and survival data were collected. Rhinosinusitis was defined radiographically and graded using the Harvard scoring system. Associations between rhinosinusitis and survival outcomes were analyzed. Results: Among 304 patients, 64 (21.1%) developed imaging-confirmed rhinosinusitis during ICI treatment, with 9.4% symptomatic cases. Rhinosinusitis was the sole irAE in 11.8% of patients, and 9.2% experienced it alongside other irAEs. A significant correlation with eosinophilia was observed: 39.6% of eosinophilic patients developed rhinosinusitis versus 17.1% without eosinophilia (p < 0.001). Most cases occurred during the first ICI line (86.4%), particularly with nivolumab monotherapy (32.8%). Importantly, in metastatic melanoma, rhinosinusitis was associated with significantly longer overall survival since ICI initiation (OSICI) compared to patients without rhinosinusitis (33.3 vs. 15.4 months, p = 0.025). No survival benefit was observed in the adjuvant setting. The condition was predominantly aseptic, and corticosteroids were used in 7.8%. Conclusions: This study highlights rhinosinusitis as an irAE associated with improved OS in metastatic melanoma. Further research is required to elucidate the underlying mechanisms and assess the resolution of rhinosinusitis after ICI discontinuation. Additionally, rhinosinusitis may serve as a marker of favorable prognosis in metastatic melanoma patients receiving ICIs. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

17 pages, 259 KiB  
Article
Effective Social Support to Enable Older Adults Living Alone in Japan to Continue Living at Home
by Miwako Naoe and Yasuhiro Kawahara
Int. J. Environ. Res. Public Health 2025, 22(7), 1084; https://doi.org/10.3390/ijerph22071084 - 7 Jul 2025
Viewed by 477
Abstract
Japan has the world’s fastest-aging population. The number of older adults living alone has increased rapidly; however, the number of people waiting for nursing care facilities is high, especially in urban areas, and home care is unavoidable. Few studies have focused on older [...] Read more.
Japan has the world’s fastest-aging population. The number of older adults living alone has increased rapidly; however, the number of people waiting for nursing care facilities is high, especially in urban areas, and home care is unavoidable. Few studies have focused on older adults living alone who require nursing care, and almost no reports have examined the factors influencing the continuation or discontinuation of living alone. Furthermore, no reports were found that classified nursing care levels for the survey. This study’s purpose was to clarify what kind of long-term care for older adults living alone in urban areas is most effective in enabling them to continue living at home. A total of 122 older adults in need of long-term care in Osaka City were divided into two groups; one group was those who continued to live alone in December 2022, the other was those who had to discontinue doing so after January 2020. A questionnaire was distributed to the care managers responsible for older adults living alone who required nursing care. The participants’ basic attributes, long-term care services usage, and the characteristics of instrumental activities of daily living (IADL) support were compared according to care level using Fisher’s exact test. The relevant effective factors for continuing to live alone were extracted using a multivariate logistic regression analysis. The results showed differences in the characteristics of both groups at both care level categories used in the study, Support Care Level 1–Nursing Care Level 2 and Nursing Care Level 3–5. Among the support items, indoor temperature control was suggested as a factor that influences continued living alone. Full article
53 pages, 2879 KiB  
Systematic Review
Hypersensitivity in Orthodontics: A Systematic Review of Oral and Extra-Oral Reactions
by Alessandra Amato, Stefano Martina, Giuseppina De Benedetto, Ambrosina Michelotti, Massimo Amato and Federica Di Spirito
J. Clin. Med. 2025, 14(13), 4766; https://doi.org/10.3390/jcm14134766 - 5 Jul 2025
Viewed by 454
Abstract
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment [...] Read more.
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment characteristics to provide clinical recommendations. Methods: The study protocol followed the PRISMA guidelines and was registered on PROSPERO (CRD42024517942). Results: Thirty-one studies were qualitatively assessed and synthetized, involving 858 subjects (114 males and 714 females, 9–49 years old), of whom there were 86 with a history of allergy, and 743 wearing recorded appliances (FAs = 656, FAs and RAs = 81, intra- and extra-oral RAs = 3, CAs = 3), with a mean treatment duration of 21.5 months (6 weeks–40 months). Among 75 reports, 29 (38.67%), describing burning, gingival hyperplasia, erythema, and vesicles, had oral involvement, while 46 (61.33%) had skin, eye, and systemic involvement, with erythema, papules, conjunctival hyperemia, and vertigo. Positive allergy tests concomitant with the manifestations identified nickel 451 times, cobalt 6 times, titanium 5 times, and chromium 4 times. Management included antihistamines or corticosteroids and removing the offending materials, with treatment discontinuation/appliance substitution. Conclusions: Pre-treatment evaluations, including patient histories and allergy testing, are essential to identify potential allergens and select hypoallergenic materials like titanium or ceramic brackets; regular monitoring and early intervention during treatment are crucial to prevent severe outcomes. Full article
(This article belongs to the Special Issue Oral Health and Dental Care: Current Advances and Future Options)
Show Figures

Figure 1

15 pages, 6694 KiB  
Article
Influence of Annealing Atmosphere on the Phosphatability of Ultra-High-Strength Automotive Steels
by Joongchul Park and Joonho Lee
Materials 2025, 18(13), 3170; https://doi.org/10.3390/ma18133170 - 4 Jul 2025
Viewed by 350
Abstract
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in [...] Read more.
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in phosphating behavior were examined. The surface characteristics of the samples were analyzed using X-ray photoelectron spectroscopy (XPS) and field-emission transmission electron microscopy (FE-TEM), while the phosphatability of the samples was evaluated through electrochemical measurements. The sample annealed at a dew point of −50 °C formed continuous Si and Mn oxide films (~10 nm), which significantly suppressed the phosphatability. In contrast, when annealed at 0 °C, internal oxidation occurred along the grain boundaries to a depth of about 3 μm, resulting in the formation of discontinuous Si and Mn oxides on the surface, which greatly enhanced phosphatability. This difference was also supported by OCP measurements: the −50 °C specimen showed a gradual increase in potential, whereas the 0 °C specimen rapidly reached −0.59 V and then stabilized. The findings of this study demonstrate that optimizing the annealing atmosphere provides an effective approach to enhance the phosphating performance of UHSS without the need for additional surface treatments. Full article
Show Figures

Graphical abstract

28 pages, 1445 KiB  
Article
Design of Spread Foundations on Rock Mass in the Second Generation of Eurocode 7
by Renato Pereira, Witold Bogusz and Luís Lamas
Geotechnics 2025, 5(3), 46; https://doi.org/10.3390/geotechnics5030046 - 2 Jul 2025
Viewed by 1055
Abstract
This paper outlines the key developments in the second generation of the Eurocodes, with a focus on the integration of rock engineering into the updated Eurocode 7—Geotechnical Design (EN 1997). It introduces the various methodologies used for safety verification of geotechnical structures and [...] Read more.
This paper outlines the key developments in the second generation of the Eurocodes, with a focus on the integration of rock engineering into the updated Eurocode 7—Geotechnical Design (EN 1997). It introduces the various methodologies used for safety verification of geotechnical structures and provides a brief overview of limit state design, including the semi-probabilistic approach and other reliability-based methods. The paper details the introduction of specific partial factors for intact rock, rock mass, and discontinuities and discusses specific aspects of the design of spread foundations on rock using calculations. This includes the shift from traditional global safety factor methods to the partial factor format prescribed by Eurocode 7, as well as the use of fully probabilistic analyses. To assess the practical implications of these updates, a case study on the design of a spread foundation is presented. The study compares three design approaches: the global safety factor method (based on mean values of actions and strength properties), the Eurocode 7 partial factor method (using characteristic values), and a probabilistic method (based on statistical distributions). Additionally, the paper examines the application of two failure criteria—Mohr–Coulomb and Hoek–Brown—in the calculation process. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

Back to TopTop