Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,034)

Search Parameters:
Keywords = direct feed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1051 KB  
Review
Early-Life Gut Microbiota: Education of the Immune System and Links to Autoimmune Diseases
by Pleun de Groen, Samantha C. Gouw, Nordin M. J. Hanssen, Max Nieuwdorp and Elena Rampanelli
Microorganisms 2026, 14(1), 210; https://doi.org/10.3390/microorganisms14010210 - 16 Jan 2026
Abstract
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., [...] Read more.
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., Bifidobacterium, Bacteroides, and Enterococcus) and impair key microbial functions, including short-chain fatty acid (SCFA) production by these keystone species, alongside regulatory T cell induction. These dysbiosis patterns are associated with an increased risk of pediatric autoimmune diseases, notably type 1 diabetes, inflammatory bowel disease, celiac disease, and juvenile idiopathic arthritis. This review synthesizes current evidence on how the early-life microbiota influences immune maturation, with potential effects on the development of autoimmune diseases later in life. We specifically focus on human observational and intervention studies, where treatments with probiotics, synbiotics, vaginal microbial transfer, or maternal fecal microbiota transplantations have been shown to partially restore a disrupted microbiome. While restoration of the gut microbiome composition and function is the main reported outcome of these studies, to date, no reports have disclosed direct prevention of autoimmune disease development by targeting the early-life gut microbiome. In this regard, a better understanding of the early-life microbiome–immune axis is essential for developing targeted preventive strategies. Future research must prioritize longitudinal evaluation of autoimmune outcomes after microbiome modulation to reduce the burden of chronic immune-mediated diseases. Full article
(This article belongs to the Special Issue Microbiomes in Human Health and Diseases)
35 pages, 2832 KB  
Article
Dietary Methionine Supplementation Improves Rainbow Trout (Oncorhynchus mykiss) Immune Responses Against Viral Haemorrhagic Septicaemia Virus (VHSV)
by Mariana Vaz, Gonçalo Espregueira Themudo, Inês Carvalho, Felipe Bolgenhagen Schöninger, Carolina Tafalla, Patricia Díaz-Rosales, Benjamín Costas and Marina Machado
Biology 2026, 15(2), 163; https://doi.org/10.3390/biology15020163 - 16 Jan 2026
Abstract
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed [...] Read more.
Several studies have demonstrated that methionine supplementation in fish diets enhances immune status, inflammatory response, and resistance to bacterial infections by modulating for DNA methylation, aminopropylation, and transsulfuration pathways. However, the immunomodulatory effects of methionine in viral infections remain unexplored. This study aimed to evaluate the effect of methionine supplementation on immune modulation and resistance to the viral haemorrhagic septicaemia virus (VHSV) in rainbow trout (Oncorhynchus mykiss). Two diets were formulated and fed to juvenile rainbow trout for four weeks: a control diet (CTRL) with all nutritional requirements, including the amino acid profile required for the species, and a methionine-supplemented diet (MET), containing twice the normal requirement of DL-methionine. After feeding, fish were bath-infected with VHSV, while control fish were exposed to a virus-free bath. Samples were collected at 0 (after feeding trial), 24, 72, and 120 h post-infection for the haematological profile, humoral immune response, oxidative stress, viral load, RNAseq, and gene expression analysis. In both diets, results showed a peak in viral activity at 72 h, followed by a reduction in viral load at 120 h, indicating immune recovery. During the peak of infection, leukocytes, thrombocytes, and monocytes migrated to the infection site, while oxidative stress biomarkers (superoxide dismutase glutathione S-transferase, and glutathione redox ratio) suggested a compromised ability to manage cellular imbalance due to intense viral activity. At 120 h, immune recovery and homeostasis were observed due to an increase in the amount of nitric oxide, GSH/GSSG levels, leukocyte replacement, monocyte influx, and a reduction in the viral load. When focusing on the infection peak, gene ontology (GO) analysis showed several exclusively enriched pathways in the skin and gills of MET-fed fish, driven by the upregulation of several key genes. Genes involved in recognition/signalling, inflammatory response, and other genes with direct antiviral activity, such as TLR3, MYD88, TRAF2, NF-κB, STING, IRF3, -7, VIG1, caspases, cathepsins, and TNF, were observed. Notably, VIG1 (viperin), a key antiviral protein, was significantly upregulated in gills, confirming the modulatory role of methionine in inducing its transcription. Viperin, which harbours an S-adenosyl-L-methionine (SAM) radical domain, is directly related to methionine biosynthesis and plays a critical role in the innate immune response to VHSV infection in rainbow trout. In summary, this study suggests that dietary methionine supplementation can enhance a more robust fish immune response to viral infections, with viperin as a crucial mediator. The improved antiviral readiness observed in MET-fed fish underscores the potential of targeted nutritional adjustments to sustain fish health and welfare in aquaculture. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

28 pages, 2422 KB  
Systematic Review
Nitrogen Source–Carbohydrate Synchronization in Ruminant Nutrition: A Systematic Review
by Leilson Rocha Bezerra, Juliana Paula Felipe de Oliveira, Antônio Fernando de Melo Vaz, Kevily Henrique de Oliveira Soares de Lucena, Lucas de Souza Barros, Yuri Martins de Andrade Fortunato, Severino Gonzaga Neto, Elzania Sales Pereira, Ronaldo Lopes Oliveira and José Morais Pereira Filho
Animals 2026, 16(2), 239; https://doi.org/10.3390/ani16020239 - 13 Jan 2026
Viewed by 94
Abstract
The synchronization between nitrogen sources and carbohydrate fractions represents a critical factor for optimizing microbial protein synthesis and overall ruminant performance. This systematic review, conducted according to PRISMA 2020 guidelines, comprehensively evaluated the interactions between different nitrogen sources (true protein, urea, controlled-release urea, [...] Read more.
The synchronization between nitrogen sources and carbohydrate fractions represents a critical factor for optimizing microbial protein synthesis and overall ruminant performance. This systematic review, conducted according to PRISMA 2020 guidelines, comprehensively evaluated the interactions between different nitrogen sources (true protein, urea, controlled-release urea, and bypass amino acids) and carbohydrate fractions (rapidly degrading soluble, slowly degrading soluble, fibrous, non-fibrous, and Van Soest fractions) in ruminant nutrition. A comprehensive search across PubMed, ScienceDirect, Web of Science, and Scopus databases identified 1855 records, of which 164 studies met the eligibility criteria for qualitative synthesis and 89 for quantitative meta-analysis. The review reveals that synchronization effectiveness varies significantly depending on the nitrogen source–carbohydrate combination, with controlled-release urea showing superior synchrony with slowly degrading carbohydrates, while conventional urea performs better with rapidly degrading sources. Meta-analytical results indicate that optimal nitrogen–carbohydrate synchronization can improve microbial protein synthesis by 18–34%, reduce urinary nitrogen excretion by 12–28%, and enhance feed efficiency by 8–15%. These findings provide evidence-based recommendations for precision nutrition strategies in ruminant production systems. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

14 pages, 760 KB  
Article
Two-Generation Genetic Evaluation of Female Reproductive Performance in Pacific White Shrimp (Penaeus vannamei) Under SPF Conditions
by Jiaqi Yu, Jie Kong, Sheng Luan, Jiawang Cao, Mianyu Liu, Kun Luo, Jian Tan, Ping Dai, Zhaoxin Wang, Juan Sui and Xianhong Meng
Animals 2026, 16(2), 235; https://doi.org/10.3390/ani16020235 - 13 Jan 2026
Viewed by 115
Abstract
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two [...] Read more.
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two generations (2021–2022) from 198 full-sib and 68 half-sib families were evaluated. Traits analyzed included spawning frequency (SF), mean spawning interval (MSI), number of eggs laid for the first time (NE1), average spawning (AS), total spawning (TS), and spawning success (SS). Heritability estimates for SF, SS, and TS were moderate (0.30 ± 0.06, 0.23 ± 0.06 and 0.28 ± 0.07, respectively), while MSI, NE1, and AS showed low heritability (0.10–0.16). When analyzed separately by year, heritability estimates declined substantially for most traits in the second generation. Strong positive genetic correlations were observed between SF, MSI, NE1, AS, and TS, with pairwise estimates ranging from 0.82 to 0.99, indicating that these traits are under shared genetic control. Despite not being direct selection objects, all reproductive traits exhibited relative genetic progress (246–488% per generation), which is attributable to the high selection intensity applied to the parental generation. Our findings provide a robust foundation for integrating reproductive performance into breeding programs for P. vannamei, particularly under biosecurity and commercial feed-dominated conditions. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

12 pages, 4120 KB  
Article
The Effect of Micro-Cutting on the Residual Height of Surface Topography in NiTi Shape Memory Alloy Using a Small-Diameter Cutter
by Xinyi Wang, Zeming Li, Yansen Wang, Zelin Wang, Zhenshan Chen, Junxiang Liu, Jian Wang and Guijie Wang
Coatings 2026, 16(1), 100; https://doi.org/10.3390/coatings16010100 - 12 Jan 2026
Viewed by 103
Abstract
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic [...] Read more.
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic deformation, and residual stress evolution. Results showed that increasing feed per tooth led to a significant rise in surface residual height and an improvement in surface isotropy. With the increase in feed per tooth, the error between the experimental and simulated heights gradually decreased from 105.6% to 30.9%, indicating that both material properties and feed per tooth strongly affect residual profile formation in the feed direction. In addition, larger feed per tooth intensifies work hardening and plastic deformation but reduces surface residual stress, thereby increasing microhardness. These effects can mitigate material rebound and improve surface profile accuracy. The results provide a direct basis for controlling the surface integrity of NiTi SMA components through machining parameter optimization, enabling precise tailoring of functional surface characteristics, such as wear performance, chemical stability, and biological response, which is of critical importance for high-end biomedical implants and aerospace systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 3991 KB  
Review
Review on Mining Robust Lactic Acid Bacteria for Next-Generation Silage Inoculants via Multi-Omics
by Yanyan Liu, Mingxuan Zhao, Shanyao Zhong, Guoxin Wu, Fulin Yang and Jing Zhou
Life 2026, 16(1), 108; https://doi.org/10.3390/life16010108 - 12 Jan 2026
Viewed by 102
Abstract
Lactic acid bacteria (LAB), as the core microorganisms in silage fermentation, play a crucial role in improving silage quality and ensuring feed safety, making the screening, identification, and functional characterization of LAB strains a significant research focus. Researchers initially isolate and purify LAB [...] Read more.
Lactic acid bacteria (LAB), as the core microorganisms in silage fermentation, play a crucial role in improving silage quality and ensuring feed safety, making the screening, identification, and functional characterization of LAB strains a significant research focus. Researchers initially isolate and purify LAB from various samples, followed by identification through a combination of morphological, physiological, biochemical, and molecular biological methods. Systematic screening has been conducted to identify LAB strains tolerant to extreme environments (e.g., low temperature, high temperature, high salinity) and those possessing functional traits such as antimicrobial activity, antioxidant capacity, production of feruloyl esterase and bacteriocins, as well as cellulose degradation, yielding a series of notable findings. Furthermore, modern technologies, including microbiomics, metabolomics, metagenomics, and transcriptomics, have been employed to analyze the structure and functional potential of microbial communities, as well as metabolic dynamics during the ensiling process. The addition of superior LAB inoculants not only facilitates rapid acidification to reduce nutrient loss, inhibit harmful microorganisms, and improve fermentation quality and palatability but also demonstrates potential functions such as degrading mycotoxins, adsorbing heavy metals, and reducing methane emissions. However, its application efficacy is directly constrained by factors such as strain-crop specific interactions, high dependence on raw material conditions, limited functionality of bacterial strains, and relatively high application costs. In summary, the integration of multi-omics technologies with traditional methods, along with in-depth exploration of novel resources like phyllosphere endophytic LAB, will provide new directions for developing efficient and targeted LAB inoculants for silage. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

26 pages, 2373 KB  
Review
Sargassum: Turning Coastal Challenge into a Valuable Resource
by Adrián Fagundo-Mollineda, Yolanda Freile-Pelegrín, Román M. Vásquez-Elizondo, Erika Vázquez-Delfín and Daniel Robledo
Biomass 2026, 6(1), 9; https://doi.org/10.3390/biomass6010009 - 12 Jan 2026
Viewed by 144
Abstract
The massive influx of pelagic Sargassum in the Caribbean poses a serious environmental, social, and economic problem, as the stranded biomass is often treated as waste and deposited in landfills. This literature review synthesizes recent research highlighting its potential for valorization in various [...] Read more.
The massive influx of pelagic Sargassum in the Caribbean poses a serious environmental, social, and economic problem, as the stranded biomass is often treated as waste and deposited in landfills. This literature review synthesizes recent research highlighting its potential for valorization in various industries, turning this challenge into an opportunity. Sargassum has low levels of protein and lipids. Still, it is particularly rich in carbohydrates, such as alginates, fucoidans, mannitol, and cellulose, as well as secondary metabolites, including phenolic compounds, flavonoids, pigments, and phytosterols with antioxidant and bioactive properties. These biochemical characteristics allow for its application in renewable energy (bioethanol, biogas, biodiesel, and combustion), agriculture (fertilizers and biostimulants), construction (composite materials, cement additives, and insulation), bioremediation (adsorption of heavy metals and dyes), and in the health sector (antioxidants, anti-inflammatories, and pharmacological uses). A major limitation is its high bioaccumulation capacity for heavy metals, particularly arsenic, which increases environmental and health risks and limits its direct use in food and feed. Therefore, innovative pretreatment and bioprocessing are essential to mitigate these risks. The most promising approach for its utilization is a biorefinery model, which allows for the sequential extraction of multiple high-value compounds and energy products to maximize benefits, reduce costs, and sustainably transform Sargassum from a coastal pest into a valuable industrial resource. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

15 pages, 1399 KB  
Article
Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis
by Grazia Cinardi, Provvidenza Rita D’Urso and Claudia Arcidiacono
AgriEngineering 2026, 8(1), 25; https://doi.org/10.3390/agriengineering8010025 - 9 Jan 2026
Viewed by 222
Abstract
Waste valorisation has become a key strategy for applying circular economy principles in the agro-industrial field. This study investigated the territorial implementation of the waste composting on a territorial scale. The wastes considered were the post-processing orange waste, spent olive oil pomace, and [...] Read more.
Waste valorisation has become a key strategy for applying circular economy principles in the agro-industrial field. This study investigated the territorial implementation of the waste composting on a territorial scale. The wastes considered were the post-processing orange waste, spent olive oil pomace, and spent wine grape pomace. Their potential use as soil amendments across the provinces of Sicily was assessed through a GIS-based analysis, taking into account nitrogen (N) application constraints. Moreover, a cascade valorisation scheme was also evaluated: post-processing orange waste was first used as animal feed, and the remaining fraction was directed to composting; olive pomace was first sent to pomace oil extraction mills, and the residual material was subsequently used for composting. Results indicate that N inputs derived from composted residues remain below legal thresholds in all provinces, with relative contributions ranging from 38% to 92% of the regulatory limits. Spatial variability in nitrogen availability reflects the territorial distribution of agro-industrial activities, highlighting the importance of localised management strategies. These findings demonstrate that composting, combined with cascade valorisation, is an effective pathway to close nutrient cycles, reduce waste generation, and support sustainable biomass management in regional agri-food systems. Full article
Show Figures

Figure 1

41 pages, 1474 KB  
Review
Revisiting the Warburg-Based “Sugar Feeds Cancer” Hypothesis: A Critical Appraisal of Epidemiological, Experimental and Mechanistic Evidence
by Karim Khaled, Hala Jardaly and Byeongsang Oh
Onco 2026, 6(1), 5; https://doi.org/10.3390/onco6010005 - 8 Jan 2026
Viewed by 272
Abstract
Background: The belief that “sugar feeds cancer” is widespread and has strongly influenced public perceptions, patient behavior, and dietary recommendations, despite uncertainty regarding its scientific validity. This belief largely stems from misinterpretation of the Warburg effect, which describes altered glucose metabolism in cancer [...] Read more.
Background: The belief that “sugar feeds cancer” is widespread and has strongly influenced public perceptions, patient behavior, and dietary recommendations, despite uncertainty regarding its scientific validity. This belief largely stems from misinterpretation of the Warburg effect, which describes altered glucose metabolism in cancer cells rather than dietary sugar dependence. The objective of this review was to critically evaluate whether dietary sugar intake directly contributes to cancer development or progression by examining the totality of epidemiological, experimental, and mechanistic evidence. Methods: We conducted a narrative review of human epidemiological studies, experimental animal and cell-based models, and mechanistic investigations published between 1980 and July 2025. Evidence was synthesized across cancer types, sugar sources, and biological pathways, with careful consideration of study design, exposure relevance, and key confounders, including obesity, insulin resistance, and overall dietary patterns. Results: Across cancer types, epidemiological evidence showed predominantly null or inconsistent associations between sugar intake and cancer risk or outcomes, with positive findings largely confined to metabolically susceptible subgroups and often attenuated after adjustment for adiposity and energy intake. Experimental studies suggested potential tumor-promoting effects under non-physiological conditions, while mechanistic data indicated that sugar influences cancer risk indirectly through insulin signaling, inflammation, and metabolic dysfunction rather than direct tumor fueling. Conclusions: Current evidence does not support the hypothesis that dietary sugar directly “feeds” cancer in humans. Overemphasis on sugar avoidance risks nutritional and psychological harm, particularly among cancer patients. Evidence-based guidance should prioritize overall dietary quality, metabolic health, and patient well-being rather than isolated sugar restriction. Full article
Show Figures

Figure 1

16 pages, 600 KB  
Article
Stunting Among HIV-Exposed and HIV-Free Children in eSwatini: A Retrospective Evaluation of Associations with Birthweight, Feeding, and Caregiving Practices
by Bareng A. S. Nonyane, Letha Varughese, Jigna M. Dharod, Xolisile Dlamini, Andrea Ruff and Maureen M. Black
Nutrients 2026, 18(2), 198; https://doi.org/10.3390/nu18020198 - 8 Jan 2026
Viewed by 200
Abstract
Background/Objectives. Associations between stunting and dietary practices have been understudied among HIV-exposed and HIV-free children. We investigated associations between birthweight, socio-demographics, and dietary and feeding practices with stunting at 9 and 18 months among children in eSwatini. Methods. We used generalized [...] Read more.
Background/Objectives. Associations between stunting and dietary practices have been understudied among HIV-exposed and HIV-free children. We investigated associations between birthweight, socio-demographics, and dietary and feeding practices with stunting at 9 and 18 months among children in eSwatini. Methods. We used generalized linear mixed models (GLMs) with a logit link to characterize associations between stunting and birthweight quartiles, socio-demographics, maternal characteristics, and infant dietary diversity scores. We examined the moderating effects of dietary factors on relations between birthweight and stunting. Generalized structural equation models characterized direct and indirect associations between exposures and stunting at 18 months, mediated through stunting at 9 months. Results. We included 367 HIV-exposed and HIV-free children. Infants in the third and fourth birthweight quartiles had reduced odds of stunting at 9 months [adjusted odds ratio (adj OR) 0.24 (IQR 0.11, 0.55), p < 0.001; 0.10 (0.03, 0.33), p < 0.001, respectively]. Moderation by dietary diversity was limited to a relative decline in the second birthweight quartile. Stunting prevalence significantly increased from 9 months (21%) to 18 months (37%). Mediated by stunting at 9 months, there were significant direct and indirect effects of birthweight and dietary diversity on stunting at 18 months. Conclusions. Among HIV-exposed and HIV-free children, stunting prevalence increased with age and was associated with lower birthweight. Dietary diversity attenuated stunting risk among children in the second birthweight quartile. Prenatal strategies to reduce low birth weight (LBW) and additional attention to the social determinants of health, particularly dietary diversity, are warranted in programs and policies to reduce stunting. Full article
(This article belongs to the Special Issue Infant and Toddler Feeding and Development)
Show Figures

Figure 1

19 pages, 4784 KB  
Article
Deep Learning-Based AIS Signal Collision Detection in Satellite Reception Environment
by Geng Wang, Luming Li, Xin Chen and Zhengning Zhang
Appl. Sci. 2026, 16(2), 643; https://doi.org/10.3390/app16020643 - 8 Jan 2026
Viewed by 181
Abstract
Automatic Identification System (AIS) signals are critical for maritime traffic monitoring and collision avoidance. In satellite reception environments, signal collisions occur frequently due to large coverage areas and high ship density, severely degrading decoding performance. We propose a dual-branch deep learning architecture that [...] Read more.
Automatic Identification System (AIS) signals are critical for maritime traffic monitoring and collision avoidance. In satellite reception environments, signal collisions occur frequently due to large coverage areas and high ship density, severely degrading decoding performance. We propose a dual-branch deep learning architecture that combines precise boundary detection with segment-level classification to address this collision problem. The network employs a multi-scale convolutional backbone that feeds two specialized branches: one detects collision boundaries with sample-level precision, while the other provides semantic context through segment classification. We developed a satellite AIS dataset generation framework that simulates realistic collision scenarios including multiple ships, Doppler effects, and channel impairments. The trained model achieves 96% collision detection accuracy on simulated data. Validation on real satellite recordings demonstrates that our method retains 99.4% of valid position reports compared to direct decoding of the original signal. Controlled experiments show that intelligent collision removal outperforms random segment exclusion by 6.4 percentage points, confirming the effectiveness of our approach. Full article
(This article belongs to the Special Issue Cognitive Radio: Trends, Methods, Applications and Challenges)
Show Figures

Figure 1

15 pages, 1782 KB  
Article
Impact of Meteorological Conditions on the Bird Cherry–Oat Aphid (Rhopalosiphum padi L.) Flights Recorded by Johnson Suction Traps
by Kamila Roik, Sandra Małas, Paweł Trzciński and Jan Bocianowski
Agriculture 2026, 16(2), 152; https://doi.org/10.3390/agriculture16020152 - 7 Jan 2026
Viewed by 293
Abstract
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, [...] Read more.
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, which can limit their growth, development and yield. As observed for many years, global warming contributes to changes in the development of many organisms. Aphids (Aphidoidea), which are among the most important pests of agricultural crops, respond very dynamically to these changes. Under favorable conditions, their populations can increase several-fold within a few days. The bird cherry–oat aphid (Rhopalosiphum padi L.) is a dioecious species that undergoes a seasonal host shift during its life cycle. Its primary hosts are trees and shrubs (Prunus padus L.), while secondary hosts include cereals and various grass species. R. padi feeds directly on bird cherry tree, reducing its ornamental value, and on cereals, where it contributes to yields losses. The species can also damage plants indirectly by transmitting harmful viruses. Indirect damage is generally more serious than direct feeding injury. Monitoring aphid flights with a Johnson suction trap (JST) is useful for plant protection, which enables early detection of their presence in the air and then on cereal crops. To provide early detection of R. padi migrations and to study the dynamics of abundance, flights were monitored in 2020–2024 with Johnson suction traps at two localities: Winna Góra (Greater Poland Province) and Sośnicowice (Silesia Province). The aim of the research conducted in 2020–2024 was to study the dynamics of the bird cherry–oat aphid (Rhopalosiphum padi L.) population in relation to meteorological conditions as recorded by a Johnson suction trap. Over five years of research, a total of 129,638 R. padi individuals were captured using a Johnson suction trap at two locations (60,426 in Winna Góra and 69,212 in Sośnicowice). In Winna Góra, the annual counts were as follows: 5766 in 2020, 6498 in 2021, 36,452 in 2022, 5598 in 2023, and 6112 in 2024. In Sośnicowice, the numbers were as follows: 6954 in 2020, 9159 in 2021, 49,120 in 2022, 3855 in 2023, and 124 in 2024. The year 2022 was particularly notable for the exceptionally high abundance of R. padi, especially in the autumn. Monitoring crops for the presence of pests is the basis of integrated plant protection. Climate change, modern cultivation technologies, and increasing restrictions on chemical control are the main factors contributing to the development and spread of aphids. Therefore, measures based on monitoring the level of threat and searching for control solutions are necessary. Full article
Show Figures

Figure 1

23 pages, 1045 KB  
Article
Modulatory Role of Oral GHRP-6 in the Immune Response and Digestive Enzyme Function in Juvenile Tilapia (Oreochromis sp.) Challenged with Pseudomonas aeruginosa
by Liz Mariam de Armas, Adrian Rodríguez-Gabilondo, Liz Hernández, Ernesto A. Quintana, Alejandro J. Campos, Noelia N. Pérez, Danielle Reyes, Antonio Morales, Osmany Rodrigo, Yaima González, Leandro Rodriguez-Viera, Mario Pablo Estrada and Rebeca Martínez
Fishes 2026, 11(1), 33; https://doi.org/10.3390/fishes11010033 - 7 Jan 2026
Viewed by 166
Abstract
Aquaculture has been established as a sustainable alternative to traditional fisheries, which face challenges such as overexploitation and environmental degradation. However, disease outbreaks, often caused by poor farming conditions, pollution, and environmental stress, remain a major concern, leading to economic losses and increasing [...] Read more.
Aquaculture has been established as a sustainable alternative to traditional fisheries, which face challenges such as overexploitation and environmental degradation. However, disease outbreaks, often caused by poor farming conditions, pollution, and environmental stress, remain a major concern, leading to economic losses and increasing the risk of antibiotic resistance due to the overuse of antibiotics. Therefore, it is crucial to seek new strategies that improve fish health and well-being, preventing drug resistance and promoting sustainable practices. GHRP-6, a synthetic growth hormone-releasing peptide that mimics ghrelin, has shown potential immunostimulatory properties and feed efficiency in fish. In this study, we evaluated the effects of orally administered GHRP-6 in an oil-based formulation on juvenile tilapia (Oreochromis sp.) challenged or unchallenged with Pseudomonas aeruginosa. We assessed its influence on immune gene expression and digestive enzyme activity. The results demonstrated that GHRP-6 treatment significantly enhanced growth performance (weight and length), reduced in vivo bacterial load after infection, and modulated key genes related to innate and adaptive immunity in the gills, intestine and head kidney. In addition, our results demonstrated, for the first time, a direct link between a growth hormone secretagogue in fish and the modulation of specific enzyme activity in the gut following a bacterial challenge. These findings highlight the potential of GHRP-6 as a dietary immunomodulator and growth promoter in fish farming, offering a promising strategy to reduce antibiotic usage and promote more sustainable aquaculture practices. Full article
(This article belongs to the Special Issue Dietary Supplementation in Aquaculture)
Show Figures

Figure 1

31 pages, 2228 KB  
Review
Review of Xylanases: Sources, Engineering and Biotechnological Use
by Elena Y. Pavlova, Danil O. Chesnokov, Nikolai M. Slynko, Andrey V. Zadorozhny, Yulia. E. Uvarova, Tamara M. Khlebodarova, Asya R. Vasilieva, Aleksandra A. Shipova, Natalia V. Bogacheva, Valeria N. Shlyakhtun, Anton V. Korzhuk, Ekaterina Y. Bukatich and Sergey E. Peltek
Microorganisms 2026, 14(1), 127; https://doi.org/10.3390/microorganisms14010127 - 7 Jan 2026
Viewed by 122
Abstract
Xylanases (EC 3.2.1.8) are value-added enzymes essential for biomass deconstruction and are widely used in the pulp and paper, food, feed, and biofuel sectors. This review provides a comprehensive analysis of the current state and future prospects of xylanase research and application. It [...] Read more.
Xylanases (EC 3.2.1.8) are value-added enzymes essential for biomass deconstruction and are widely used in the pulp and paper, food, feed, and biofuel sectors. This review provides a comprehensive analysis of the current state and future prospects of xylanase research and application. It begins by examining the structural diversity of xylan substrates and the corresponding classification of xylanase enzymes, their catalytic mechanisms, and methods for their functional study, such as inhibitor analysis. The discussion then covers the challenges and methods involved in the purification of xylanases from complex biological mixtures. While natural microbial sources (fungi and bacteria) remain important, the limitations of wild-type (WT) strains for industrial production are highlighted. The review assesses the most common recombinant production systems, including Escherichia coli, Bacillus subtilis, and Komagataella phaffii, comparing their advantages for high-yield enzyme production. Finally, the paper focuses on protein engineering strategies as powerful tools for enhancing key enzyme properties (thermostability, specific activity, and pH tolerance). By integrating fundamental knowledge with applied technological approaches, this review underscores the critical role of xylanases in industrial biotechnology and identifies future research directions for their optimization. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

34 pages, 477 KB  
Review
Revisiting Environmental Sustainability in Ruminants: A Comprehensive Review
by Yufeng Shang, Tingting Ju, Upinder Kaur, Henrique A. Mulim, Shweta Singh, Jacquelyn Boerman and Hinayah Rojas de Oliveira
Agriculture 2026, 16(2), 149; https://doi.org/10.3390/agriculture16020149 - 7 Jan 2026
Viewed by 388
Abstract
Ruminant livestock production faces increasing pressure to reduce environmental impacts while maintaining productivity and food security. This comprehensive review examines current strategies and emerging technologies for enhancing environmental sustainability in ruminant systems. The review synthesizes recent advances across four interconnected domains: genetic and [...] Read more.
Ruminant livestock production faces increasing pressure to reduce environmental impacts while maintaining productivity and food security. This comprehensive review examines current strategies and emerging technologies for enhancing environmental sustainability in ruminant systems. The review synthesizes recent advances across four interconnected domains: genetic and genomic approaches for breeding environmentally efficient animals, rumen microbiome manipulation, nutritional strategies for emission reduction, and precision management practices. Specifically, genetic and genomic strategies demonstrate significant potential for long-term sustainability improvements through selective breeding for feed efficiency, methane reduction, and enhanced longevity. Understanding host–microbe interactions and developing targeted interventions have also shown promising effects on optimizing fermentation efficiency and reducing methane production. Key nutritional interventions include dietary optimization strategies that improve feed efficiency, feed additives, and precision feeding systems that minimize nutrient waste. Furthermore, management approaches encompass precision livestock farming technologies including sensor-based monitoring systems, automated feeding platforms, and real-time emission measurement tools that enable data-driven decision making. Integration of these approaches through system-based frameworks offers the greatest potential for achieving substantial environmental improvements while maintaining economic viability. In addition, this review identifies key research gaps including the need for standardized measurement protocols, long-term sustainability assessments, and economic evaluation frameworks. Future directions emphasize the importance of interdisciplinary collaboration, policy support, and technology transfer to accelerate adoption of sustainable practices across diverse production systems. Full article
(This article belongs to the Special Issue The Threats Posed by Environmental Factors to Farm Animals)
Back to TopTop