Review of Xylanases: Sources, Engineering and Biotechnological Use
Abstract
1. Introduction
2. Industrial Applications of Xylanase
2.1. Food Industry
2.2. Animal Feed Industry
2.3. Paper and Pulp Industry
2.3.1. Bio-Bleaching
2.3.2. Deinking of Waste Paper
2.4. Textile Industry
2.5. Xylooligosaccharides
2.6. Biorefinery
2.7. Laundry Industry
3. Xylan Substrates and Xylanase Enzymes: Families, Catalytic Mechanisms, and Inhibitor Analysis
3.1. Structural Diversity and Distribution of Xylans
3.2. Principal Xylan Families
3.3. Types and Families of Xylanases
3.4. Inhibition Analysis
3.4.1. Active Site-Specific Inhibitors
3.4.2. Substrate Analogs and Pseudosubstrates
3.4.3. Metal Cation Inhibitors
3.4.4. Proteinaceous Inhibitors
4. Sources of Natural Xylanase-Producing Microorganisms
4.1. Fungal Sources of Xylanases
4.2. Bacterial Sources of Xylanases
5. Production of Xylanase
5.1. Heterologous Expression in Bacteria
5.2. Heterologous Expression in Yeast
5.3. Heterologous Expression in Filamentous Fungi
5.4. Heterologous Expression in Plants
5.5. Xylanase Purification
6. Protein Engineering of Xylanases: Strategies and Applications
6.1. Directed Evolution
6.2. Rational Design
6.3. Semi-Rational Design
6.4. Improving Xylanase Alkaliphility
6.5. Improving Xylanase Thermostability
6.6. Improving Xylanase Catalytic Performance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATPS | Aqueous two-phase systems |
| CAZy | Carbohydrate-Active Enzymes |
| Cryo-EM | Cryo-electron microscopy |
| GH | Glycosyl hydrolases |
| GRAS | Generally Recognized as Safe |
| LCB | Lignocellulosic biomass |
| NMR | Nuclear magnetic resonance |
| Tm | Melting temperature |
| PEG | Polyethylene glycol |
| SAXS | Small-angle X-ray scattering |
| pI | Isoelectric point |
| TAXI | Triticum aestivum xylanase inhibitor |
| XOS | Xylooligosaccharides |
| XIPs | Xylanase Inhibitor Proteins |
| WT | Wild-type |
References
- Shahi, N.; Hasan, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U.; Khan, M.K.A. Xylanase: A Promising Enzyme. J. Chem. Pharm. Res. 2016, 8, 334–339. [Google Scholar]
- Motta, F.L.; Andrade, C.C.P.; Santana, M.H.A. A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications. In Sustainable Degradation of Lignocellulosic Biomass: Techniques, Applications and Commercialization; Chandel, A.K., Silvério da Silva, S., Eds.; IntechOpen: Rijeka, Croatia, 2013; pp. 251–276. ISBN 978-953-51-6339-8. [Google Scholar]
- Basit, A.; Jiang, W.; Rahim, K. Xylanase and Its Industrial Applications. In Biotechnological Applications of Biomass; Basso, T.P., Olitta Basso, T., Carlos Basso, L., Eds.; IntechOpen: Rijeka, Croatia, 2021; pp. 293–306. ISBN 978-1-83881-180-8. [Google Scholar]
- Subramaniyan, S.; Prema, P. Biotechnology of Microbial Xylanases: Enzymology, Molecular Biology, and Application. Crit. Rev. Biotechnol. 2002, 22, 33–64. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A Detailed Overview of Xylanases: An Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Polizeli, M.L.T.M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from Fungi: Properties and Industrial Applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P. Sources, Production, and Classification of Xylanases. In Xylanolytic Enzymes; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2014; pp. 43–52. ISBN 978-0-12-801020-4. [Google Scholar]
- Soni, M.; Mathur, C.; Solanki, M.K.; Kashyap, B.K.; Kamboj, D.V. Xylanase in Waste Management and Its Industrial Applications. In Waste to Energy: Prospects and Applications; Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K., Eds.; Springer: Singapore, 2020; pp. 393–414. ISBN 978-981-334-349-8. [Google Scholar]
- Butt, M.S.; Tahir-Nadeem, M.; Ahmad, Z.; Sultan, M.T. Xylanases and Their Applications in Baking Industry. Food Technol. Biotechnol. 2008, 46, 22–31. [Google Scholar]
- Liu, X.; Zhang, Y.; Qi, X.; Zhao, D.; Rao, H.; Zhao, X.; Li, Y.; Liu, J.; Qin, Z.; Hao, J.; et al. Advances of Microbial Xylanases in the Application of Flour Industries: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 282, 137205. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-Making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Danalache, F.; Mata, P.; Alves, V.D.; Moldão-Martins, M. Enzyme-Assisted Extraction of Fruit Juices. In Fruit Juices; Elsevier: Amsterdam, The Netherlands, 2018; pp. 183–200. ISBN 978-0-12-802230-6. [Google Scholar]
- Wang, F.; Xu, H.; Wang, M.; Yu, X.; Cui, Y.; Xu, L.; Ma, A.; Ding, Z.; Huo, S.; Zou, B.; et al. Application of Immobilized Enzymes in Juice Clarification. Foods 2023, 12, 4258. [Google Scholar] [CrossRef]
- Van Dorn, R.; Shanahan, D.; Ciofalo, V. Safety Evaluation of Xylanase 50316 Enzyme Preparation (Also Known as VR007), Expressed in Pseudomonas Fluorescens, Intended for Use in Animal Feed. Regul. Toxicol. Pharmacol. 2018, 97, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Sindhu, R.; Binod, P.; Pandey, A. Production of an Alkaline Xylanase from Recombinant Kluyveromyces Lactis (KY1) by Submerged Fermentation and Its Application in Bio-Bleaching. Biochem. Eng. J. 2015, 102, 24–30. [Google Scholar] [CrossRef]
- Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S. Microbial Xylanases and Their Industrial Applications: A Review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338. [Google Scholar] [CrossRef]
- Sarangi, A.; Thatoi, H. Xylanase as a Promising Biocatalyst: A Review on Its Production, Purification and Biotechnological Applications. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2024. [Google Scholar] [CrossRef]
- Lin, X.; Wu, Z.; Zhang, C.; Liu, S.; Nie, S. Enzymatic Pulping of Lignocellulosic Biomass. Ind. Crops Prod. 2018, 120, 16–24. [Google Scholar] [CrossRef]
- Malhotra, G.; Chapadgaonkar, S.S. Thermo-Alkali Stable Bacterial Xylanase for Deinking of Copier Paper. J. Genet. Eng. Biotechnol. 2023, 21, 107. [Google Scholar] [CrossRef]
- Khan, M.F. Recent Advances in Microbial Enzyme Applications for Sustainable Textile Processing and Waste Management. Sci 2025, 7, 46. [Google Scholar] [CrossRef]
- Saha, P.; Khan, M.F.; Patra, S. Truncated α-Amylase: An Improved Candidate for Textile Processing. Prep. Biochem. Biotechnol. 2018, 48, 635–645. [Google Scholar] [CrossRef]
- Colombi, B.L.; De Cássia Siqueira Curto Valle, R.; Borges Valle, J.A.; Andreaus, J. Advances in Sustainable Enzymatic Scouring of Cotton Textiles: Evaluation of Different Post-Treatments to Improve Fabric Wettability. Clean. Eng. Technol. 2021, 4, 100160. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, H.; Zheng, N.; Wang, Y.; Du, S.; Deng, Y.; Lu, Z.; Jin, Z.; Xia, X. Rational Engineering Design with Computer-Aided Surface Charge Modulation of Highly Alkali-Stable Xylanase for Sustainable Green Degumming Applications in the Textile Industry. Int. J. Biol. Macromol. 2025, 321, 144807. [Google Scholar] [CrossRef]
- Phuyal, M.; Budhathoki, U.; Bista, D.; Shakya, S.; Shrestha, R.; Shrestha, A.K. Xylanase-Producing Microbes and Their Real-World Application. Int. J. Chem. Eng. 2023, 2023, 3593035. [Google Scholar] [CrossRef]
- Gautério, G.V.; Hübner, T.; Ribeiro, T.D.R.; Ziotti, A.P.M.; Kalil, S.J. Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium Pullulans: Effect of the Enzymatic Hydrolysis Parameters. Appl. Biochem. Biotechnol. 2022, 194, 862–881. [Google Scholar] [CrossRef]
- Voragen, A.G.J. Technological Aspects of Functional Food-Related Carbohydrates. Trends Food Sci. Technol. 1998, 9, 328–335. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current Status of Xylanase for Biofuel Production: A Review on Classification and Characterization. Biomass Conv. Bioref. 2023, 13, 8773–8791. [Google Scholar] [CrossRef]
- Miao, T.; Basit, A.; Liu, J.; Zheng, F.; Rahim, K.; Lou, H.; Jiang, W. Improved Production of Xylanase in Pichia Pastoris and Its Application in Xylose Production From Xylan. Front. Bioeng. Biotechnol. 2021, 9, 690702. [Google Scholar] [CrossRef] [PubMed]
- Sakthiselvan, P.; Madhumathi, R.; Partha, N. Eco Friendly Bio-Butanol from Sunflower Oil Sludge with Production of Xylanase. Eng. Agric. Environ. Food 2015, 8, 212–221. [Google Scholar] [CrossRef]
- Sharma, H.K.; Xu, C.; Qin, W. Isolation of Bacterial Strain with Xylanase and Xylose/Glucose Isomerase (GI) Activity and Whole Cell Immobilization for Improved Enzyme Production. Waste Biomass Valor. 2021, 12, 833–845. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of Chemical Pretreatment for Bioconversion of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Md Moid, M.; Idris, N.; Othman, R.; Wahid, D.A. Development of Xylanase as Detergent Additive to Improve Laundry Application. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012053. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, Y.K.; Chang, H.C.; Lin, S.Y. Immunomodulatory Effects of Xylooligosaccharides. FSTR 2012, 18, 195–199. [Google Scholar] [CrossRef]
- Expasy-ENZYME. Available online: https://enzyme.expasy.org/ (accessed on 23 December 2025).
- Collins, T.; Gerday, C.; Feller, G. Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The Carbohydrate-Active Enzyme Database: Functions and Literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef]
- Abena, T.; Simachew, A. A Review on Xylanase Sources, Classification, Mode of Action, Fermentation Processes, and Applicationsas a Promising Biocatalyst. BioTechnologia 2024, 105, 273–285. [Google Scholar] [CrossRef]
- Pollet, A.; Delcour, J.A.; Courtin, C.M. Structural Determinants of the Substrate Specificities of Xylanases from Different Glycoside Hydrolase Families. Crit. Rev. Biotechnol. 2010, 30, 176–191. [Google Scholar] [CrossRef]
- Bar, M.; Golan, G.; Nechama, M.; Zolotnitsky, G.; Shoham, Y.; Shoham, G. A New Crystal Form of XT6 Enables a Significant Improvement of Its Diffraction Quality and Resolution. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 545–549. [Google Scholar] [CrossRef]
- Álvarez-Cervantes, J.; Díaz-Godínez, G.; Mercado-Flores, Y.; Gupta, V.K.; Anducho-Reyes, M.A. Phylogenetic Analysis of β-Xylanase SRXL1 of Sporisorium Reilianum and Its Relationship with Families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Sci. Rep. 2016, 6, 24010. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Liu, W.; Chen, C.-C.; Ko, T.-P.; He, M.; Xu, Z.; Liu, M.; Luo, H.; Guo, R.-T.; et al. Structural Insight into Potential Cold Adaptation Mechanism through a Psychrophilic Glycoside Hydrolase Family 10 Endo-β-1,4-Xylanase. J. Struct. Biol. 2016, 193, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, Z. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from Thermotoga Maritima by Molecular Docking. Biomolecules 2018, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Paës, G.; Berrin, J.-G.; Beaugrand, J. GH11 Xylanases: Structure/Function/Properties Relationships and Applications. Biotechnol. Adv. 2012, 30, 564–592. [Google Scholar] [CrossRef]
- Paës, G.; Cortés, J.; Siméon, T.; O’Donohue, M.J.; Tran, V. Thumb-loops up for catalysis: A structure/function investigation of a functional loop movement in a gh11 xylanase. Comput. Struct. Biotechnol. J. 2012, 1, e201207001. [Google Scholar] [CrossRef]
- Sermsathanaswadi, J.; Pianwanit, S.; Pason, P.; Waeonukul, R.; Tachaapaikoon, C.; Ratanakhanokchai, K.; Septiningrum, K.; Kosugi, A. The C-Terminal Region of Xylanase Domain in Xyn11A from Paenibacillus Curdlanolyticus B-6 Plays an Important Role in Structural Stability. Appl. Microbiol. Biotechnol. 2014, 98, 8223–8233. [Google Scholar] [CrossRef]
- Parkkinen, T.; Hakulinen, N.; Tenkanen, M.; Siika-aho, M.; Rouvinen, J. Crystallization and Preliminary X-Ray Analysis of a Novel Trichoderma reesei Xylanase IV Belonging to Glycoside Hydrolase Family 5. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 542–544. [Google Scholar] [CrossRef]
- Van Petegem, F.; Collins, T.; Meuwis, M.-A.; Gerday, C.; Feller, G.; Van Beeumen, J. The Structure of a Cold-Adapted Family 8 Xylanase at 1.3 Å Resolution. J. Biol. Chem. 2003, 278, 7531–7539. [Google Scholar] [CrossRef]
- CAZy-Home. Available online: https://www.cazy.org/ (accessed on 23 December 2025).
- Teo, S.C.; Liew, K.J.; Shamsir, M.S.; Chong, C.S.; Bruce, N.C.; Chan, K.-G.; Goh, K.M. Characterizing a Halo-Tolerant GH10 Xylanase from Roseithermus Sacchariphilus Strain RA and Its CBM-Truncated Variant. Int. J. Mol. Sci. 2019, 20, 2284. [Google Scholar] [CrossRef]
- Lahaye, M.; Rondeau-Mouro, C.; Deniaud, E.; Buléon, A. Solid-State 13C NMR Spectroscopy Studies of Xylans in the Cell Wall of Palmaria Palmata (L. Kuntze, Rhodophyta). Carbohydr. Res. 2003, 338, 1559–1569. [Google Scholar] [CrossRef]
- Natesh, R.; Manikandan, K.; Bhanumoorthy, P.; Viswamitra, M.A.; Ramakumar, S. Thermostable Xylanase from Thermoascus aurantiacus at Ultrahigh Resolution (0.89 Å) at 100 K and Atomic Resolution (1.11 Å) at 293 K Refined Anisotropically to Small-Molecule Accuracy. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.R.; Clarke, A.J. Identificatión of a Glutamate Residue at the Active Site of Xylanase A from Schizophyllum commune. Eur. J. Biochem. 1994, 219, 821–827. [Google Scholar] [CrossRef]
- Deshpande, V.; Hinge, J.; Rao, M. Chemical Modification of Xylanases: Evidence for Essential Tryptophan and Cysteine Residues at the Active Site. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1990, 1041, 172–177. [Google Scholar] [CrossRef]
- Williams, S.J.; Hoos, R.; Withers, S.G. Nanomolar versus Millimolar Inhibition by Xylobiose-Derived Azasugars: Significant Differences between Two Structurally Distinct Xylanases. J. Am. Chem. Soc. 2000, 122, 2223–2235. [Google Scholar] [CrossRef]
- Fülöp, L. The Inhibition of Xylanase Enzymes by Oligosaccharides Produced during the Degradation of Biopolymers in Biomass. Biomass Bioenergy 2025, 195, 107693. [Google Scholar] [CrossRef]
- Wong, K.K.; Tan, L.U.; Saddler, J.N. Multiplicity of Beta-1,4-Xylanase in Microorganisms: Functions and Applications. Microbiol. Rev. 1988, 52, 305–317. [Google Scholar] [CrossRef]
- McLauchlan, W.R.; Garcia-Conesa, M.T.; Williamson, G.; Roza, M.; Ravestein, P.; Maat, J. A Novel Class of Protein from Wheat Which Inhibits Xylanases. Biochem. J. 1999, 338, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Juge, N. Plant Protein Inhibitors of Cell Wall Degrading Enzymes. Trends Plant Sci. 2006, 11, 359–367. [Google Scholar] [CrossRef]
- Payan, F.; Leone, P.; Porciero, S.; Furniss, C.; Tahir, T.; Williamson, G.; Durand, A.; Manzanares, P.; Gilbert, H.J.; Juge, N.; et al. The Dual Nature of the Wheat Xylanase Protein Inhibitor XIP-I. J. Biol. Chem. 2004, 279, 36029–36037. [Google Scholar] [CrossRef]
- Hervé, C.; Rogowski, A.; Blake, A.W.; Marcus, S.E.; Gilbert, H.J.; Knox, J.P. Carbohydrate-Binding Modules Promote the Enzymatic Deconstruction of Intact Plant Cell Walls by Targeting and Proximity Effects. Proc. Natl. Acad. Sci. USA 2010, 107, 15293–15298. [Google Scholar] [CrossRef]
- Singh, S.; Sidhu, G.K.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Fungal Xylanases: Sources, Types, and Biotechnological Applications. In Recent Advancement in White Biotechnology Through Fungi; Yadav, A.N., Mishra, S., Singh, S., Gupta, A., Eds.; Fungal biology; Springer: Cham, Switzerland, 2019; pp. 405–428. ISBN 978-3-030-10479-5. [Google Scholar]
- Li, X.; Dilokpimol, A.; Kabel, M.A.; De Vries, R.P. Fungal Xylanolytic Enzymes: Diversity and Applications. Bioresour. Technol. 2022, 344, 126290. [Google Scholar] [CrossRef]
- Chakravorty, D.; Khan, M.F.; Patra, S. Multifactorial Level of Extremostability of Proteins: Can They Be Exploited for Protein Engineering? Extremophiles 2017, 21, 419–444. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Sharma, M.; Singh, S.P. Characterization of a Novel Xylanase from an Extreme Temperature Hot Spring Metagenome for Xylooligosaccharide Production. Appl. Microbiol. Biotechnol. 2020, 104, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- Bahreini, E.; Aghaiypour, K.; Abbasalipourkabir, R.; Goodarzi, M.T.; Saidijam, M.; Safavieh, S.S. An optimized protocol for overproduction of recombinant protein expression in Escherichia coli. Prep. Biochem. Biotechnol. 2014, 44, 510–528. [Google Scholar] [CrossRef]
- Khlebodarova, T.M.; Bogacheva, N.V.; Zadorozhny, A.V.; Bryanskaya, A.V.; Vasilieva, A.R.; Chesnokov, D.O.; Pavlova, E.I.; Peltek, S.E. Komagataella Phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024, 12, 346. [Google Scholar] [CrossRef]
- Juturu, V.; Wu, J.C. Microbial Xylanases: Engineering, Production and Industrial Applications. Biotechnol. Adv. 2012, 30, 1219–1227. [Google Scholar] [CrossRef]
- Li, X.; Shi, H.; Ding, H.; Zhang, Y.; Wang, F. Production, Purification, and Characterization of a Cellulase-Free Thermostable Endo-Xylanase from Thermoanaerobacterium Thermosaccharolyticum DSM 571. Appl. Biochem. Biotechnol. 2014, 174, 2392–2402. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, Y.; Zhong, H.; Huang, Y.; Li, X.; Wang, F. Cloning, over-Expression and Characterization of a Thermo-Tolerant Xylanase from Thermotoga Thermarum. Biotechnol. Lett. 2014, 36, 587–593. [Google Scholar] [CrossRef]
- Kiribayeva, A.; Mukanov, B.; Silayev, D.; Akishev, Z.; Ramankulov, Y.; Khassenov, B. Cloning, Expression, and Characterization of a Recombinant Xylanase from Bacillus Sonorensis T6. PLoS ONE 2022, 17, e0265647. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tyo, K.E.J.; Martínez, J.L.; Petranovic, D.; Nielsen, J. Different Expression Systems for Production of Recombinant Proteins in Saccharomyces cerevisiae. Biotech. Bioeng. 2012, 109, 1259–1268. [Google Scholar] [CrossRef]
- Gündüz Ergün, B.; Hüccetoğulları, D.; Öztürk, S.; Çelik, E.; Çalık, P. Established and Upcoming Yeast Expression Systems. In Recombinant Protein Production in Yeast; Gasser, B., Mattanovich, D., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1923, pp. 1–74. ISBN 978-1-4939-9023-8. [Google Scholar]
- He, J.; Yu, B.; Zhang, K.; Ding, X.; Chen, D. Expression of Endo-1, 4-Beta-Xylanase from Trichoderma Reesei in Pichia Pastorisand Functional Characterization of the Produced Enzyme. BMC Biotechnol. 2009, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.; Liu, D.; Ren, J.; Liu, Z.; Wu, X. Advances in Metabolic Engineering of Pichia Pastoris Strains as Powerful Cell Factories. JoF 2023, 9, 1027. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Riaz, S.; Jamil, A. Molecular Cloning of Fungal Xylanases: An Overview. Appl. Microbiol. Biotechnol. 2009, 84, 19–35. [Google Scholar] [CrossRef]
- Gorbacheva, I.V.; Rodionova, N.A. Studies on Xylan Degrading Enzymes. Biochim. Biophys. Acta (BBA)-Enzymol. 1977, 484, 79–93. [Google Scholar] [CrossRef]
- Irfan, M.; Syed, Q. Partial Purification and Characterization of Xylanase from Trichoderma Viride Produced under SSF. Int. J. Appl. Res. Nat. Prod. 2012, 5, 7–11. [Google Scholar]
- Kamble, R.D.; Jadhav, A.R. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation. Int. J. Microbiol. 2012, 2012, 683193. [Google Scholar] [CrossRef]
- Abena, T.; Simachew, A. Production and Characterization of Acidophilic Xylanase from Wood Degrading White Rot Fungus by Solid-State Fermentation of Wheat Straw. Heliyon 2024, 10, e35496. [Google Scholar] [CrossRef]
- Li, X.; She, Y.; Sun, B.; Song, H.; Zhu, Y.; Lv, Y.; Song, H. Purification and Characterization of a Cellulase-Free, Thermostable Xylanase from Streptomyces rameus L2001 and Its Biobleaching Effect on Wheat Straw Pulp. Biochem. Eng. J. 2010, 52, 71–78. [Google Scholar] [CrossRef]
- Belancic, A.; Scarpa, J.; Peirano, A.; Díaz, R.; Steiner, J.; Eyzaguirre, J. Penicillium Purpurogenum Produces Several Xylanases: Purification and Properties of Two of the Enzymes. J. Biotechnol. 1995, 41, 71–79. [Google Scholar] [CrossRef]
- López, G.; Estrada, P. Effect of Temperature on Xylanase II from Trichoderma Reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study. Enzym. Res. 2014, 2014, 708676. [Google Scholar] [CrossRef]
- De Oliveira Simões, L.C.; Da Silva, R.R.; De Oliveira Nascimento, C.E.; Boscolo, M.; Gomes, E.; Da Silva, R. Purification and Physicochemical Characterization of a Novel Thermostable Xylanase Secreted by the Fungus Myceliophthora Heterothallica F.2.1.4. Appl. Biochem. Biotechnol. 2019, 188, 991–1008. [Google Scholar] [CrossRef]
- Glyk, A.; Scheper, T.; Beutel, S. PEG–Salt Aqueous Two-Phase Systems: An Attractive and Versatile Liquid–Liquid Extraction Technology for the Downstream Processing of Proteins and Enzymes. Appl. Microbiol. Biotechnol. 2015, 99, 6599–6616. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Z.; Jiang, Z.; Li, L. Partition and Purification of a Thermostable Xylanase Produced by Paecilomyces Thermophila in Solid-State Fermentation Using Aqueous Two-Phase Systems. Process Biochem. 2008, 43, 56–61. [Google Scholar] [CrossRef]
- Glyk, A.; Solle, D.; Scheper, T.; Beutel, S. Optimization of PEG–Salt Aqueous Two-Phase Systems by Design of Experiments. Chemom. Intell. Lab. Syst. 2015, 149, 12–21. [Google Scholar] [CrossRef]
- Garai, D.; Kumar, V. Aqueous Two Phase Extraction of Alkaline Fungal Xylanase in PEG/Phosphate System: Optimization by Box–Behnken Design Approach. Biocatal. Agric. Biotechnol. 2013, 2, 125–131, Correction in Biocatal. Agric. Biotechnol. 2013, 2, 409. https://doi.org/10.1016/j.bcab.2013.05.002. [Google Scholar] [CrossRef]
- Ng, H.S.; Chai, C.X.Y.; Chow, Y.H.; Loh, W.L.C.; Yim, H.S.; Tan, J.S.; Lan, J.C.-W. Direct Recovery of Bacillus Subtilis Xylanase from Fermentation Broth with an Alcohol/Salt Aqueous Biphasic System. J. Biosci. Bioeng. 2018, 125, 585–589. [Google Scholar] [CrossRef]
- Gómez-García, R.; Medina-Morales, M.A.; Rodrìguez, R.; Farruggia, B.; Picó, G.; Aguilar, C.N. Production of a Xylanase by Trichoderma Harzianum (Hypocrea Lixii) in Solid-State Fermentation and Its Recovery by an Aqueous Two-Phase System. Can. J. Biotech. 2018, 2, 108–115. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Agarwal, K.; Chaturvedi, V.; Verma, P. Purification and Characterization of a Thermo-Acid/Alkali Stable Xylanases from Aspergillus Oryzae LC1 and Its Application in Xylo-Oligosaccharides Production from Lignocellulosic Agricultural Wastes. Int. J. Biol. Macromol. 2019, 122, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Rouland, C.; Renoux, J.; Petek, F. Purification and Properties of Two Xylanases from Macrotermes mülleri (Termitidae, Macrotermitinae) and Its Symbiotic Fungus Termitomyces sp. Insect Biochem. 1988, 18, 709–715. [Google Scholar] [CrossRef]
- Rani, A.S.; Das, M.L.M.; Satyanarayana, S. Preparation and Characterization of Amyloglucosidase Adsorbed on Activated Charcoal. J. Mol. Catal. B Enzym. 2000, 10, 471–476. [Google Scholar] [CrossRef]
- Malhotra, G.; Jeshreena, R.; Chapadgaonkar, S.S. Aqueous Two Phase Purification of Xylanase Obtained from a Bacterial Isolate. Int. J. Pharm. Bio. Sci. 2016, 7, 305–308. [Google Scholar] [CrossRef]
- Galanopoulou, A.P.; Haimala, I.; Georgiadou, D.N.; Mamma, D.; Hatzinikolaou, D.G. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys Spectabilis ATHUM 8891 (Paecilomyces Variotii ATHUM 8891). JoF 2021, 7, 430. [Google Scholar] [CrossRef]
- Sürmeli, Y.; Şanlı-Mohamed, G. Engineering of Xylanases for the Development of Biotechnologically Important Characteristics. Biotech. Bioeng. 2023, 120, 1171–1188. [Google Scholar] [CrossRef]
- Ensari, Y.; Kılıçkaya, O. Optimizing Enzymes for Dairy Processing: A Protein Engineering Perspective. In Advances in Functional Foods-New Perspectives and Sustainable Practices [Working Title]; IntechOpen: Rijeka, Croatia, 2025. [Google Scholar]
- Liu, Q.; Xun, G.; Feng, Y. The State-of-the-Art Strategies of Protein Engineering for Enzyme Stabilization. Biotechnol. Adv. 2019, 37, 530–537. [Google Scholar] [CrossRef]
- Yu, H.; Ma, S.; Li, Y.; Dalby, P.A. Hot Spots-Making Directed Evolution Easier. Biotechnol. Adv. 2022, 56, 107926. [Google Scholar] [CrossRef]
- Xiang, L.; Lu, Y.; Wang, H.; Wang, M.; Zhang, G. Improving the Specific Activity and pH Stability of Xylanase XynHBN188A by Directed Evolution. Bioresour. Bioprocess. 2019, 6, 25. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Q.; Wu, W.; Pu, Z.; Yu, H. Rational Design of Enzyme Activity and Enantioselectivity. Front. Bioeng. Biotechnol. 2023, 11, 1129149. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, S.; Kırtel, O.; Xu, W.; Chen, Q.; Öner, E.T.; Mu, W. Improving the Thermostability and Catalytic Activity of an Inulosucrase by Rational Engineering for the Biosynthesis of Microbial Inulin. J. Agric. Food Chem. 2021, 69, 13125–13134. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Zhou, Y.; Lu, M.; Li, M.; Zhu, Y.; Wan, Q. Rational Design of GH11 Xylanase to Balance the Activity–Stability Trade-Off. Int. J. Biol. Macromol. 2025, 311, 143063. [Google Scholar] [CrossRef] [PubMed]
- Steiner, K.; Schwab, H. Recent advances in rational approaches for enzyme engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209010. [Google Scholar] [CrossRef]
- Min, K.; Kim, H.; Park, H.J.; Lee, S.; Jung, Y.J.; Yoon, J.H.; Lee, J.-S.; Park, K.; Yoo, Y.J.; Joo, J.C. Improving the Catalytic Performance of Xylanase from Bacillus Circulans through Structure-Based Rational Design. Bioresour. Technol. 2021, 340, 125737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Huang, M. Navigating the Landscape of Enzyme Design: From Molecular Simulations to Machine Learning. Chem. Soc. Rev. 2024, 53, 8202–8239. [Google Scholar] [CrossRef]
- Reetz, M.T. Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef]
- Ali, M.; Ishqi, H.M.; Husain, Q. Enzyme Engineering: Reshaping the Biocatalytic Functions. Biotech. Bioeng. 2020, 117, 1877–1894. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, Y.; Huang, X. Focused Rational Iterative Site-Specific Mutagenesis (FRISM): A Powerful Method for Enzyme Engineering. Mol. Catal. 2024, 553, 113755. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, G.; Ahmad, T.; Mansoor, S.; Kaur, B. Enzyme Engineering: Current Trends and Future Perspectives. Food Rev. Int. 2021, 37, 121–154. [Google Scholar] [CrossRef]
- Boonyapakron, K.; Jaruwat, A.; Liwnaree, B.; Nimchua, T.; Champreda, V.; Chitnumsub, P. Structure-Based Protein Engineering for Thermostable and Alkaliphilic Enhancement of Endo-β-1,4-Xylanase for Applications in Pulp Bleaching. J. Biotechnol. 2017, 259, 95–102. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Zhang, L.; Liu, S.; Chen, G.; Zhang, H.; Wang, L. Insights Into the Role of Exposed Surface Charged Residues in the Alkali-Tolerance of GH11 Xylanase. Front. Microbiol. 2020, 11, 872. [Google Scholar] [CrossRef]
- Basheer, S.M.; Chellappan, S. Enzyme Engineering. In Bioresources and Bioprocess in Biotechnology: Volume 2: Exploring Potential Biomolecules; Pradeep, N.S., Abdulhameed, S., Eds.; SpringerLink Bücher; Springer: Singapore, 2017; pp. 151–168. ISBN 978-981-10-4282-9. [Google Scholar]
- Pucci, F.; Rooman, M. Physical and Molecular Bases of Protein Thermal Stability and Cold Adaptation. Curr. Opin. Struct. Biol. 2017, 42, 117–128. [Google Scholar] [CrossRef]
- Pandey, C.; Sharma, P.; Gupta, N. Engineering to Enhance Thermostability of Xylanase: For the New Era of Biotechnology. J. App Biol. Biotech. 2022, 11, 41–54. [Google Scholar] [CrossRef]
- Paës, G.; O’Donohue, M.J. Engineering Increased Thermostability in the Thermostable GH-11 Xylanase from Thermobacillus Xylanilyticus. J. Biotechnol. 2006, 125, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Yao, B.; Meng, K.; Wang, Y.R.; Bai, Y.G.; Wu, N.F. Introduction of a Disulfide Bridge Enhances the Thermostability of a Streptomyces Olivaceoviridis Xylanase Mutant. J. Ind. Microbiol. Biotechnol. 2007, 34, 213–218. [Google Scholar] [CrossRef]
- Zouari Ayadi, D.; Hmida Sayari, A.; Ben Hlima, H.; Ben Mabrouk, S.; Mezghani, M.; Bejar, S. Improvement of Trichoderma Reesei Xylanase II Thermal Stability by Serine to Threonine Surface Mutations. Int. J. Biol. Macromol. 2015, 72, 163–170. [Google Scholar] [CrossRef]
- Tang, F.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Mao, X.; Yu, J.; He, J. Improving the Thermostability of Trichoderma Reesei Xylanase 2 by Introducing Disulfide Bonds. Electron. J. Biotechnol. 2017, 26, 52–59. [Google Scholar] [CrossRef]
- Li, T.; Wang, R.; Hua, B.; Cao, L.; Zhang, Q.; Zhai, Y.; Ling, S.; Wang, M.; Li, E. Improving the Thermal Stability of GH11 Xylanase XynASP through Cord Region Engineering. J. Agric. Food Chem. 2025, 73, 1516–1528. [Google Scholar] [CrossRef]
- Ventorim, R.Z.; De Oliveira Mendes, T.A.; Trevizano, L.M.; Dos Santos Camargos, A.M.; Guimarães, V.M. Impact of the Removal of N-Terminal Non-Structured Amino Acids on Activity and Stability of Xylanases from Orpinomyces sp. PC-2. Int. J. Biol. Macromol. 2018, 106, 312–319. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, Z.; Yang, C.; Li, P.; Xiao, J.; Wang, R.; Du, P.; Li, N.; Wang, J. Engineering Mesophilic GH11 Xylanase from Cellulomonas Flavigena by Rational Design of N-Terminus Substitution. Front. Bioeng. Biotechnol. 2022, 10, 1044291. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Lu, H.; Wu, Q.; Wu, Y.; Li, W.; Li, X. Improvement of Thermostability and Catalytic Efficiency of Xylanase from Myceliophthora Thermophilar by N-Terminal and C-Terminal Truncation. Front. Microbiol. 2024, 15, 1385329. [Google Scholar] [CrossRef] [PubMed]
- Dumon, C.; Varvak, A.; Wall, M.A.; Flint, J.E.; Lewis, R.J.; Lakey, J.H.; Morland, C.; Luginbühl, P.; Healey, S.; Todaro, T.; et al. Engineering Hyperthermostability into a GH11 Xylanase Is Mediated by Subtle Changes to Protein Structure. J. Biol. Chem. 2008, 283, 22557–22564. [Google Scholar] [CrossRef]
- Xue, H.; Zhou, J.; You, C.; Huang, Q.; Lu, H. Amino Acid Substitutions in the N-Terminus, Cord and α-Helix Domains Improved the Thermostability of a Family 11 Xylanase XynR8. J. Ind. Microbiol. Biotechnol. 2012, 39, 1279–1288. [Google Scholar] [CrossRef]
- Lai, Z.; Zhou, C.; Ma, X.; Xue, Y.; Ma, Y. Enzymatic Characterization of a Novel Thermostable and Alkaline Tolerant GH10 Xylanase and Activity Improvement by Multiple Rational Mutagenesis Strategies. Int. J. Biol. Macromol. 2021, 170, 164–177. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, W.; Wu, Q.; Li, W.; Li, X. Improvement the Thermostability and Specific Activity of Acidic Xylanase PjxA from Penicillium Janthinellum via Rigid Flexible Sites. Int. J. Biol. Macromol. 2024, 279, 135399. [Google Scholar] [CrossRef] [PubMed]
- Sriprang, R.; Asano, K.; Gobsuk, J.; Tanapongpipat, S.; Champreda, V.; Eurwilaichitr, L. Improvement of Thermostability of Fungal Xylanase by Using Site-Directed Mutagenesis. J. Biotechnol. 2006, 126, 454–462. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Chen, C.-C.; Huang, J.-W.; Ko, T.-P.; Huang, Z.; Guo, R.-T. Improving the Catalytic Performance of a GH11 Xylanase by Rational Protein Engineering. Appl. Microbiol. Biotechnol. 2015, 99, 9503–9510. [Google Scholar] [CrossRef]
- Wang, R.; Shi, K.; Zheng, K.; Yang, Q.; Xi, G.; Duan, S.; Cheng, L. Directed Evolution of Xylanase from Dickeya Dadantii DCE-01 with Improved Enzymatic Activity. Polymers 2025, 17, 2650. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, L.-L.; Sun, J.-Y.; Liu, J.-X.; Weng, X.-Y. Enhancing Catalytic Activity of a Hybrid Xylanase through Single Substitution of Leu to Pro near the Active Site. World J. Microbiol. Biotechnol. 2012, 28, 929–935. [Google Scholar] [CrossRef]
- Wang, L.; Cao, K.; Pedroso, M.M.; Wu, B.; Gao, Z.; He, B.; Schenk, G. Sequence- and Structure-Guided Improvement of the Catalytic Performance of a GH11 Family Xylanase from Bacillus Subtilis. J. Biol. Chem. 2021, 297, 101262. [Google Scholar] [CrossRef]
- Xiong, K.; Hou, J.; Jiang, Y.; Li, X.; Teng, C.; Li, Q.; Fan, G.; Yang, R.; Zhang, C. Mutagenesis of N-Terminal Residues Confer Thermostability on a Penicillium Janthinellum MA21601 Xylanase. BMC Biotechnol. 2019, 19, 51. [Google Scholar] [CrossRef]
- Azouz, R.A.M.; Hegazy, U.M.; Said, M.M.; Bassuiny, R.I.; Salem, A.M.; Fahmy, A.S. Improving the Catalytic Efficiency of Thermostable Geobacillus Stearothermophilus Xylanase XT6 by Single-Amino Acid Substitution. J. Biochem. 2020, 167, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tian, Z.; Jiang, X.; Zhang, Q.; Wang, L. Enhancement in Catalytic Activity of Aspergillus Niger XynB by Selective Site-Directed Mutagenesis of Active Site Amino Acids. Appl. Microbiol. Biotechnol. 2018, 102, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Wu, Y.; Chao, T.; Zhang, N.; Wei, Z.; Ji, R. Improving the Catalytic Activity and Thermostability of Aspergillus Niger Xylanase through Computational Design. Protein Expr. Purif. 2024, 223, 106561. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, C.; Dong, W.; Lu, H.; Yang, Y.; Li, W.; Xu, Y.; Li, X. Simultaneously Enhanced Thermostability and Catalytic Activity of Xylanase from Streptomyces rameus L2001 by Rigidifying Flexible Regions in Loop Regions of the N-Terminus. J. Agric. Food Chem. 2023, 71, 12785–12796. [Google Scholar] [CrossRef]





| Xylanase Gene | Microorganism Source | Producer Strain | Genetic Engineering | Effect Observed | Reference | Suggested Cause |
|---|---|---|---|---|---|---|
| CFXyl3 (GenBank accession No. WP_013115499.1) | Cellulomonas flavigena | E. coli BL21 (DE3) | Modification of the N-terminus | The optimal temperature was increased by 30 °C, and the melting point was increased by 34.5 °C | [121] | Replacement of the N-terminus with that of a thermostable xylanase |
| GH11 xylanase Mtxylan | Myceliophthora thermophila | E. coli BL21 (DE3) | C-terminal truncation | The catalytic activity was increased by 9.3 times; the optimal temperature was increased by 5 °C | [122] | Decreased flexibility of the C-terminus, an enlarged binding pocket, and alterations in the hydrogen bonding network between the cleft subsites and the substrate |
| GH11 xylanase XynLC9 | B. subtilis | E. coli BL21 (DE3) | Amino acid substitutions at the N-terminus | The catalytic activity was increased by 2.6-fold, and thermostability was also improved | [131] | Mutations resulted in an increased volume and surface area of the active site cleft, thereby facilitating substrate entry and product release and subsequently enhancing the enzyme’s catalytic efficiency |
| GH11 xylanase XynASP | Aspergillus saccharolyticus JOP 1030-1 | E. coli BL21 (DE3) | Introduction of additional disulfide bonds. | The half-life at 50 °C increased 130.9-fold, and the catalytic efficiency increased 9.3-fold. | [119] | Reducing the flexibility of the cord region boosted the overall rigidity, resulting in improved thermal stability. The extensive catalytic cleft and prolonged contact between catalytic residues and the substrate were likely key factors in enhancing catalytic activity. Maintaining the thumb highly flexible can offset the negative impact on catalytic activity during the thermal stability modification of the cord region |
| Endo-1,4-β- xylanase Bcx | B. circulans | E. coli BL21 (DE3) | Amino acid substitution | The catalytic efficiency increased 7.51-fold | [104] | The R49 component of Bcx (1) constrains the global conformational changes essential for substrate binding and (2) is involved in modulating flexible motion |
| Mesophilic Xylanase PjxA (GenBank accession No MK948222) | Penicillium janthinellum MA21601 | E. coli BL21 (DE3) | Modification of the N-terminus | The melting temperature (Tm) value was improved from 21.3 ℃ to 76.6 °C, and its half-life at 60 ℃ increased 107-fold | [132] | The thermostability of PjxA was improved through the introduction of a disulfide bond (T2C-T29C) between the irregular loop and β-strand A2. Additionally, mutations T2C, T29C, N30L, and Y15F contributed to increased hydrophobicity at the N-terminus |
| Xylanase XT6 | Geobacillus stearothermophilus | E. coli DH5α | Directed evolution | Turnover number (kcat) and catalytic efficiency (kcat/kM) increased 13- and 6.5-folds respectively | [133] | Mutations are located within βα-loops. Conformational alterations of these loops may facilitate loop movement, thereby promoting product release and ultimately enhancing catalytic efficiency |
| GH11 Xylanase, EvXyn11 | Not stated | E. coli XL1-Blue MR | Directed evolution | The Tm approximately increased by 25 °C | [123] | T13F may increase hydrophobic interactions, and S9P may apparently lock the conformation of a surface loop |
| Xylanase XynR8 | Neocallimastigales rumen | E. coli BL21 (DE3) | Random point mutagenesis combined with site-directed mutagenesis | At 65 °C, the WT enzyme completely inactivated after 30 min of incubation, whereas XynR8_VNE retained approximately 65% of its activity under the same conditions | [124] | The obtained amino acid substitutions are located within the N-terminus, core, and α-helix domains, respectively. Therefore, the stability of these three regions may be critical for the thermostability of family 11 xylanases |
| Orpinomyces XynA xylanase | Orpinomyces sp. PC-2 | E. coli BL21-CodonPlus (DE3)-RIPL | Modification of the N-terminus | The specific activity was increased | [120] | The presence of unstructured amino acids at the N-terminus contributes to the destabilization of xylanases and potentially reduces substrate accessibility to the active site. Consequently, removal of these residues may enhance enzyme stability and catalytic activity |
| Xylanase AnXynB (NCBI accession No. ACA24724) | A. niger ATCC1015 | E. coli BL21 (DE3) | Amino acid substitutions | The catalytic activity increased by 72% and the thermostability was improved | [134] | The increasing binding affinity of enzyme and substrate |
| Xylanase XynCDBFV (GenBank accession No. KP691331) | Neocallimastix patriciarum | K. phaffii strain X33 | Amino acid substitutions | The catalytic activity increased by 20%. The optimal temperature decreased by 5 °C | [128] | The activity-enhancing mutations affect active-site residues. Authors propose that phenylalanine at these positions maintains stacking interactions while creating extra space for substrate entry and product release. Phe-163 likely does not contact the substrate directly but stacks with conserved Tyr-111, which hydrogen-bonds to the +1 sugar |
| Acidic Xylanase PjxA | P. janthinellum MA21601 | E. coli BL21 (DE3) | Amino acid substitutions | The half-life at 50 °C increased 115.11-fold, the specific activity increased 2.02-fold | [126] | Stabilization of the N-terminus and the active center of PjxA, the increase in surface positive charge and hydrophilicity are the main reasons for the improved thermostability and catalytic activity of PjxA |
| GH10 Xylanase (Xyn30Y5) | Bacillus sp. 30Y5 | E. coli BL21 (DE3) | Amino acid substitutions | The specific activity increased 2.9-fold, the catalytic efficiency increased 2-fold, stability after incubation at 60 °C for 30 min was enhanced, and an optimal pH shifted from 7.0 to 8.0 | [125] | The flexibility of α5 helix and loop7 may be crucial to affect the catalytic activity. And the increase in stability of the most unstable regions including loop3, loop6, loop7, α7 helix and N/C-terminal regions was vital for thermostability improvement |
| GH-11 Xylanase | Thermobacillus xylanilyticus | E. coli JM109-DE3 | The introduction of disulfide bonds | The half-life at 70 °C was increased 10-fold and the specific activity is almost doubled | [115] | The introduction of disulphide bonds by directed mutagenesis is a straightforward strategy to improve thermostability |
| Xyn12.2 Xylanase | The termite gut symbiont metagenome | E. coli Rosetta (DE3) | The introduc-tion of disulfide bonds | The bagasse hydrolysis at pH 9.0 and 60 °C increased 2–3-fold | [110] | Formation of an exterior disulfide bond, increased surface pKa, and hydrogen bonds for stabilizing the N-terminal random structure are key determinants for improved catalytic activity under conditions of increased temperature and pH |
| GH30 Xylanase | Dickeya dadantii DCE-01 | E. coli BL21 (DE3) | Directed evolution | The optimal pH value decreased and acid–base tolerance improved. The enzymatic activity increased 1.6-fold | [129] | Mutation is positioned on the protein surface within the catalytic domain, distal from the active site. The other two mutations are situated within loop regions. The increased flexibility of these loop regions in the mutant may contribute to the observed enhancement in enzymatic activity |
| A hybrid xylanase gene, atx (GenBank accession No. AY949844) | Synthetic construct | K. phaffii GS115 (his4) | Directed evolution | The xylanase activity in the culture supernatant was increased 2.92-fold | [130] | Proline possibly produced weaker hydrogen bond, van der Waals force and hydrophobic interaction with other residues nearby than leucine, especially for V174, contributing to the flexibility of catalytic residue E177 |
| GH11 xylanase XynII (GenBank accession No. CAA49293.1) | T. reesei | E. coli BL21 (DE3) | The introduc-tion of disulfide bonds | The enzymatic activity increased by 75%, the Tm increased by a 12.1 °C | [102] | Incorporation of additional disulfide bonds stabilized flexible non-catalytic regions, and the Q125A/I129S mutations in the thumb region enhanced catalytic dynamics |
| GH11 Xylanase (UniProt: accession No. P55330) | A. niger | E. coli BL21 (DE3) | Amino acid substitutions | The enzymatic activity increased 1.5-fold and the thermostability was enhanced | [135] | The coordinated effect of the mutations |
| GH11 xylanase XynA | S. rameus L2001 | E. coli BL21 (DE3) | Amino acid substitutions | The optimal temperature shifted from 60 °C to 80 °C. The residual enzyme activity remained above 85% when incubated at 80 °C and 90 °C for 12 h. The specific activity and catalytic efficiency were improved | [136] | Reducing the flexibility of amino acid residues in the loop region, promoting a more compact xylanase structure, and increasing the surface net charge are partly responsible for the increased thermal stability of the mutants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pavlova, E.Y.; Chesnokov, D.O.; Slynko, N.M.; Zadorozhny, A.V.; Uvarova, Y.E.; Khlebodarova, T.M.; Vasilieva, A.R.; Shipova, A.A.; Bogacheva, N.V.; Shlyakhtun, V.N.; et al. Review of Xylanases: Sources, Engineering and Biotechnological Use. Microorganisms 2026, 14, 127. https://doi.org/10.3390/microorganisms14010127
Pavlova EY, Chesnokov DO, Slynko NM, Zadorozhny AV, Uvarova YE, Khlebodarova TM, Vasilieva AR, Shipova AA, Bogacheva NV, Shlyakhtun VN, et al. Review of Xylanases: Sources, Engineering and Biotechnological Use. Microorganisms. 2026; 14(1):127. https://doi.org/10.3390/microorganisms14010127
Chicago/Turabian StylePavlova, Elena Y., Danil O. Chesnokov, Nikolai M. Slynko, Andrey V. Zadorozhny, Yulia. E. Uvarova, Tamara M. Khlebodarova, Asya R. Vasilieva, Aleksandra A. Shipova, Natalia V. Bogacheva, Valeria N. Shlyakhtun, and et al. 2026. "Review of Xylanases: Sources, Engineering and Biotechnological Use" Microorganisms 14, no. 1: 127. https://doi.org/10.3390/microorganisms14010127
APA StylePavlova, E. Y., Chesnokov, D. O., Slynko, N. M., Zadorozhny, A. V., Uvarova, Y. E., Khlebodarova, T. M., Vasilieva, A. R., Shipova, A. A., Bogacheva, N. V., Shlyakhtun, V. N., Korzhuk, A. V., Bukatich, E. Y., & Peltek, S. E. (2026). Review of Xylanases: Sources, Engineering and Biotechnological Use. Microorganisms, 14(1), 127. https://doi.org/10.3390/microorganisms14010127

