Sargassum: Turning Coastal Challenge into a Valuable Resource
Abstract
1. Introduction
2. Chemical Characterization and Variability
2.1. Proximal Composition
2.2. Structural and Storage Polysaccharides
2.3. Secondary Metabolites
3. Elemental Composition and Safety Concerns
3.1. Heavy Metal Bioaccumulation and Seasonality
3.2. Challenges in Remediation and Pretreatment
4. Potential Applications and Constraints: Is Sargassum Biomass a Real Opportunity for Coastal Communities? Are There Associated Risks?
4.1. Bioenergy and Biofuels

4.1.1. Bioenergy
4.1.2. Bioethanol Production
4.1.3. Biogas Production
4.1.4. Biodiesel Production
4.2. Agricultural Biostimulants and Fertilizers
4.3. Construction Materials
4.4. Bioremediation Potential
4.5. Food and Health-Related Biomolecules
5. Biorefinery as a Challenge
5.1. Stage 1: Biomass and Pretreatment
5.2. Stage 2: Extraction of High-Value Compounds
5.3. Stage 3: Production of Biofuels and Materials
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef]
- Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; et al. Massive influx of pelagic Sargassum blooms on the coast of the Mexican Caribbean: Management solutions and challenges. Ocean Coast. Manag. 2020, 201, 105445. [Google Scholar] [CrossRef]
- van Tussenbroek, B.I.; Hernández-Arana, H.A.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Roy, P.D.; Torrescano-Valle, N.; Cabanillas-Terán, N.; Carrillo-Domínguez, S.; Collado-Vides, L.; van Tussenbroek, B.I. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. PeerJ 2020, 8, e8667. [Google Scholar] [CrossRef] [PubMed]
- Devault, D.A.; Modestin, E.; Cottereau, V.; Vedie, F.; St-Louis, R.; Blaise, C. The silent spring of Sargassum. Environ. Sci. Pollut. Res. 2021, 28, 15580–15583. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Valentino, R.; Nevière, R.; Banydeen, R.; Laurent, R.; Cohen-Tenoudji, G.; Nossin, E.; Mégarbane, B. Sargassum seaweed on Caribbean islands: An occupational health hazard. Lancet 2018, 392, 2691. [Google Scholar] [CrossRef]
- Amador-Castro, F.; García-Cayuela, T.; Alper, H.S.; Rodriguez-Martinez, V.; Carrillo-Nieves, D. Valorization of pelagic Sargassum biomass into sustainable applications: Current trends and challenges. J. Environ. Manag. 2021, 283, 112013. [Google Scholar] [CrossRef]
- Robledo, D.; Vázquez-Delfín, E.; Freile-Pelegrín, Y.; Vásquez-Elizondo, R.M.; Qui-Minet, Z.N.; Salazar-Garibay, A. Challenges and opportunities in relation to Sargassum events along the Caribbean Sea. Front. Mar. Sci. 2021, 8, 699664. [Google Scholar] [CrossRef]
- Siuda, A.N.S.; Blanfuné, A.; Dibner, S.; Verlaque, M.; Boudouresque, C.-F.; Connan, S.; Goodwin, D.S.; Stiger-Pouvreau, V.; Viard, F.; Rousseau, F.; et al. Morphological and Molecular Characters Differentiate Common Morphotypes of Atlantic Holopelagic Sargassum. Phycology 2024, 4, 256–275. [Google Scholar] [CrossRef]
- Vázquez-Delfín, E.; Freile-Pelegrín, Y.; Salazar-Garibay, A.; Serviere-Zaragoza, E.; Méndez-Rodríguez, L.C.; Robledo, D. Species composition and chemical characterization of Sargassum influx at six different locations along the Mexican Caribbean coast. Sci. Total Environ. 2021, 795, 148852. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Graham, C.; Vera, E.; Escalante-Mancera, E.; Álvarez-Filip, L.; van Tussenbroek, B.I. Temporal changes in the composition and biomass of beached pelagic Sargassum species in the Mexican Caribbean. Aquat. Bot. 2020, 167, 103275. [Google Scholar] [CrossRef]
- Vázquez-Delfín, E.; Robledo, D.; Freile-Pelegrín, Y. Temporal characterization of Sargassum (Sargassaceae, Phaeophyceae) strandings in a sandy beach of Quintana Roo, Mexico: Ecological implications for coastal ecosystems and management. Thalassas 2024, 40, 1053–1067. [Google Scholar] [CrossRef]
- Butler, J.N.; Morris, B.F.; Cadwallader, J.; Stoner, A.W. Studies of Sargassum and the Sargassum Community; Special Publication No. 22; Bermuda Biological Station for Research: St. George’s West, BM, USA, 1983. [Google Scholar]
- Fagundo-Mollineda, A.; Robledo, D.; Vásquez-Elizondo, R.M.; Freile-Pelegrín, Y. Antioxidant activities in holopelagic Sargassum species from the Mexican Caribbean: Temporal changes and intra-thallus variation. Algal Res. 2023, 76, 103289. [Google Scholar] [CrossRef]
- Alzate-Gaviria, L.; Domínguez-Maldonado, J.; Chablé-Villacís, R.; Olguin-Maciel, E.; Leal-Bautista, R.M.; Canché-Escamilla, G.; Hernández-Núñez, E.; Tapia-Tussell, R. Presence of polyphenols complex aromatic “Lignin” in Sargassum spp. from Mexican Caribbean. J. Mar. Sci. Eng. 2021, 9, 6. [Google Scholar] [CrossRef]
- del Río, P.G.; Flórez-Fernández, N.; Álvarez-Viñas, M.; Torres, M.D.; Romaní, A.; Domínguez, H.; Garrote, G. Evaluation of sustainable technologies for the processing of Sargassum muticum: Cascade biorefinery schemes. Green Chem. 2021, 23, 7001–7015. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Advances in the biorefinery of Sargassum muticum: Valorisation of the alginate fractions. Ind. Crops Prod. 2019, 138, 111483. [Google Scholar] [CrossRef]
- Freile-Pelegrin, Y.; Robledo, D.; Chávez-Quintal, C.; Vázquez-Delfín, E.; Pliego-Cortés, H.; Bedoux, G.; Bourgougnon, N. Chemical composition and carbohydrate characterization of beach-cast marine macrophytes from the Mexican Caribbean: Implications for potential bioethanol production. Waste Biomass Valorization 2024, 16, 471–485. [Google Scholar] [CrossRef]
- Milledge, J.J.; Maneein, S.; Arribas López, E.; Bartlett, D. Sargassum inundations in Turks and Caicos: Methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies 2020, 13, 1523. [Google Scholar] [CrossRef]
- Davis, D.; Simister, R.; Campbell, S.; Marston, M.; Bose, S.; McQueen-Mason, S.J.; Tonon, T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorization pathways. Sci. Total Environ. 2021, 762, 143134. [Google Scholar] [CrossRef]
- Chikani-Cabrera, K.D.; Fernandes, P.M.B.; Tapia-Tussell, R.; Parra-Ortiz, D.L.; Hernández-Zárate, G.; Valdez-Ojeda, R.; Alzate-Gaviria, L. Improvement in methane production from pelagic Sargassum using combined pretreatments. Life 2022, 12, 1214. [Google Scholar] [CrossRef]
- Paredes-Camacho, R.M.; González-Morales, S.; González-Fuentes, J.A.; Rodríguez-Jasso, R.M.; Benavides-Mendoza, A.; Charles-Rodríguez, A.V.; Robledo-Olivo, A. Characterization of Sargassum spp. from the Mexican Caribbean and its valorization through fermentation process. Processes 2023, 11, 685. [Google Scholar] [CrossRef]
- Rosado-Espinosa, L.A.; Freile-Pelegrín, Y.; Hernández-Nuñez, E.; Robledo, D. A comparative study of Sargassum species from the Yucatan peninsula coast: Morphological and chemical characterization. Phycologia 2020, 59, 261–271. [Google Scholar] [CrossRef]
- Sierra, A.R.G.; Amador-Castro, L.F.; Ramírez-Partida, A.E.; García-Cayuela, T.; Carrillo-Nieves, D.; Alper, H.S. Valorization of Caribbean Sargassum biomass as a source of alginate and sugars for de novo biodiesel production. J. Environ. Manag. 2022, 324, 116364. [Google Scholar] [CrossRef]
- Zubia, M.; Payri, C.; Deslandes, E. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J. Appl. Phycol. 2008, 20, 1033–1043. [Google Scholar] [CrossRef]
- Ortega-Flores, P.A.; Serviere-Zaragoza, E.; De Anda-Montañez, J.A.; Freile-Pelegrín, Y.; Robledo, D.; Méndez-Rodríguez, L.C. Trace elements in pelagic Sargassum species in the Mexican Caribbean: Identification of key variables affecting arsenic accumulation in S. fluitans. Sci. Total Environ. 2022, 806, 150657. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.; Radouani, F.; Ahmed, M.S.; Salvin, P.; Roos, C.; Lebrini, M. Extract from Sargassum fluitans III: A Promising Valuable Resource of Anti-bacterial Metabolites. Adv. Biochem. Biotechnol. 2024, 9, 10118. [Google Scholar] [CrossRef]
- Kergosien, N.; Helias, M.; Le Grand, F.; Cérantola, S.; Simon, G.; Nirma, C.; Stiger-Pouvreau, V. Morpho- and chemotyping of holopelagic Sargassum species causing massive strandings in the Caribbean region. Phycology 2024, 4, 340–362. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Wang, M.; Hu, C.; McGillicuddy, D.J., Jr.; Lindell, S.; Hernandez, F.J.; Morton, P.L. Nutrient content and stoichiometry of pelagic Sargassum of the Great Atlantic Sargassum Belt. Nat. Commun. 2021, 12, 3844. [Google Scholar] [CrossRef]
- Borines, M.G.; de Leon, R.L.; Cuello, J.L. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 2013, 138, 22–29. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Carbohydrates from seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 223–274. [Google Scholar] [CrossRef]
- Sudatti, D.B.; Fujii, M.T.; Rodrigues, S.V.; Turra, A.; Pereira, R.C. Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agardh (Ceramiales, Rhodophyta). Mar. Biol. 2011, 158, 1439–1446. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004, Que Establece Criterios para Determinar las Concentraciones de Remediación de Suelos Contaminados por Arsénico, Bario, Berilio, Cadmio, Cromo Hexavalente, Mercurio, Níquel, Plata, Plomo, Selenio, Talio y/o Vanadio; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2007; Available online: https://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf (accessed on 16 December 2025).
- Ortega-Flores, P.A.; Gobert, T.; Méndez-Rodríguez, L.C.; Serviere-Zaragoza, E.; Connan, S.; Robledo, D.; Waeles, M. Inorganic arsenic in holopelagic Sargassum spp. stranded in the Mexican Caribbean: Seasonal variations and comparison with international regulations and guidelines. Aquat. Bot. 2023, 188, 103674. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Pan, Y.; Dabbour, M.; Dai, C.; Zhou, M.; He, R. Sodium Alginate Modifications: A Critical Review of Current Strategies and Emerging Applications. Foods 2025, 14, 3931. [Google Scholar] [CrossRef]
- Kleinübing, S.J.; Gai, F.; Bertagnolli, C.; Silva, M.G.C. Extraction of alginate biopolymer present in marine alga Sargassum filipendula and bioadsorption of metallic ions. Mater. Res. 2013, 16, 481–488. [Google Scholar] [CrossRef]
- Cisneros-Ramos, K.I.; Gutiérrez-Castañeda, M.; Magaña-Gallegos, E.; Villegas-Pañeda, A.G.; Monroy-Velázquez, L.V.; Barba-Santos, M.G.; van Tussenbroek, B.I. From Inundations to Golden Opportunity: Turning Holopelagic Sargassum spp. into a Valuable Feed Ingredient through Arsenic Removal. Phycology 2024, 4, 384–393. [Google Scholar] [CrossRef]
- Jambo, S.A.; Abdulla, R.; Azhar, S.H.M.; Marbawi, H.; Gansau, J.A.; Ravindra, P. A review on third generation bioethanol feedstock. Renew. Sustain. Energy Rev. 2016, 65, 756–769. [Google Scholar] [CrossRef]
- Orozco-González, J.G.; Amador-Castro, F.; Gordillo-Sierra, A.R.; García-Cayuela, T.; Alper, H.S.; Carrillo-Nieves, D. Opportunities surrounding the use of Sargassum biomass as precursor of biogas, bioethanol, and biodiesel production. Front. Mar. Sci. 2022, 8, 791054. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis; Elsevier: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.M.; Han, X.X.; Liu, J.G. Combustion characteristics of seaweed biomass. 1. Combustion characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels 2009, 23, 5173–5178. [Google Scholar] [CrossRef]
- Milledge, J.J.; Harvey, P. Anaerobic digestion and gasification of seaweed. In Grand Challenges in Marine Biotechnology; Rampelotto, P.H., Trincone, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 283–311. [Google Scholar] [CrossRef]
- Jagustyn, B.; Kmieć, M.; Smędowski, Ł.; Sajdak, M. The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J. Energy Inst. 2017, 90, 704–714. [Google Scholar] [CrossRef]
- Smith, A.M.; Ross, A.B. Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Sosa Olivier, J.A.; Laines Canepa, J.R.; Guerrero Zarate, D.; González Díaz, A.; Figueiras Jaramillo, D.A.; Osorio García, H.K.; Evia López, B. Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism. AIMS Energy 2022, 10, 45–63. [Google Scholar] [CrossRef]
- Khambhaty, Y.; Mody, K.; Gandhi, M.R.; Thampy, S.; Maiti, P.; Brahmbhatt, H.; Ghosh, P.K. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 2012, 103, 180–185. [Google Scholar] [CrossRef]
- Thompson, P.B. The agricultural ethics of biofuels: The food vs. fuel debate. Agriculture 2012, 2, 339–358. [Google Scholar] [CrossRef]
- Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 27–46. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Nakamura, K.; Ariga, O.; Nakasaki, K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process. Biochem. 2011, 46, 2111–2116. [Google Scholar] [CrossRef]
- Aparicio, E.; Rodríguez-Jasso, R.M.; Pinales-Márquez, C.D.; Loredo-Treviño, A.; Robledo-Olivo, A.; Aguilar, C.N.; Ruiz, H.A. High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour. Technol. 2021, 329, 124935. [Google Scholar] [CrossRef] [PubMed]
- De Bertoldi, M.; Vallini, G.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Montingelli, M.E.; Tedesco, S.; Olabi, A.G. Biogas production from algal biomass: A review. Renew. Sustain. Energy Rev. 2015, 43, 961–972. [Google Scholar] [CrossRef]
- Del Río, P.G.; Domínguez, E.; Domínguez, V.D.; Romaní, A.; Domingues, L.; Garrote, G. Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew. Energy 2019, 141, 728–735. [Google Scholar] [CrossRef]
- González-Gloria, K.D.; Rodríguez-Jasso, R.M.; Aparicio, E.; González, M.L.C.; Kostas, E.T.; Ruiz, H.A. Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis—A review. Bioresour. Technol. Rep. 2021, 16, 100863. [Google Scholar] [CrossRef]
- Dlangamandla, N.; Permaul, K. Third-Generation Bioethanol Production Technologies. In Liquid Biofuels: Bioethanol; Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, C.G., Porto de Souza Vandenberghe, L., Eds.; Biofuel and Biorefinery Technologies, Volume 12; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Obileke, K.; Nwokolo, N.; Makaka, G.; Mukumba, P.; Onyeaka, H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ. 2021, 32, 191–225. [Google Scholar] [CrossRef]
- Chen, B.; Ye, X.; Zhang, B.; Jing, L.; Lee, K. Marine oil spills—Preparedness and countermeasures. In World Seas: An Environmental Evaluation; Sheppard, C., Ed.; Academic Press: London, UK, 2019; pp. 407–426. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process. Technol. 2019, 195, 106151. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Enhancing biogas production from Caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere 2021, 275, 130035. [Google Scholar] [CrossRef]
- Maneein, S.; Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 2018, 4, 100. [Google Scholar] [CrossRef]
- Austin, C.; Stewart, D.; Allwood, J.W.; McDougall, G.J. Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: Contributions of phenolic and polysaccharide components. Food Funct. 2018, 9, 502–510. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados. Renew. Sustain. Energy Rev. 2020, 118, 109564. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Williams, A.; Feagin, R. Sargassum as a natural solution to enhance dune plant growth. Environ. Manag. 2010, 46, 738–747. [Google Scholar] [CrossRef]
- Kuda, T.; Ikemori, T. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem. 2009, 112, 575–581. [Google Scholar] [CrossRef]
- Oyesiku, O.O.; Egunyomi, A.O. Identification and chemical studies of pelagic masses of Sargassum natans (Linnaeus) Gaillon and S. fluitans (Borgessen) Borgesen (brown algae), found offshore in Ondo State, Nigeria. Afr. J. Biotechnol. 2014, 13, 10. [Google Scholar] [CrossRef]
- Abdool-Ghany, A.A.; Pollier, C.G.; Oehlert, A.M.; Swart, P.K.; Blare, T.; Moore, K.; Solo-Gabriele, H.M. Assessing quality and beneficial uses of Sargassum compost. Waste Manag. 2023, 171, 545–556. [Google Scholar] [CrossRef]
- Sun, F.S.; Yu, G.H.; Zhao, X.Y.; Polizzotto, M.L.; Shen, Y.J.; Zhou, H.B.; He, X.S. Mechanisms of potentially toxic metal removal from biogas residues via vermicomposting revealed by synchrotron radiation-based spectromicroscopies. Waste Manag. 2020, 113, 80–87. [Google Scholar] [CrossRef]
- Trench, C.; Thomas, S.L.; Thorney, D.; Maddix, G.M.; Francis, P.; Small, H.; Webber, M. Application of stranded pelagic Sargassum biomass as compost for seedling production in the context of mangrove restoration. Front. Environ. Sci. 2022, 10, 932293. [Google Scholar] [CrossRef]
- Machado, W.; Lacerda, L.D. Overview of the biogeochemical controls and concerns with trace metal accumulation in mangrove sediments. In Environmental Geochemistry in Tropical and Subtropical Environments; Drude de Lacerda, L., Santelli, R.E., Duursma, E.K., Abrao, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 319–334. [Google Scholar] [CrossRef]
- Rossignolo, J.A.; Felicio Peres Duran, A.J.; Bueno, C.; Martinelli Filho, J.E.; Savastano Junior, H.; Tonin, F.G. Algae application in civil construction: A review with focus on the potential uses of the pelagic Sargassum spp. Biomass. J. Environ. Manag. 2022, 303, 114258. [Google Scholar] [CrossRef]
- Siddique, M.N.I.; Zularisam, A.W. Application of natural seaweed modified mortar for sustainable concrete production. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 3rd International Conference on Chemical and Material Engineering (ICCME 2017), Medan, Indonesia, 19 September 2017; IOP Publishing: Bristol, UK, 2018; Volume 342, p. 012008. [Google Scholar] [CrossRef]
- Sarbini, N.N.; Ibrahim, I.S.; Ismail, M.; Anuar, M.Z.T. The effects of seaweed powder to the properties of polymer modified concrete. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 1st International Conference on Civil Engineering and Architecture, Seoul, Republic of Korea, 17–19 April 2020; IOP Publishing: Bristol, UK, 2020; Volume 849, p. 012065. [Google Scholar] [CrossRef]
- Galán-Marín, C.; Rivera-Gómez, C.; Petric, J. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 2010, 24, 1462–1468. [Google Scholar] [CrossRef]
- Bilba, K.; Potiron, C.O.; Arsène, M.A. Invasive biomass algae valorization: Assessment of the viability of Sargassum seaweed as pozzolanic material. J. Environ. Manag. 2023, 342, 118056. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga-Hernandez, S.; Hernandez-Vargas, G.; Iqbal, H.M.; Barceló, D.; Parra-Saldívar, R. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci. Total Environ. 2020, 715, 136978. [Google Scholar] [CrossRef] [PubMed]
- Neveux, N.; Bolton, J.J.; Bruhn, A.; Roberts, D.A.; Ras, M. The bioremediation potential of seaweeds: Recycling nitrogen, phosphorus, and other waste products. In Blue Biotechnology: Production and Use of Marine Molecules; La Barre, S., Bates, S.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 217–239. [Google Scholar] [CrossRef]
- Segretin, A.B.; Cazón, J.P.; Donati, E.R. Bioaccumulation and biosorption of heavy metals. In Heavy Metals in the Environment: Microorganisms and Plants; Sherameti, I., Varma, A., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 93–113. [Google Scholar]
- Yu, Z.; Zhu, X.; Jiang, Y.; Luo, P.; Hu, C. Bioremediation and fodder potentials of two Sargassum spp. in coastal waters of Shenzhen, South China. Mar. Pollut. Bull. 2014, 85, 797–802. [Google Scholar] [CrossRef]
- Sylvers, L.H.; Gobler, C.J. Mitigation of harmful algal blooms caused by Alexandrium catenella and reduction in saxitoxin accumulation in bivalves using cultivable seaweeds. Harmful Algae 2021, 105, 102056. [Google Scholar] [CrossRef]
- Tian, S.; Chen, B.; Wu, M.; Cao, C.; Gu, Z.; Zheng, T.; Ma, Z. Are there environmental benefits derived from coastal aquaculture of Sargassum fusiforme? Aquaculture 2023, 563, 738909. [Google Scholar] [CrossRef]
- Verma, L.K.; Jaiswal, P.; Verma, N.K. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Macek, T.; Mackova, M. Potential of biosorption technology. In Microbial Biosorption of Metals; Kotrba, P., Mackova, M., Macek, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 7–17. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ. Eng. Manag. J. 2015, 14, 455–462. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Cossich, E.S.; Tavares, C.R.G.; Silva, E.A. Biosorption of nickel (II) and copper (II) ions by Sargassum sp. in nature and alginate extraction products. Bioresour. Technol. Rep. 2019, 5, 43–50. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef]
- Pareja-Rodríguez, R.; Freile-Pelegrín, Y.; Robledo, D.; Ruiz-Gómez, M.; Martínez-Flores, R.; Rodríguez-Gattorno, G. Self-generated active sites in graphene oxide-like materials by controlling the oxidative decomposition reactions of Sargassum. J. Environ. Chem. Eng. 2021, 9, 106551. [Google Scholar] [CrossRef]
- Jalali, R.; Ghafourian, H.; Asef, Y.; Davarpanah, S.J.; Sepehr, S. Removal and recovery of lead using nonliving biomass of marine algae. J. Hazard. Mater. 2002, 92, 253–262. [Google Scholar] [CrossRef]
- Esteves, A.J.P.; Valdman, E.; Leite, S.G.F. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol. Lett. 2000, 22, 499–502. [Google Scholar] [CrossRef]
- de Souza Coracao, A.C.; Dos Santos, F.S.; Duarte, J.A.D.; Lopes-Filho, E.A.P.; De-Paula, J.C.; Rocha, L.M.; Teixeira, V.L. What do we know about the utilization of the Sargassum species as biosorbents of trace metals in Brazil? J. Environ. Chem. Eng. 2020, 8, 103941. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Nielsen, B.V.; Maneein, S.; Anghan, J.D.; Anghan, R.M.; Al Farid, M.M.; Milledge, J.J. Biosorption potential of Sargassum for removal of aqueous dye solutions. Appl. Sci. 2022, 12, 4173. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Deyab, M.A.; Hassan, N.I.; Abu Ahmed, S.E. Bioremediation of malachite green dye using sodium alginate, Sargassum latifolium extract, and their silver nanoparticles. BMC Chem. 2023, 17, 108. [Google Scholar] [CrossRef]
- Poole, N.; Donovan, J.; Erenstein, O. Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy 2021, 100, 101976. [Google Scholar] [CrossRef]
- Juul, L.; Nissen, S.H.; Bruhn, A.; Alexi, N.; Jensen, S.K.; Hammershøj, M.; Dalsgaard, T.K. Ulva species: A critical review on the green seaweed as a source of food protein. Trends Food Sci. Technol. 2024, 149, 104534. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Rengasamy, K.R.; Mahomoodally, M.F.; Aumeeruddy, M.Z.; Zengin, G.; Xiao, J.; Kim, D.H. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem. Toxicol. 2020, 135, 111013. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Ba, G.N.; Couvreur, P.; Tew, K.D. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 2002, 56, 215–222. [Google Scholar] [CrossRef]
- Anwar, H.; Hussain, G.; Mustafa, I. Antioxidants from natural sources. In Antioxidants in Foods and Its Applications; Emad, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Stiger, V.; Deslandes, E.; Payri, C.E. Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): Interspecific, ontogenic and spatio-temporal variations. Bot. Mar. 2004, 47, 402–409. [Google Scholar] [CrossRef]
- Plouguerné, E.; Le Lann, K.; Connan, S.; Jechoux, G.; Deslandes, E.; Stiger-Pouvreau, V. Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (Yendo) Fensholt along the coast of Western Brittany (France). Aquat. Bot. 2006, 85, 337–344. [Google Scholar] [CrossRef]
- Zubia, M.; Robledo, D.; Freile-Pelegrin, Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 2007, 19, 449–458. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, D. A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res. 2017, 23, 233–239. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.J.P.; Jeon, Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012, 88, 13–20. [Google Scholar] [CrossRef]
- Marudhupandi, T.; Kumar, T.T.A. Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int. Curr. Pharm. J. 2013, 2, 156–158. [Google Scholar] [CrossRef]
- Jo, B.W.; Choi, S.K. Degradation of fucoidans from Sargassum fulvellum and their biological activities. Carbohydr. Polym. 2014, 111, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Cong, Q.; Chen, H.; Liao, W.; Xiao, F.; Wang, P.; Qin, Y.; Ding, K. Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme. Carbohydr. Polym. 2016, 136, 899–907. [Google Scholar] [CrossRef]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [Google Scholar] [CrossRef]
- Pan, T.J.; Li, L.X.; Zhang, J.W.; Yang, Z.S.; Shi, D.M.; Yang, Y.K.; Wu, W.Z. Antimetastatic effect of fucoidan-Sargassum against liver cancer cell invadopodia formation via targeting integrin αVβ3 and mediating αVβ3/Src/E2F1 signaling. J. Cancer 2019, 10, 4777. [Google Scholar] [CrossRef]
- Chale-Dzul, J.; de Vaca, R.P.C.; Quintal-Novelo, C.; Olivera-Castillo, L.; Moo-Puc, R. Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl4-induced toxicity in rats. Int. J. Biol. Macromol. 2020, 145, 500–509. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Lee, H.G.; Kim, H.S.; Vaas, A.P.J.P.; De Silva, H.I.C.; Jeon, Y.J. Characterization and cytoprotective properties of Sargassum natans fucoidan against urban aerosol-induced keratinocyte damage. Int. J. Biol. Macromol. 2020, 159, 773–781. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Carpena, M.; Pereira, A.G.; García-Oliveira, P.; Simal-Gandara, J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci. Technol. 2021, 117, 163–181. [Google Scholar] [CrossRef]
- Oliyaei, N.; Moosavi-Nasab, M.; Tamaddon, A.M.; Tanideh, N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci. Nutr. 2021, 9, 3521–3529. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva-Reis, R.; Chouh, A.; Silva, S.; Braga, S.S.; Silva, A.M.; Cardoso, S.M. Applications of antioxidant secondary metabolites of Sargassum spp. Mar. Drugs 2023, 21, 172. [Google Scholar] [CrossRef]
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric. 2016, 96, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.L.; Dhart, A.K.; Gilchrist, J.L.; Yong, Y.L. Sterols of the brown alga Sargassum fluitans. Phytochemistry 1973, 12, 2727–2732. [Google Scholar] [CrossRef]


| Compounds | S. fluitans | S. natans var. natans | S. natans var. wingei | Mixed Biomass |
|---|---|---|---|---|
| Proximate composition (% DW) | ||||
| Moisture | 86.3 [19] | 87.4 [19] | 86.5 [19] | 82.0 [19]; 13.0 [21]; 12 [22] |
| Ash | 23.8 [18]; 3.4 [19] | 23.5 [18]; 35.7 [19] | 23.3 [18]; 34.3 [19] | 46.9 [19]; 18.7 [24]; 19.3 [22] |
| C: N ratio | 25.8 [18] | 28.2 [18]; 9.2 [23] | 28.9 [18] | 28.2 [10] |
| Proteins | 10.4 [18] | 12.4 [18] | 11.2 [18] | 9.2 [10]; 5.9 [24]; 8.3 [22] |
| Lipids | 1.0 [18]; 4.6 [19] | 0.6 [18]; 4.5 [19] | 0.7 [18]; 3.6 [19] | 3.9 [19]; 3.0 [10]; 1.3 [24]; 6.0 [22] |
| Carbohydrates | 27.4 [19] | 19.0 [19] | 21.8 [19] | 11. 7 [19]; 32.4 [22]; 15.5 [10]; 13.7 [24] |
| Fibers | 31.1 [19] | 37.0 [19] | 37.4 [19] | 33. 3 [19]; 22.0 [22] |
| Structural and reserve polysaccharides (% DW) | ||||
| Alginate | 34.6 [23]; 19.6 [18]; 9.4 [20]; 18.8 [25]; 24.6 [26] | 15.7 [18]; 11.1 [20]; 19.9 [25] | 23.5 [18]; 12.2 [20] | 31.6 [10] |
| Fucoidan | 4.4 [23]; 9.1 [18] | 6.3 [18] | 8.2 [18] | 8.6 [10]; 7.2 [22] |
| Cellulose | 12.9 [18]; 34.4 [27] | 11.5 [18]; 45.4 [27] | 18.8 [18] | -- |
| Lignin | 17.8 [18]; 25.40 [27] | 25.0 [18]; 29.5 [27] | 19.2 [18] | -- |
| Mannitol | 49.9 [18] | 58.4 [18] | 60.1 [18] | -- |
| Pigments (mg g−1 DW) | ||||
| Chlorophyll c | 0.06 [28] | 0.08 [28] | 0.009 [28] | 0.06 [10] |
| Chlorophyll a | 0.7 [10] | 0.9 [10] | 0.5 [28] | 0.2 [10] |
| Carotenoids | -- | -- | -- | 0.1 [10] |
| Fucoxanthin | 0.2 [28] | 0.3 [28] | 0.1 [28] | -- |
| Metabolites (% DW) | ||||
| Polyphenols | 1.4 [14] | 1.3 [14] | 1.1 [14] | -- |
| Flavonoids | 19.8 [27]; 0.4 [20] | 0.6 [20] | 0.9 [20] | 0.3 [20] |
| Element/Parameter | S. fluitans | S. natans | S. natans var. wingei | Mixed Biomass |
|---|---|---|---|---|
| Trace and heavy metals (mg kg−1 DW) | ||||
| Iron (Fe) | 832.97 [20]; 9.8 [26] | 634.79 [20] | 237.07 [20] | 54.6 [10] |
| Manganese (Mn) | 22.92 [20]; 112.0 [26] | 39.62 [20]; 139.0 [18] | 13.03 [20]; 135.0 [18] | -- |
| Barium (Ba) | 23.21 [20] | 22.17 [20] | 19.21 [20] | -- |
| Zinc (Zn) | 7.20 [20] | 14.71 [20] | 6.35 [20] | 7.2 [10] |
| Copper (Cu) | 4.47 [20]; 5.7 [26] | 4.29 [20] | 2.78 [20] | 1.09 [10] |
| Nickel (Ni) | 3.52 [20] | 4.21 [20] | 3.87 [20] | -- |
| Vanadium (V) | 4.21 [20] | 2.37 [20] | 2.28 [20] | -- |
| Chromium (Cr) | 9.18 [20] | 3.18 [20] | 1.50 [20] | -- |
| Cobalt (Co) | 0.89 [20] | 0.91 [20] | 0.47 [20] | -- |
| Uranium (U) | 0.83 [20]; 48.0 [18] | 0.80 [20]; 47.0 [18] | 0.79 [20]; 45.0 [18] | -- |
| Cadmium (Cd) | 2.0 [26] | -- | -- | 0.8 [10] |
| Lead (Pb) | 17.3 [26] | -- | -- | 0.29 [10] |
| Aluminum (Al) | 392 [18] | 500 [18] | 327 [18] | -- |
| Thorium (Th) | 17.0 [18] | 23.0 [18] | 20.0 [18] | -- |
| Rubidium (Rb) | 102.0 [18] | 143.0 [18] | 120.0 [18] | -- |
| Phosphorus (P) | 401.0 [18] | 394.0 [18] | 350.0 [18] | -- |
| Arsenic (As) | 58.32 [4]; 175 [26]; 172 [18] | 64.91 [4]; 93.2 [26]; 172 [18] | 60.30 [4]; 210 [26]; 145 [18] | 255 [26]; 65.7 [10] |
| Inorganic Arsenic | 71.5 [29] | 47.7 [29] | 64.7 [29] | 62.9 [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fagundo-Mollineda, A.; Freile-Pelegrín, Y.; Vásquez-Elizondo, R.M.; Vázquez-Delfín, E.; Robledo, D. Sargassum: Turning Coastal Challenge into a Valuable Resource. Biomass 2026, 6, 9. https://doi.org/10.3390/biomass6010009
Fagundo-Mollineda A, Freile-Pelegrín Y, Vásquez-Elizondo RM, Vázquez-Delfín E, Robledo D. Sargassum: Turning Coastal Challenge into a Valuable Resource. Biomass. 2026; 6(1):9. https://doi.org/10.3390/biomass6010009
Chicago/Turabian StyleFagundo-Mollineda, Adrián, Yolanda Freile-Pelegrín, Román M. Vásquez-Elizondo, Erika Vázquez-Delfín, and Daniel Robledo. 2026. "Sargassum: Turning Coastal Challenge into a Valuable Resource" Biomass 6, no. 1: 9. https://doi.org/10.3390/biomass6010009
APA StyleFagundo-Mollineda, A., Freile-Pelegrín, Y., Vásquez-Elizondo, R. M., Vázquez-Delfín, E., & Robledo, D. (2026). Sargassum: Turning Coastal Challenge into a Valuable Resource. Biomass, 6(1), 9. https://doi.org/10.3390/biomass6010009

