Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = direct calorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8826 KiB  
Article
Comparative Analysis of Composition, Texture, and Sensory Attributes of Commercial Forms of Plant-Based Cheese Analogue Products Available on the Irish Market
by Farhan Ali, James A. O’Mahony, Maurice G. O’Sullivan and Joseph P. Kerry
Foods 2025, 14(15), 2701; https://doi.org/10.3390/foods14152701 - 31 Jul 2025
Viewed by 174
Abstract
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing [...] Read more.
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing them against conventional cheddar and processed dairy cheeses. A total of 16 cheese products were selected from Irish retail outlets, comprising five block-style plant-based analogues, seven slice-style analogues, two cheddar samples, and two processed cheese samples. Results showed that plant-based cheese analogues had significantly lower protein content (0.1–1.7 g/100 g) than cheddar (25 g/100 g) and processed cheese (12.9–18.2 g/100 g) and lacked a continuous protein matrix, being instead stabilized largely by solid fats, starch, and hydrocolloids. While cheddar showed the highest hardness, some plant-based cheeses achieved comparable hardness using texturizing agents but still demonstrated lower tan δmax values, indicating inferior melting behaviour. Thermograms of differential scanning calorimetry presented a consistent single peak at ~20 °C across most vegan-based variants, unlike the dual-phase melting transitions observed in dairy cheeses. Sensory analysis further highlighted strong negative associations between PBCAs and consumer-relevant attributes such as flavour, texture, and overall acceptability. By integrating structural, functional, and sensory findings, this study identifies key formulation and performance deficits across cheese formats and provides direction for targeted improvements in next-generation PBCA product development. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

29 pages, 4982 KiB  
Article
Comprehensive Investigation of Polymorphic Stability and Phase Transformation Kinetics in Tegoprazan
by Joo Ho Lee, Ki Hyun Kim, Se Ah Ryu, Jason Kim, Kiwon Jung, Ki Sung Kang and Tokutaro Yamaguchi
Pharmaceutics 2025, 17(7), 928; https://doi.org/10.3390/pharmaceutics17070928 - 18 Jul 2025
Viewed by 453
Abstract
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of [...] Read more.
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of polymorph selection, focusing on conformational bias and solvent-mediated phase transformations (SMPTs). Methods: The conformational energy landscapes of two TPZ tautomers were constructed using relaxed torsion scans with the OPLS4 force field and validated by nuclear Overhauser effect (NOE)-based nuclear magnetic resonance (NMR). Hydrogen-bonded dimers were analyzed using DFT-D. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility, and slurry tests were conducted using methanol, acetone, and water. Kinetic profiles were modeled with the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. Results: Polymorph A was thermodynamically stable across all analyses. Both amorphous TPZ and Polymorph B converted to A in a solvent-dependent manner. Methanol induced direct A formation, while acetone showed a B → A transition. Crystallization was guided by solution conformers and hydrogen bonding. Conclusions: TPZ polymorph selection is governed by solution-phase conformational preferences, tautomerism, and solvent-mediated hydrogen bonding. DFT-D and NMR analyses showed that protic solvents favor the direct crystallization of stable Polymorph A, while aprotic solvents promote the transient formation of metastable Polymorph B. Elevated temperatures and humidity accelerate polymorphic transitions. This crystal structure prediction (CSP)-independent strategy offers a practical framework for rational polymorph control and the mitigation of disappearing polymorph risks in tautomeric drugs. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2997 KiB  
Article
The Development of a Multilayer Transdermal Patch Platform Based on Electrospun Nanofibers for the Delivery of Caffeine
by Jorge Teno, Zoran Evtoski, Cristina Prieto and Jose M. Lagaron
Pharmaceutics 2025, 17(7), 921; https://doi.org/10.3390/pharmaceutics17070921 - 16 Jul 2025
Viewed by 380
Abstract
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various [...] Read more.
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various permeation enhancers. A backing layer made of annealed electrospun polycaprolactone (PCL) facilitated the lamination of the two layers to form the final multilayer patch. Comprehensive characterization was conducted, utilizing scanning electron microscopy (SEM) to assess the fiber morphology, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for chemical detection and to assess the stability of the caffeine, and differential scanning calorimetry (DSC) along with wide-angle X-ray scattering (WAXS) to analyze the physical state of the caffeine within the fibers of the active layer. Additionally, Franz cell permeation studies were performed using both synthetic membranes (Strat-M) and ex vivo human stratum corneum (SC) to evaluate and model the permeation kinetics. Results: These experiments demonstrated the significant role of enhancers in modulating the caffeine permeation rates provided by the patch, achieving permeation rates of up to 0.73 mg/cm2 within 24 h. Conclusions: This work highlights the potential of using electro-hydrodynamic processing technology to develop innovative transdermal delivery systems for drugs, offering a promising strategy for enhancing efficacy and innovative therapeutic direct plasma administration. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 446
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

30 pages, 4865 KiB  
Article
Thermal Behavior and Smoke Suppression of Polyamide 6,6 Fabric Treated with ALD-ZnO and DOPO-Based Silane
by Wael Ali, Raphael Otto, Ana Raquel Lema Jimenez, Sebastian Lehmann, Eui-Young Shin, Ying Feng, Milijana Jovic, Sabyasachi Gaan, Jochen S. Gutmann, Kornelius Nielsch, Amin Bahrami and Thomas Mayer-Gall
Materials 2025, 18(13), 3195; https://doi.org/10.3390/ma18133195 - 7 Jul 2025
Viewed by 645
Abstract
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic [...] Read more.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus–silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications. Full article
Show Figures

Graphical abstract

30 pages, 866 KiB  
Review
Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges
by Márcio Vargas-Ramella, Noemí Echegaray, Paulo Cezar Bastianello Campagnol and José Manuel Lorenzo
Foods 2025, 14(13), 2255; https://doi.org/10.3390/foods14132255 - 26 Jun 2025
Viewed by 514
Abstract
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and [...] Read more.
The global demand for sustainable packaging and animal-derived products’ perishability emphasizes the urgent need for biodegradable alternatives to petroleum-based materials (i.e., synthetic polymers or plastic). This narrative review explores the recent advancements in natural polymer-based coatings, comprising ingredients such as polysaccharides, proteins, and lipids, as well as their combination as multifunctional strategies for preserving meat, dairy, seafood, and eggs. These coatings act as physical barriers and can carry bioactive compounds, enhancing oxidative and microbial stability. Particular attention is placed on the structure-function relationships of biopolymers, their characterization through advanced techniques (e.g., Fourier Transform Infrared spectroscopy—FTIR, Scanning Electron Microscope—SEM, Differential Scanning Calorimetry—DSC, and Thermogravimetric analysis—TGA), and their functional properties (e.g., antimicrobial and antioxidant efficacy). Notably, food matrix compatibility is pivotal in determining coating performance, as interactions with surface moisture, pH, and lipids can modulate preservation outcomes. While several formulations have demonstrated promising results in shelf-life extension and sensory quality preservation, challenges remain regarding coating uniformity, regulatory compliance, and scalability. This narrative review highlights current limitations and future directions for the industrial application of these sustainable materials, aiming to link the gap between laboratory success and commercial feasibility. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

20 pages, 2721 KiB  
Article
Natural Deep Eutectic Solvents (NADESs) for the Extraction of Bioactive Compounds from Quinoa (Chenopodium quinoa Willd.) Leaves: A Semi-Quantitative Analysis Using High Performance Thin-Layer Chromatography
by Verónica Taco, Dennys Almachi, Pablo Bonilla, Ixchel Gijón-Arreortúa, Samira Benali, Jean-Marie Raquez, Pierre Duez and Amandine Nachtergael
Molecules 2025, 30(12), 2620; https://doi.org/10.3390/molecules30122620 - 17 Jun 2025
Viewed by 417
Abstract
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and [...] Read more.
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and biological activities. Given the interest in flavonoids from Chenopodium quinoa Willd. leaves, an efficient “green” extraction method was developed by investigating eight NADESs with defined molar ratios, i.e., malic acid-choline chloride (chcl)-water (w) (1:1:2, N1), chcl-glucose-w (5:2:5, N2), proline-malic acid-w (1:1:3, N3), glucose-fructose-sucrose-w (1:1:1:11, N4), 1,2-propanediol-chcl-w (1:1:1, N5), lactic acid-glucose-w (5:1:3, N6), glycerol-chcl-w (2:1:1, N7), and xylitol-chcl-w (1:2:3, N8). Rheological measurements of all NADESs confirmed their pseudoplastic behaviors. To improve the extraction processes, differential scanning calorimetry (DSC) allowed us to determine the maximum amount of water that could be added to the most stable NADES (N1, N2, N3, and N4; 17.5%, 20%, 10%, and 10% w/w, respectively) to lower their viscosities without disturbing their eutectic environments. The phytochemical compositions of NADES extracts were analyzed using high-performance thin-layer chromatography (HPTLC), and their free radical scavenging and α-amylase inhibitory properties were assessed using HPTLC-bioautography. N2, diluted with 20% of water, and N7 presented the best potential for replacing methanol for an eco-friendly extraction of flavonoids, radical scavengers, and α-amylase inhibitors from quinoa leaves. Their biological properties, combined with a good understanding of both thermal behavior and viscosity, make the obtained quinoa leaf NADES extracts good candidates for direct incorporation in nutraceutical formulations. Full article
Show Figures

Graphical abstract

20 pages, 6125 KiB  
Article
Preparation and Modification Mechanism of Oil-Rich High-Viscosity, High-Elasticity (OR-HV-HE) Asphalt Modifier
by Xin Jin, Wenbin Xu, Huaizhi Zhang, Ye Yang, Zhixing Pan, Weiyu He, Zhichen Wang, Yanhai Yang, Jiupeng Zhang and Qingyue Zhou
Coatings 2025, 15(6), 702; https://doi.org/10.3390/coatings15060702 - 11 Jun 2025
Viewed by 410
Abstract
An asphalt modifier dry-process direct-cast oil-rich high-viscosity high-elasticity (OR-HV-HE) was developed to address the climatic characteristics of seasonal freezing zones. The chemical composition of the OR-HV-HE modifier was optimized through orthogonal testing. Advanced characterization techniques, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), [...] Read more.
An asphalt modifier dry-process direct-cast oil-rich high-viscosity high-elasticity (OR-HV-HE) was developed to address the climatic characteristics of seasonal freezing zones. The chemical composition of the OR-HV-HE modifier was optimized through orthogonal testing. Advanced characterization techniques, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), were employed to systematically analyze the comprehensive thermal properties, microstructure, and chemical characteristics of the OR-HV-HE asphalt. Test results revealed a linear inverse relationship between the melt index and the OR-HV-HE asphalt grafting rate. The addition of the OR-HV-HE modifier led to the generation of new chemical bonds, and microscopic mechanism analysis illustrated the formation of a cross-linking network structure between the OR-HV-HE and asphalt, in which the cross-linking network structure could enhance the high and low-temperature performance of asphalt. Road performance verification results demonstrated that when compared with the traditional SBS-modified asphalt mixture, the OR-HV-HE modified asphalt mixture exhibited significantly superior road performance indices: the high-temperature dynamic stability was increased by 468% and the low-temperature damage strain was increased by 47.5%, and the residual stability reached 99%. Full article
Show Figures

Figure 1

18 pages, 1920 KiB  
Article
Modeling Skin Thermal Behavior with a Cutaneous Calorimeter: Local Parameters of Medical Interest
by Pedro Jesús Rodríguez de Rivera, Miriam Rodríguez de Rivera, Fabiola Socorro and Manuel Rodríguez de Rivera
Modelling 2025, 6(2), 42; https://doi.org/10.3390/modelling6020042 - 2 Jun 2025
Viewed by 948
Abstract
This study presents an advanced model of thermal Resistances and heat Capacities model approach (RC model), applied to a custom-built skin calorimeter for the in vivo characterization of localized thermal behavior of the skin. The device integrates a heat flux sensor and a [...] Read more.
This study presents an advanced model of thermal Resistances and heat Capacities model approach (RC model), applied to a custom-built skin calorimeter for the in vivo characterization of localized thermal behavior of the skin. The device integrates a heat flux sensor and a programmable thermostat, and is capable of measuring the heat flux, heat capacity, internal thermal resistance, and subcutaneous temperature of the skin, under both resting and exercising conditions. The model, refined through extensive experimental validation, incorporates the skin as part of the system and is adapted to three modes of operation: calibration base, ambient air, and direct skin contact. Simulations are used to analyze heat flux dynamics, optimize control parameters, and validate analytical expressions. Under resting conditions, the model enables the estimation of the skin’s heat capacity and thermal resistance. During exercise, it allows the determination of heat flux and internal temperature variations using simplified expressions. The system demonstrates high sensitivity (195.5 mV/W) and provides a robust, non-invasive method for extracting medically relevant thermal parameters from a 2 × 2 cm2 skin area. Full article
Show Figures

Figure 1

22 pages, 7505 KiB  
Article
Investigations on an Ancient Mortar from Ulpia Traiana Sarmizegetusa Archaeological Site, Romania
by Zeno Dorian Ghizdavet, Corina Anca Simion, Anton Ficai, Ovidiu-Cristian Oprea, Radu Claudiu Fierascu, Maria Loredana Marin, Doina-Roxana Trușcă, Vasile-Adrian Surdu, Ludmila Motelica, Iuliana Madalina Stanciu, Alexandru Razvan Petre and Ileana Radulescu
Appl. Sci. 2025, 15(10), 5780; https://doi.org/10.3390/app15105780 - 21 May 2025
Viewed by 506
Abstract
A fragment of mortar from the pedestal ruin belonging to the central statue in Forum Vetus, Ulpia Traiana archaeological site, Romania, was investigated. The ruin is well-documented and unrestored, and radiocarbon dating was deemed suitable to determine its moment of construction. Preliminary analyses [...] Read more.
A fragment of mortar from the pedestal ruin belonging to the central statue in Forum Vetus, Ulpia Traiana archaeological site, Romania, was investigated. The ruin is well-documented and unrestored, and radiocarbon dating was deemed suitable to determine its moment of construction. Preliminary analyses were used to establish the composition of the material and the sources of carbon-14, selecting the most reliable fraction for radiocarbon dating by the AMS method. Although sampling was carried out according to the recommendations, a younger apparent age was obtained than that expected. This is in fact a concrete-like mortar according to the analyses, and the phenomenon of delayed hardening of mortar in masonry was detected. The difference between the real and apparent ages quantifies this phenomenon. X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry with thermogravimetric analysis, and gamma spectrometry were used. Pyrogenic calcium carbonate and carbonates from calcium silicate/calcium aluminate hydrates were the only forms present in mini-nodules/lumps. The reactivation of binder calcite or geogenic calcite, the other problems encountered when dating mortars, were not spotted. This case study highlights the limitations of the radiocarbon dating method, and we introduce gamma spectrometry as a technique for additional investigations into direct exposure to the environment or the origins of raw materials. Full article
(This article belongs to the Special Issue Innovative Building Materials: Design, Properties and Applications)
Show Figures

Figure 1

28 pages, 4098 KiB  
Review
Advances in the Study of Flame-Retardant Cellulose and Its Application in Polymers: A Review
by Quan Yuan, Shaodong Wang, Liping He and Shiwei Xu
Polymers 2025, 17(9), 1249; https://doi.org/10.3390/polym17091249 - 3 May 2025
Cited by 1 | Viewed by 1280
Abstract
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This [...] Read more.
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This review recapitulates the modification methods of flame-retardant cellulose and their applications in polymers in recent years. This paper discusses the fabrication of flame-retardant cellulose from various aspects such as boron, nitrogen, phosphorus, sulphur, inorganic and heterogeneous synergistic modification, respectively, and evaluates the flame retardancy of flame-retardant cellulose by means of thermogravimetry, cone calorimetry, limiting oxygen index, the vertical combustion of UL94, etc. Finally, it discusses the application of flame-retardant cellulose in actual composites, which fully reflects the extraordinary potential of flame-retardant cellulose for applications in polymers. Currently, flame-retardant cellulose has significantly improved its flame-retardant properties through multi-faceted modification strategies and has shown a broad application prospect in composite materials. However, interfacial compatibility, environmental protection and process optimisation are still the key directions for future research, and efficient, low-toxic and industrialised flame-retardant cellulose materials need to be realised through innovative design. Full article
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 511
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 10646 KiB  
Article
The Influence of Microsecond Pulsed Electric Field and Direct Current Electric Field on the Orientation Angle of Boron Nitride Nanosheets and the Thermal Conductivity of Epoxy Resin Composites
by Yan Mi, Yiqin Peng, Wentao Liu, Lei Deng and Benxiang Shu
Micromachines 2025, 16(4), 413; https://doi.org/10.3390/mi16040413 - 30 Mar 2025
Viewed by 403
Abstract
The electric field orientation method effectively promotes the orientation and arrangement of BN nanosheets, forming a thermal conduction network and enhancing the thermal conductivity of the composite material. In this study, microsecond pulsed electric field and direct current electric field were applied to [...] Read more.
The electric field orientation method effectively promotes the orientation and arrangement of BN nanosheets, forming a thermal conduction network and enhancing the thermal conductivity of the composite material. In this study, microsecond pulsed electric field and direct current electric field were applied to induce the orientation and arrangement of BN nanosheets and improve the thermal conductivity of epoxy resin composites. Under a microsecond pulsed electric field of 50 Hz, 1.5 μs, and 8 kV/mm, the average orientation angle of BN nanosheets increased by 147.7%, and the thermal conductivity of the composite reached 0.352 W/(m·K), which is 1.84 times that of pure epoxy resin. In contrast, under a DC electric field of 70 V/mm, the average orientation angle of BN nanosheets increased by only 57.9%, while the thermal conductivity of the composite reached 0.364 W/(m·K), 1.91 times that of pure epoxy resin. The results indicate that the microsecond pulsed electric field primarily enhances the local orientation of the fillers to improve thermal conductivity, whereas the DC electric field mainly enhances the global arrangement of the fillers to achieve a similar effect. Additionally, thermogravimetric analysis and differential scanning calorimetry were conducted to evaluate the thermal properties of the composites. The results demonstrate that after BN nanosheets orientation and arrangement within the epoxy resin induced by both microsecond pulsed and DC electric fields, the composites exhibited a higher glass transition temperature and improved thermal stability. This study systematically explores the effects of microsecond pulsed and DC electric fields on filler orientation and arrangement, providing valuable insights for the fabrication of electric field-oriented composites. Full article
Show Figures

Figure 1

27 pages, 5585 KiB  
Article
Lignin as a Bioactive Additive in Chlorzoxazone-Loaded Pharmaceutical Tablets
by Andreea Creteanu, Gabriela Lisa, Cornelia Vasile, Maria-Cristina Popescu, Daniela Pamfil, Alina-Diana Panainte, Gladiola Tantaru, Madalina-Alexandra Vlad and Claudiu N. Lungu
Molecules 2025, 30(7), 1426; https://doi.org/10.3390/molecules30071426 - 23 Mar 2025
Viewed by 2121
Abstract
In the present work, the application of lignin (LIG) as a bioactive additive for the preparation of drug-loaded tablets by direct compression has been studied, and its influence on the release of chlorzoxazone (CLZ) from the hydrophilic matrices has been followed. In hydrophilic [...] Read more.
In the present work, the application of lignin (LIG) as a bioactive additive for the preparation of drug-loaded tablets by direct compression has been studied, and its influence on the release of chlorzoxazone (CLZ) from the hydrophilic matrices has been followed. In hydrophilic matrices, the excipients Kollidon® SR (KOL) and chitosan (CHT) have been used in various amounts and tested in the preparation of 500 mg tablets. They were used as matrix-forming agents, and their influence on the flow and the compressibility properties as well as their effect on the pharmaco-chemical characteristics of the matrix tablets have been studied. Based on the initial evaluation of the pharmaco-technical analysis, pharmaco-chemical characteristics, and in vitro release profile, three matrix tablet formulations (FLa, FLb, and FLc) were selected and further tested. They were evaluated through Fourier-transform infrared spectrometry (FTIR), X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC), and in vitro dissolution tests. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The in vitro kinetic study reveals a complex release mechanism occurring in two steps of drug release. The first one is a burst effect that occurs within the first 0–2 h, involving a rapid release of the majority of the drug in a short time, followed by the second step as a prolonged release of the drug, which is relatively constant with a fixed rate over the next 2–36 h. Two factors have been calculated to assess the release profile of chlorzoxazone: f1—the similarity factor and f2—the difference factor together with the correlation coefficient R2. Comparing their values, the three optimal formulations have been selected, containing 55 mg LIG (FLa), 60 mg LIG (FLb), or 65 mg LIG (FLc), confirming that LIG next to KOL and CHT influenced the release characteristics of the matrix tablets. Due to the presence of lignin in the matrix of the three formulations, FLa, FLb, and FLc tablets with CLZ, the antioxidant activity has improved. The antioxidant activity of FLc was found to be 21.36% ± 1.06 greater than that of FLa and FLb. The tablets FLa, FLb, and FLc also presented higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, Candida albicans, and colistin-resistant Klebsiella spp. The higher the concentration of LIG in the matrix (FLc), the higher the antimicrobial activity. By using LIG, the drug dose could be decreased. It can be concluded that lignin can be used as a multifunctional pharmaceutical bioactive additive/excipient for tablets. Its interesting properties have been proven, and its use as a pharmaceutical active additive should be exploited for different applications. Full article
(This article belongs to the Special Issue Research Progress and Application of Natural Compounds—2nd Edition)
Show Figures

Figure 1

13 pages, 270 KiB  
Article
The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study
by Joanna Ostrowska and Dorota Szostak-Węgierek
Nutrients 2025, 17(6), 1044; https://doi.org/10.3390/nu17061044 - 16 Mar 2025
Viewed by 1304
Abstract
Objectives: This cross-sectional study aimed to examine the associations between lifestyle factors (diet, physical activity, and sleep) and resting energy expenditure (REE) in a group of 75 healthy adults aged 30–45 years without obesity, and to explore its relationship with body composition parameters [...] Read more.
Objectives: This cross-sectional study aimed to examine the associations between lifestyle factors (diet, physical activity, and sleep) and resting energy expenditure (REE) in a group of 75 healthy adults aged 30–45 years without obesity, and to explore its relationship with body composition parameters and selected biochemical markers that could positively influence cardiometabolic disease prevention. Methods: For this purpose, indirect calorimetry, accelerometers, and bioelectrical impedance analysis (BIA) were used. Results: We found that fat-free mass (FFM) showed the strongest association with REE, along with related metrics such as total body water, body cell mass, and muscle mass (p < 0.0001, adj. R2 > 0.5). In univariable models, all physical activity intensities were significantly associated with REE, but only moderate physical activity (MPA) remained significant after adjusting for sex and FFM (β = 2.1 ± 1.0, p < 0.05, adj. R2 = 0.589). Similarly, a positive association between HDL-C and REE persisted after adjustments (β = 4.8 ± 2.3 kcal/d, p < 0.05, adj. R2 = 0.590). Further analyses confirmed that MPA and HDL-C independently contributed to REE (ΔR2 = 0.02, p < 0.05; Partial r = 0.233 and 0.236, respectively, both p < 0.05), highlighting their role beyond the effects of FFM and sex. Other biochemical and lifestyle factors, including HOMA-IR, insulin levels, triglycerides, and total energy intake, showed positive associations with REE in the crude model. However, these relationships diminished after adjustment, suggesting that their influence is likely mediated by factors such as body composition, body size, and sex. Finally, no significant relationship between sleep and REE was observed in our cohort under naturalistic conditions, possibly due to the alignment of participants’ sleep durations with recommended guidelines. Conclusions: These potential direct links between MPA–REE and REE-HDL may be partially explained by habitual, spontaneous physical activity, which contributes to post-exercise metabolic elevation and may promote adipose tissue browning, potentially resulting in favorable metabolic effects, that support cardiometabolic disease prevention. Full article
Back to TopTop