The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Data Collection
2.2. Resting Energy Expenditure Measured by Indirect Calorimetry
2.3. Bioelectrical Impedance Analysis, Biochemical Tests, Physical Activity, and Sleep Duration
2.4. Statistical Analyzes
3. Results
3.1. Impact of Anthropometric and Body Composition Factors on REE
3.2. Impact of Biochemical Factors on REE
3.3. Impact of Lifestyle Factors (Physical Activity, Sleep, Diet) on REE
3.4. Effects of Physical Activity and HDL-C on REE Beyond FFM and Sex
4. Discussion
4.1. Associations Between REE and Body Composition
4.2. Biochemical Correlates of REE
4.3. The Role of Physical Activity and HDL-C in REE
4.4. Lack of Association Between Sleep and REE
4.5. Dietary Intake and REE
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Achamrah, N.; Delsoglio, M.; De Waele, E.; Berger, M.M.; Pichard, C. Indirect calorimetry: The 6 main issues. Clin. Nutr. 2021, 40, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017, 71, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Widmer, A.M.; Mercante, M.G.; Silver, H.J. TG/HDL Ratio Is an Independent Predictor for Estimating Resting Energy Expenditure in Adults with Normal Weight, Overweight, and Obesity. Nutrients 2022, 14, 5106. [Google Scholar] [CrossRef]
- Lim, J.; Alam, U.; Cuthbertson, D.; Wilding, J. Design of a Randomised Controlled Trial: Does Indirect Calorimetry Energy Information Influence Weight Loss in Obesity? BMJ Open 2021, 11, e044519. [Google Scholar] [CrossRef] [PubMed]
- Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect Calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. [Google Scholar] [CrossRef]
- Borges, J.H.; Guerra-Júnior, G.; Gonçalves, E.M. Methods for data analysis of resting energy expenditure measured using indirect calorimetry. Nutrition 2019, 59, 44–49. [Google Scholar] [CrossRef]
- Müller, M.J.; Heymsfield, S.B.; Bosy-Westphal, A. Are Metabolic Adaptations to Weight Changes an Artefact? Am. J. Clin. Nutr. 2021, 114, 1386–1395. [Google Scholar] [CrossRef]
- MacKenzie-Shalders, K.; Kelly, J.; So, D.; Coffey, V.; Byrne, N. The Effect of Exercise Interventions on Resting Metabolic Rate: A Systematic Review and Meta-Analysis. J. Sports Sci. 2020, 38, 1635–1649. [Google Scholar] [CrossRef]
- Fenton, S.; Burrows, T.; Skinner, J.; Duncan, M. The Influence of Sleep Health on Dietary Intake: A Systematic Review and Meta-Analysis of Intervention Studies. J. Hum. Nutr. Diet. 2020, 34, 273–285. [Google Scholar] [CrossRef]
- World Health Organization (WHO); World Heart Federation; World Stroke Organization. Global Atlas on Cardiovascular Disease Prevention and Control; WHO: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/9789241564373 (accessed on 22 February 2025).
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/ (accessed on 22 February 2025).
- Kanagasabai, T.; Riddell, M.; Ardern, C. Physical Activity Contributes to Several Sleep-Cardiometabolic Health Relationships. Metab. Syndr. Relat. Disord. 2017, 15, 44–51. [Google Scholar] [CrossRef]
- Vincent, G.; Jay, S.; Sargent, C.; Vandelanotte, C.; Ridgers, N.; Ferguson, S. Improving Cardiometabolic Health with Diet, Physical Activity, and Breaking Up Sitting: What about Sleep? Front. Physiol. 2017, 8, 865. [Google Scholar] [CrossRef]
- Marra, M.; Cioffi, I.; Sammarco, R.; Santarpia, L.; Contaldo, F.; Scalfi, L.; Pasanisi, F. Are Raw BIA Variables Useful for Predicting Resting Energy Expenditure in Adults with Obesity? Nutrients 2019, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Rhie, S.-J.; Shim, I.-S. The Effects of Physical Exercise Therapy on Weight Control: Its Regulation of Adipocyte Physiology and Metabolic Capacity. J. Exerc. Rehabil. 2023, 19, 141–148. [Google Scholar] [CrossRef]
- Oshima, T.; Delsoglio, M.; Dupertuis, Y.M.; Singer, P.; De Waele, E.; Veraar, C.; Heidegger, C.P.; Wernermann, J.; Wischmeyer, P.E.; Berger, M.M.; et al. The Clinical Evaluation of the New Indirect Calorimeter Developed by the ICALIC Project. Clin. Nutr. 2020, 39, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Delsoglio, M.; Dupertuis, Y.M.; Oshima, T.; van der Plas, M.; Pichard, C. Evaluation of the Accuracy and Precision of a New Generation Indirect Calorimeter in Canopy Dilution Mode. Clin. Nutr. 2020, 39, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Dupertuis, Y.M.; Delsoglio, M.; Graf, S.; Heidegger, C.P.; Pichard, C. In Vitro Validation of Indirect Calorimetry Device Developed for the ICALIC Project against Mass Spectrometry. Clin. Nutr. 2019, 32, 50–55. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Ostrowska, J.; Samborowska, E.; Jaworski, M.; Toczyłowska, K.; Szostak-Węgierek, D. The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients 2024, 16, 266. [Google Scholar] [CrossRef]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer science and applications, Inc Accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Danielewicz, A.L.; Lazzer, S.; Marra, A.; Abbruzzese, L.; D’alleva, M.; De Martino, M.; Isola, M.; Avelar, N.C.P.; Mendonça, V.A.; Lacerda, A.C.R.; et al. Prediction of resting energy expenditure in Italian older adults with severe obesity. Front. Endocrinol. 2023, 14, 1283155. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Cioffi, I.; Sammarco, R.; Montagnese, C.; Naccarato, M.; Amato, V.; Contaldo, F.; Pasanisi, F. Prediction and evaluation of resting energy expenditure in a large group of obese outpatients. Int. J. Obes. 2017, 41, 697–705. [Google Scholar] [CrossRef]
- Drabsch, T.; Holzapfel, C.; Stecher, L.; Petzold, J.; Skurk, T.; Hauner, H. Associations Between C-Reactive Protein, Insulin Sensitivity, and Resting Metabolic Rate in Adults: A Mediator Analysis. Front. Endocrinol. 2018, 20, 556. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Honjo, S.; Sakamoto, T.; Yagyu, T.; Uchinaka, E.; Hanaki, T.; Watanabe, J.; Matsunaga, T.; Yamamoto, M.; Fukumoto, Y.; et al. Prognostic Impact of Pre- and Post-operative P-CRP Levels in Pancreatic Cancer Patients. Yonago Acta Med. 2020, 20, 70–78. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 5, 287. [Google Scholar] [CrossRef]
- Utaka, S.; Avesani, C.M.; Draibe, S.A.; Kamimura, M.; Andreoni, S.; Cuppari, L. Inflammation is associated with increased energy expenditure in patients with chronic kidney disease. Am. J. Clin. Nutr. 2005, 82, 801–805. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Li, Z.; Long, C.; Zhou, Q.; Li, S. The Links between Adipose Tissue DNA Methylation, Obesity, and Insulin Resistance: A Protocol for Systematic Review. Medicine 2022, 101, 31261. [Google Scholar]
- Franzke, B.; Schwingshackl, L.; Wagner, K. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity—A systematic review and meta-analysis. Mutat. Res. 2020, 786, 108343. [Google Scholar] [CrossRef]
- Enes, A.; Alves, R.C.; Zen, V.; Leonel, D.F.; Oneda, G.; Ferreira, L.H.B.; Guiraldelli, L.R.; Simão, R.; Escalante, G.; Ulbrich, A.Z.; et al. Effects of Resistance Training Techniques on Metabolic Responses in Trained Males. Int. J. Exerc. Sci. 2024, 17, 576–589. [Google Scholar]
- Capin, J.J.; Ridgers, N.D.; Street, J.H.; Fial, A.; Tomkinson, G.R. Activity Levels Across the Intensity Spectrum in Athletes: A Systematic Review Protocol. BMJ Open Sport Exerc. Med. 2024, 10, e002148. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Nicklas, B. Acute Impact of Moderate-Intensity and Vigorous-Intensity Exercise Bouts on Daily Physical Activity Energy Expenditure in Postmenopausal Women. J. Obes. 2011, 2011, 342431. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wiltshire, H.; Baker, J.; Wang, Q.; Ying, S.; Li, J.; Lu, Y. Associations Between Objectively Determined Physical Activity and Cardiometabolic Health in Adult Women: A Systematic Review and Meta-Analysis. Biology 2022, 11, 925. [Google Scholar] [CrossRef]
- Hunter, G.; Moellering, D.; Carter, S.; Gower, B.; Bamman, M.; Hornbuckle, L.; Plaisance, E.; Fisher, G. Potential Causes of Elevated REE after High-Intensity Exercise. Med. Sci. Sports Exerc. 2017, 49, 2414–2421. [Google Scholar] [CrossRef]
- Speakman, J.R.; Selman, C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003, 62, 621–634. [Google Scholar] [CrossRef]
- Moslehi, E.; Minasian, V.; Sadeghi, H. Subcutaneous Adipose Tissue Browning, Serum Orexin-A, and Insulin Resistance Following Aerobic Exercise in High-Fat Diet Obesity Male Wistar Rats. Int. J. Prev. Med. 2021, 12, 96. [Google Scholar]
- Khalafi, M.; Mohebbi, H.; Symonds, M.; Karimi, P.; Akbari, A.; Tabari, E.; Faridnia, M.; Moghaddami, K. The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients 2020, 12, 925. [Google Scholar] [CrossRef]
- Yun, H.; Su, W.-W.; Zhao, H.; Li, H.-X.; Wang, Z.; Cui, X.; Xi, C.; Gao, R.; Sun, Y.; Liu, C. Effects of Different Exercise Modalities on Lipid Profile in the Elderly Population: A Meta-Analysis. Medicine 2023, 102, e33854. [Google Scholar] [CrossRef]
- Kohanmoo, A.; Akhlaghi, M.; Sasani, N.; Nouripour, F.; Lombardo, C.; Kazemi, A. Short Sleep Duration Is Associated with Higher Risk of Central Obesity in Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Obes. Sci. Pract. 2024, 10, e772. [Google Scholar] [CrossRef]
- de Jonge, L.; Zhao, X.; Mattingly, M.S.; Zuber, S.M.; Piaggi, P.; Csako, G.; Cizza, G.; NIDDK Sleep Extension Study Group. Poor sleep quality and sleep apnea are associated with higher resting energy expenditure in obese individuals with short sleep duration. J. Clin. Endocrinol. Metab. 2012, 97, 2881–2889. [Google Scholar] [CrossRef]
- Grant, L.K.; Coborn, J.; Cohn, A.; Abramson, M.; Elguenaoui, E.; Russell, J.A.; Wiley, A.; Nathan, M.; Scheer, F.; Klerman, E.; et al. Effect of Experimentally Induced Sleep Fragmentation and Hypoestrogenism on Fasting Nutrient Utilization in Pre-Menopausal Women. J. Endocr. Soc. 2021, 5, A774. [Google Scholar] [CrossRef]
- Jung, C.M.; Melanson, E.L.; Frydendall, E.J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2011, 589, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s Sleep Time Duration Recommendations: Methodology and Results Summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Mayasari, N.R.; Ho, D.K.N.; Liao, Y.C.; Chien, M.M.; Chung, M.; Bai, C.; Huang, Y.; Chen, Y.; Tseng, S.; Chang, C.; et al. The effects of dietary macronutrient composition on resting energy expenditure following active weight loss: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13760. [Google Scholar]
- Soenen, S.; Martens, E.; Hochstenbach-Waelen, A.; Lemmens, S.; Westerterp-Plantenga, M. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat-free mass. J. Nutr. 2013, 143, 591–596. [Google Scholar] [CrossRef]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of physical activity and energy expenditure: An overview of objective measures. Front. Nutr. 2014, 1, 5. [Google Scholar] [CrossRef]
- Benton, M.J.; Hutchins, A.M.; Dawes, J.J. Effect of Menstrual Cycle on Resting Metabolism: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0236025. [Google Scholar] [CrossRef]
Total, n = 75 | Females, n = 45 | Males, n = 30 | |||||
---|---|---|---|---|---|---|---|
Basic Parameters | Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | p-Value |
Age (years) | 37 (5.0) | 28.0, 46.0 | 36 (4.5) | 28.0, 45.0 | 38 (5.1) | 30.0, 45.0 | ns. |
Body weight (kg) | 72 (14.0) | 44.0, 105.0 | 63 (8.3) | 44.0, 82.0 | 85 (10.5) | 57.0, 107.0 | <0.001 |
Height (cm) | 173 (10.0) | 150.0, 194.0 | 167 (6.5) | 150.0, 178.0 | 181 (6.0) | 171.0, 194.0 | <0.001 |
BMI (kg/m2) | 24 (3.1) | 18.6, 29.5 | 23 (2.5) | 18.6, 28.1 | 26 (2.9) | 18.6, 29.5 | <0.001 |
WC (cm) | 84 (11.5) | 63.0, 110.0 | 78 (8.1) | 63.0, 91.0 | 93 (9.6) | 65.0, 110.0 | <0.001 |
Body composition parameters | |||||||
FFM (kg) | 52 (10.1) | 34.3, 72.0 | 44 (3.7) | 34.3, 51.2 | 63 (5.5) | 46.2, 72.0 | <0.001 |
FFM (%) | 72 (5.6) | 0.7, 84.3 | 71 (5.7) | 60.8, 83.6 | 72 (14.0) | 0.7, 84.3 | ns. |
FM (kg) | 20 (6.5) | 8.8, 42.2 | 19 (5.6) | 9.7, 32.1 | 23 (6.9) | 8.8, 42.2 | <0.01 |
FM (%) | 28 (5.5) | 15.7, 39.2 | 29 (5.5) | 19.8, 39.2 | 26 (5.1) | 15.7, 38.4 | <0.05 |
VAT (cm2) | 118 (83.0) | 21.0, 350.0 | 84 (50.2) | 30.0, 276.0 | 171 (92.7) | 21.0, 350.0 | <0.001 |
SAT (cm2) | 98 (35.0) | 28.0, 201.0 | 88 (32.3) | 28.0, 201.0 | 110 (35.5) | 46.0, 173.0 | <0.05 |
VAT/SAT | 1 (0.6) | 0.3, 2.9 | 1 (0.3) | 0.3, 2.0 | 2 (0.7) | 0.5, 2.9 | <0.001 |
TBW (Lt) | 37 (7.8) | 24.0, 54.5 | 31 (2.9) | 24.0, 36.9 | 46 (4.1) | 34.6, 54.5 | <0.001 |
TBW (%) | 51 (3.6) | 41.9, 62.9 | 50 (3.1) | 41.9, 57.0 | 53 (3.4) | 46.6, 62.9 | <0.001 |
ECW (Lt) | 17 (2.7) | 12.2, 22.8 | 15 (1.5) | 12.2, 19.3 | 19 (1.7) | 14.9, 22.8 | <0.001 |
ECW (%) | 45 (7.5) | 0.4, 69.8 | 48 (6.4) | 15.5, 69.8 | 41 (7.6) | 0.4, 46.6 | <0.001 |
ICW (L) | 21 (6.2) | 7.3, 47.7 | 17 (5.1) | 7.3, 47.7 | 26 (2.6) | 19.2, 31.9 | <0.001 |
ICW (%) | 54 (4.4) | 30.2, 59.0 | 52 (4.3) | 30.2, 56.2 | 57 (1.2) | 53.4, 59.0 | <0.001 |
ECW/ICW | 1 (0.2) | 0.7, 2.3 | 1 (0.2) | 0.8, 2.3 | 1 (0.0) | 0.7, 0.9 | <0.001 |
BCM (kg) | 27 (6.2) | 14.1, 41.1 | 23 (2.3) | 14.1, 26.9 | 34 (3.1) | 25.1, 41.1 | <0.001 |
ECM (kg) | 25 (4.3) | 17.4, 34.6 | 22 (1.8) | 17.4, 25.9 | 29 (2.8) | 21.1, 34.6 | <0.001 |
Protein mass (kg) | 11 (2.4) | 6.6, 18.2 | 9 (1.1) | 6.6, 11.5 | 13 (2.1) | 8.6, 18.2 | <0.001 |
Muscle mass (kg) | 24 (6.5) | 12.6, 37.8 | 19 (1.8) | 12.6, 22.6 | 31 (3.2) | 22.8, 37.8 | <0.001 |
Dry weight (kg) | 70 (14.7) | 38.2, 108.3 | 61 (8.7) | 38.2, 78.7 | 84 (10.7) | 53.3, 108.3 | <0.001 |
Biochemical parameters | |||||||
TC (mg/dL) | 199 (30.2) | 107.3, 268.8 | 199 (26.9) | 150.9, 262.4 | 200 (34.5) | 107.3, 268.8 | ns. |
HDL-C (mg/dL) | 62 (14.6) | 35.2, 105.0 | 67 (14.4) | 44.2, 105.0 | 53 (9.5) | 35.2, 76.0 | <0.001 |
LDL-C (mg/dL) | 120 (24.0) | 62.0, 190.0 | 116 (21.6) | 62.0, 170.0 | 126 (26.4) | 93.0, 190.0 | ns. |
TG (mg/dL) | 95 (48.1) | 35.3, 340.0 | 79 (26.4) | 38.2, 144.9 | 119 (60.5) | 35.3, 340.0 | <0.001 |
Fasting blood glucose (mg/dL) | 97 (7.3) | 80.0, 118.0 | 97 (5.9) | 82.0, 111.0 | 99 (8.9) | 80.0, 118.0 | ns. |
Fasting insulin (μU/mL) | 8 (4.6) | 2.2, 25.0 | 7 (2.9) | 2.8, 14.2 | 10 (5.9) | 2.2, 25.0 | ns. |
HOMA-IR | 2 (1.2) | 0.5, 6.4 | 2 (0.7) | 0.6, 3.4 | 2.4 (1.6) | 0.5, 6.4 | ns. |
CRP (mg/L) | 1 (2.8) | 0, 2.4 | 1 (2.0) | 0, 5.8 | 2 (4.2) | 0, 2.4 | ns. |
Indirect calorimetry parameters | |||||||
VO2 (ml/min) | 249 (54.6) | 156.8, 370.7 | 219 (35.3) | 155.8, 297.4 | 294 (46.0) | 191.9, 370.7 | <0.001 |
VCO2 (ml/min) | 227 (55.0) | 135.4, 371.1 | 198 (34.3) | 135.4, 293.1 | 271 (50.5) | 189.6, 371.1 | <0.001 |
RQ factor | 0.91 (0.06) | 0.8, 1.0 | 0.91 (0.05) | 0.81, 1.0 | 0.92 (0.06) | 0.78, 1.0 | ns. |
REE (kcal/day) | 1761 (397.0) | 1089.7, 2823.6 | 1543 (247.4) | 1089.7, 2120.8 | 2088 (345.5) | 1384.4, 2823.6 | <0.001 |
Physical activity and sleep parameters | |||||||
MPA (min/day) | 61 (31.6) | 22.8, 183.0 | 53 (17.0) | 22.8, 100.1 | 74 (42.4) | 30.3, 183.0 | <0.05 |
VPA (min/day) | 9 (15.5) | 0.0, 60.0 | 5 (7.6) | 0.1, 31.6 | 15 (21.2) | 0.0, 60.8 | <0.05 |
MVPA (min/day) | 70 (44.2) | 23.6, 236.5 | 57 (20.0) | 23.6, 114.5 | 90 (61.2) | 34.3, 236.5 | <0.05 |
TST (min/night) | 455 (58.2) | 289.0, 609.0 | 458 (69.0) | 289.0, 609.0 | 451 (35.8) | 387.1, 518.2 | ns. |
Diet parameters | |||||||
Energy (kcal/d) | 2051 (449.3) | 1287.0, 3132.4 | 1801.0 (265.5) | 1287.0, 2526.3 | 2449.3 (391.9) | 1653.6, 3132.4 | <0.001 |
Protein (g/d) | 85.6 (24.2) | 28.0, 137.2 | 73.2 (16.7) | 28.0, 102.3 | 105 (21.30) | 76.7, 137.2 | <0.001 |
Fats (g/d) | 78 (21.3) | 43.8, 150.8 | 71 (15.2) | 43.8, 108.0 | 90 (24.33) | 48.4, 150.8 | <0.01 |
Carbohydrates (g/d) | 243 (63.4) | 125.9, 390.6 | 220 (39.4) | 128.4, 311.0 | 280.2 (76.7) | 125.9, 390.6 | <0.01 |
Basic Parameters | p-Value | β ± SE | 95%Cl | Adj. R2 |
---|---|---|---|---|
Age (years) | ns. | - | - | - |
Sex | <0.0001 | 535.7 ± 65.6 | 405.0, 666.2 | 0.454 |
Body weight (kg) | <0.0001 | 19.8 ± 2.4 | 15.6, 24.1 | 0.523 |
Height (cm) | <0.0001 | 26.8 ± 3.4 | 20.0, 33.7 | 0.427 |
BMI (kg/m2) | <0.0001 | 68.6 ± 11.9 | 45.0, 92.3 | 0.421 |
WC (cm) | <0.0001 | 22.1 ± 2.9 | 16.4, 27.8 | 0.426 |
Body composition parameters | ||||
FFM (kg) | <0.0001 | 28.8 ± 2.8 | 23.2, 34.3 | 0.572 |
FM (kg) | <0.001 | 25.5 ± 6.1 | 13.3, 37.8 | 0.171 |
VAT (cm2) | <0.0001 | 3.0 ± 1.2 | 1.6, 4.5 | 0.266 |
SAT (cm2) | <0.05 | 3.5 ± 1.3 | 0.9, 6.1 | 0.064 |
VAT/SAT | <0.0001 | 366.3 ± 65.6 | 239.7, 492.9 | 0.244 |
TBW (Lt) | <0.0001 | 37.2 ± 3.7 | 29.8, 44.6 | 0.565 |
ECW (Lt) | <0.0001 | 100.7 ± 12.0 | 76.7, 124.7 | 0.466 |
ICW (Lt) | <0.0001 | 38.7 ± 5.6 | 27.6, 49,7 | 0.375 |
BCM (kg) | <0.0001 | 47.4 ± 4.6 | 38.2, 56.6 | 0.570 |
ECM (kg) | <0.0001 | 66.9 ± 7.0 | 53.0, 80,8 | 0.535 |
Protein mass (kg) | <0.0001 | 106.7 ± 13.7 | 79.3, 134.1 | 0.429 |
Muscle mass (kg) | <0.0001 | 44.8 ± 4.5 | 35.8, 53.7 | 0.554 |
Dry weight (kg) | <0.0001 | 19.1 ± 2.1 | 15.0, 23.3 | 0.516 |
Crude Model | Model 1 Adjusted for Sex, FFM | |||||||
---|---|---|---|---|---|---|---|---|
Biochemical Parameters | p-Value | β ± SE | 95%Cl | Adj. R2 | p-Value | β ± SE | 95%Cl | Adj. R2 |
TC (mg/dL) | ns. | - | - | - | ns. | - | - | - |
HDL-C (mg/dL) | <0.05 | −6.6 ± 3.1 | −13.0, −0.4 | 0.045 | <0.05 | 4.8 ± 2.3 | 0.1, 9.4 | 0.590 |
LDL-C (mg/dL) | ns. | - | - | - | ns. | - | - | - |
TG (mg/dL) | <0.001 | 3.3 ± 0.9 | 1.5, 5.0 | 0.144 | ns. | - | - | - |
CRP (mg/L) | ns. | - | - | - | ns. | - | - | - |
Fasting blood glucose (mg/dL) | ns. | - | - | - | ns. | - | - | - |
Fasting insulin (μU/mL) | <0.05 | 22.1 ± 9.6 | 3.0, 41.3 | 0.054 | ns. | - | - | - |
HOMA-IR | <0.05 | 83.1 ± 36.1 | 11.1, 155.1 | 0.055 | ns. | - | - | - |
Crude Model | Model 1 Adjusted for Sex, FFM | |||||||
---|---|---|---|---|---|---|---|---|
Physical Activity and Sleep Parameters | p-Value | β ± SE | 95%Cl | Adj. R2 | p-Value | β ± SE | 95%Cl | Adj. R2 |
MPA (min/day) | <0.0001 | 5.8 ± 1.3 | 3.2, 8.4 | 0.201 | <0.05 | 2.1 ± 1.0 | 0.3, 4.2 | 0.589 |
VPA (min/day) | <0.0001 | 11.4 ± 2.7 | 6.0, 16.7 | 0.185 | ns. | - | - | - |
MVPA (min/day) | <0.0001 | 4.3 ± 0.9 | 2.5, 6.1 | 0.221 | <0.05 | 1.5 ± 0.8 | 0.1, 3.0 | 0.589 |
TST (min/night) | ns. | - | - | - | ns. | - | - | - |
Diet parameters | ||||||||
Energy (kcal/d) | <0.01 | 0.7 ± 0.2 | 0.3, 1.2 | 0.218 | ns. (0.06) | |||
Protein (g/d) | ns. | - | - | - | ns. | - | - | - |
Fats (g/d) | ns. | - | - | - | ns. | - | - | - |
Carbohydrates (g/d) | ns. | - | - | - | ns. | - | - | - |
Model | Adj. R2 | ΔR2 (Increase) | p-Value (ΔR2) | Partial r | p-Value (Partial r) |
---|---|---|---|---|---|
FFM + sex | 0.570 | 0.00 | - | - | - |
FFM + sex + MPA | 0.589 | 0.02 | <0.05 | 0.233 | <0.05 |
FFM + sex + MVPA | 0.589 | 0.02 | <0.05 | 0.232 | <0.05 |
FFM + sex + HDL-C | 0.590 | 0.02 | <0.05 | 0.236 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, J.; Szostak-Węgierek, D. The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study. Nutrients 2025, 17, 1044. https://doi.org/10.3390/nu17061044
Ostrowska J, Szostak-Węgierek D. The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study. Nutrients. 2025; 17(6):1044. https://doi.org/10.3390/nu17061044
Chicago/Turabian StyleOstrowska, Joanna, and Dorota Szostak-Węgierek. 2025. "The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study" Nutrients 17, no. 6: 1044. https://doi.org/10.3390/nu17061044
APA StyleOstrowska, J., & Szostak-Węgierek, D. (2025). The Influence of Lifestyle Factors on Resting Energy Expenditure and Its Role in Cardiometabolic Risk: A Cross-Sectional Study. Nutrients, 17(6), 1044. https://doi.org/10.3390/nu17061044