Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = dipole waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 257
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 165
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 364
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

16 pages, 281 KiB  
Article
Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids
by Swati Routh and Zdzislaw E. Musielak
Fluids 2025, 10(6), 156; https://doi.org/10.3390/fluids10060156 - 13 Jun 2025
Viewed by 376
Abstract
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects [...] Read more.
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects of one specific temperature gradient on the wave generation and propagation are studied. It is shown that the presence of the temperature gradient in the region of wave generation leads to monopole and dipole sources of acoustic emission and that the efficiency of these two sources may be higher than Lighthill’s quadrupoles. In addition, the wave propagation far from the source is different than in Lighthill’s original work because of the presence of the acoustic cutoff frequency resulting from the temperature gradient. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
17 pages, 1579 KiB  
Article
Closed Form Analytic Expressions for the Evanescent and Traveling Components of the Electromagnetic Green Function and for Defocused Hemispherical Focusing of Electromagnetic Waves
by Colin J. R. Sheppard
Photonics 2025, 12(6), 558; https://doi.org/10.3390/photonics12060558 - 2 Jun 2025
Viewed by 350
Abstract
Explicit analytic forms, in terms of Lommel functions of two variables, for the evanescent and traveling components of the electromagnetic Green tensor are presented. The field in the focal region, including defocus, of hemispherically focused electric dipole, magnetic dipole, and mixed-dipole waves are [...] Read more.
Explicit analytic forms, in terms of Lommel functions of two variables, for the evanescent and traveling components of the electromagnetic Green tensor are presented. The field in the focal region, including defocus, of hemispherically focused electric dipole, magnetic dipole, and mixed-dipole waves are expressed analytically in closed form. Full article
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 647
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

18 pages, 5509 KiB  
Article
Tunable Microwave Absorption Performance of Ni-TiN@CN Nanocomposites with Synergistic Effects from the Addition of Ni Metal Elements
by Qian Li and Guimei Shi
Metals 2025, 15(6), 597; https://doi.org/10.3390/met15060597 - 27 May 2025
Viewed by 478
Abstract
This paper presents the synthesis and characterization of Ni-TiN@CN nanocomposites fabricated via arc discharge, followed by dopamine polymerization and pyrolysis. The cubic morphology of the Ni-TiN cores and uniform CN encapsulation were confirmed by structural analyses. Electromagnetic evaluations revealed that the CN shell [...] Read more.
This paper presents the synthesis and characterization of Ni-TiN@CN nanocomposites fabricated via arc discharge, followed by dopamine polymerization and pyrolysis. The cubic morphology of the Ni-TiN cores and uniform CN encapsulation were confirmed by structural analyses. Electromagnetic evaluations revealed that the CN shell thickness critically influenced the dielectric dispersion, polarization relaxation and conductive loss. The optimal sample (Ni-TiN@CN-3) achieved a minimum reflection loss of −42.05 dB at 4.06 GHz. The incorporation of magnetic Ni particles introduced a magnetic loss mechanism, while the multiple intrinsic defects within the heterogeneous structure synergistically generated defect dipole polarization and conductive loss. The strategic addition of Ni facilitated the construction of heterogeneous interfaces, which achieved enhanced interface polarization effects. The effective absorption bandwidth (≤−10 dB) reached 14.9 GHz, while the effective absorption bandwidth (≤−20 dB) achieved 6.5 GHz. The optimized CN layer facilitated a synergistic interplay between the dielectric loss and magnetic loss, which ensured balanced impedance matching and attenuation, as well as enhanced electromagnetic wave dissipation. This integrated optimization ultimately endowed the material with exceptional microwave absorption performance through an effective electromagnetic energy conversion. This work highlights Ni-TiN@CN nanocomposites as promising candidates for high-performance microwave absorbers in extreme environments. Full article
Show Figures

Figure 1

20 pages, 6160 KiB  
Article
A Computational Approach to Increasing the Antenna System’s Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges
by David Vatamanu and Simona Miclaus
Sensors 2025, 25(10), 3235; https://doi.org/10.3390/s25103235 - 21 May 2025
Viewed by 941
Abstract
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, [...] Read more.
In the context of Doppler radar, studies have examined the changes in the phase shift of the S21 transmission coefficient related to minute movements of the human chest as a response to breathing or heartbeat. Detecting human vital signs remains a challenge, especially when obstacles interfere with the attempt to detect the presence of life. The sensitivity of a measurement system’s perception of vital signs is highly dependent on the monitoring systems and antennas that are used. The current work proposes a computational approach that aims to extract an empirical law of the dependence of the phase shift of the transmission coefficient (S21) on the sensitivity at reception, based upon a set of four parameters. These variables are as follows: (a) the frequency of the continuous wave utilized; (b) the antenna type and its gain/directivity; (c) the electric field strength distribution on the chest surface (and its average value); and (d) the type of material (dielectric properties) impacted by the incident wave. The investigated frequency range is (1–20) GHz, while the simulations are generated using a doublet of dipole or gain-convenient identical Yagi antennas. The chest surface is represented by a planar rectangle that moves along a path of only 3 mm, with a step of 0.3 mm, mimicking respiration movement. The antenna–target system is modeled in the computational space in each new situation considered. The statistics illustrate the multiple regression function, empirically extracted. This enables the subsequent building of a continuous-wave bio-radar Doppler system with controlled and improved sensitivity. Full article
Show Figures

Figure 1

14 pages, 20644 KiB  
Article
A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
by Jun Xiao, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han and Qiubo Ye
Sensors 2025, 25(10), 3046; https://doi.org/10.3390/s25103046 - 12 May 2025
Viewed by 507
Abstract
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) [...] Read more.
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) coupling slot to achieve CP radiation. Through the use of all-metal radiating structures with a height of 3.4 mm, high-gain and high-efficiency radiation performances are achieved. For proof of concept, a 4 × 4 antenna array with a SIW feeding network is designed, fabricated, and measured. The measured impedance bandwidth of the proposed 4 × 4 CP antenna array is 19.2% from 33.9 to 41.1 GHz for |S11| ≤ −10 dB. The measured 3 db AR bandwidth is 10.3% from 37 to 41 GHz. The measured peak gain is 20.3 dBic at 41 GHz. The measured and simulated results are in good agreement. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

19 pages, 10147 KiB  
Article
The Effects of In Situ Growth of SiC Nanowires on the Electromagnetic Wave Absorption Properties of SiC Porous Ceramics
by Jingxiong Liu, Genlian Li, Tianmiao Zhao, Zhiqiang Gong, Feng Li, Wen Xie, Songze Zhao and Shaohua Jiang
Materials 2025, 18(9), 1910; https://doi.org/10.3390/ma18091910 - 23 Apr 2025
Cited by 1 | Viewed by 476
Abstract
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is [...] Read more.
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is 1600 °C. When the ratio of the carbon source (C) to the silicon source (Si) is 1:1, SiCnws@SiC composite exhibits excellent electromagnetic wave absorption performance, the minimum reflection loss is −56.95 dB at a thickness of 2.30 mm, and the effective absorption bandwidth covers 1.85 GHz. The optimal effective absorption bandwidth is 4.01 GHz when the thickness is 2.59 mm. The enhancement of the electromagnetic wave absorption performance of SiCnws is mainly attributed to the increase in the heterogeneous interface and multiple reflection and scattering caused by the network structure, increasing dielectric loss and conduction loss. In addition, defects could occur during the growth of SiCnws, which could become the center of dipole polarization and increase the polarization loss of composite materials. Therefore, in situ growth of SiCnws on SiC porous ceramics is a promising method to improve electromagnetic wave absorption. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

18 pages, 9863 KiB  
Article
The Stratospheric Polar Vortex and Surface Effects: The Case of the North American 2018/19 Cold Winter
by Kathrin Finke, Abdel Hannachi, Toshihiko Hirooka, Yuya Matsuyama and Waheed Iqbal
Atmosphere 2025, 16(4), 445; https://doi.org/10.3390/atmos16040445 - 11 Apr 2025
Viewed by 590
Abstract
A severe cold air outbreak hit the US and parts of Canada in January 2019, leaving behind many casualties where at least 21 people died as a consequence. According to Insurance Business America, the event cost the US about 1 billion dollars. In [...] Read more.
A severe cold air outbreak hit the US and parts of Canada in January 2019, leaving behind many casualties where at least 21 people died as a consequence. According to Insurance Business America, the event cost the US about 1 billion dollars. In the Midwest, surface temperatures dipped to the lowest on record in decades, reaching −32 °C in Chicago, Illinois, and down to −48 °C wind chill temperature in Cotton and Dakota, Minnesota, giving rise to broad media attention. A zonal wavenumber 1–3 planetary wave forcing caused a sudden stratospheric warming, with a displacement followed by a split of the polar vortex at the beginning of 2019. The common downward progression of the stratospheric anomalies stalled at the tropopause and, thus, they did not reach tropospheric levels. Instead, the stratospheric trough, developing in a barotropic fashion around 70° W, turned the usually baroclinic structure of the Aleutian high quasi-barotropic. In response, upward propagating waves over the North Pacific were reflected at its lower stratospheric, eastward tilting edge toward North America. Channeled by a dipole structure of positive and negative eddy geopotential height anomalies, the waves converged at the center of the latter and thereby strengthened the circulation anomalies responsible for the severely cold surface temperatures in most of the Midwest and Northeast US. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 5303 KiB  
Article
Electroacoustic Analysis and Optimization of Needle-Rod Electrodes for Low-Power Impulse Sound Source
by Xiao Du, Jing Zhou and Xu Gao
Sensors 2025, 25(7), 2331; https://doi.org/10.3390/s25072331 - 7 Apr 2025
Cited by 1 | Viewed by 446
Abstract
In acoustic deep detection technology, conventional monopole, dipole, and phased-array sound sources are far inferior to impulsive sound sources in frequency and amplitude. But impulse sound sources mostly work under high-power, high-voltage, and high-current conditions, which are difficult to be applied downhole. The [...] Read more.
In acoustic deep detection technology, conventional monopole, dipole, and phased-array sound sources are far inferior to impulsive sound sources in frequency and amplitude. But impulse sound sources mostly work under high-power, high-voltage, and high-current conditions, which are difficult to be applied downhole. The purpose of this paper is to reduce the power of the impulse sound source system and at the same time to stimulate excellent impulse wave characteristics. Firstly, an experimental impulse sound source system using needle-rod electrodes was constructed, and the discharge experimental results were analysed. Secondly, a finite element model of the needle-rod electrodes of the impulse sound source was established based on the experimental conditions, and the effects of the charging voltage, electrode gap, and liquid conductivity on the power and electroacoustic parameters of the needle-rod electrodes system were investigated separately. Finally, the optimised electroacoustic parameters and curves of the needle-rod electrodes of the low-power impulse sound source were obtained. The results show that the charging voltage is the most significant parameter affecting the power of the needle-rod electrode system; a larger liquid conductivity and a suitable electrode gap are required for the optimal impulse wave parameters. The optimised low-power impulse sound source system with needle-bar electrodes with a power of 20.95 kW achieves an impulse wave intensity of 4.78 MPa, with a sound pressure level above 295 dB up to 1 kHz and above 225 dB from 1 kHz to 300 kHz. Optimised needle-rod electrodes for low-power impulse sound sources have the advantages of a wide bandwidth and high energy. This makes the downhole application of low-power impulse sound sources possible, which will play an important role in oil exploration and other drilling exploration fields. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 2710 KiB  
Article
High-Performance NiO/PANI/ZnNb2O6 Composites for EMI Shielding: Structural Insights and Microwave Shielding Effectiveness in the Sub-8 GHz Range
by Mehriban Emek, Ethem İlhan Şahin and Jamal-Eldin F. M. Ibrahim
Appl. Sci. 2025, 15(7), 3689; https://doi.org/10.3390/app15073689 - 27 Mar 2025
Cited by 1 | Viewed by 515
Abstract
The increasing demand for high-frequency applications and the widespread use of electromagnetic (EM) waves in communication systems necessitate the development of effective electromagnetic interference (EMI) shielding materials. This study investigates the structural and shielding effectiveness properties of novel polyaniline (PANI)-based NiO/ZnNb2O [...] Read more.
The increasing demand for high-frequency applications and the widespread use of electromagnetic (EM) waves in communication systems necessitate the development of effective electromagnetic interference (EMI) shielding materials. This study investigates the structural and shielding effectiveness properties of novel polyaniline (PANI)-based NiO/ZnNb2O6 composites for sub-8 GHz applications. NiO and ZnNb2O6 were synthesized via conventional solid-state reactions and combined with PANI to form composites with varying compositions. X-ray diffraction (XRD) confirmed the successful formation of single-phase NiO and ZnNb2O6, while scanning electron microscopy (SEM) revealed well-defined microstructures, contributing to enhanced shielding efficiency. Shielding effectiveness (SE) measurements were performed across the 0–8 GHz frequency range using a vector network analyzer. Among the compositions tested, the epoxy-based NiO-ZnNb2O6 (75–25% by weight) with a 1:1 PANI ratio exhibited the highest SE value of −41.16 dB (decibels) at 6.24 GHz, demonstrating superior attenuation of EM waves. The observed shielding efficiency is attributed to multiple reflection effects, dipole interactions, and the conductive network formed by PANI. These findings highlight the potential of NiO/PANI/ZnNb2O6 composites as cost-effective, high-performance EMI shielding materials for next-generation microwave communication and electronic applications. Further optimization and hybridization approaches are recommended to enhance performance for broader frequency bands. Full article
Show Figures

Figure 1

11 pages, 3739 KiB  
Article
Study on the Effect of SmFeN Content on the Wave-Absorbing Properties of SmFeN/YSZ Composite Thermal Barrier Coatings Prepared by Plasma Spraying
by Tianni Lu, Hongning Zhang, Wenshu Zhang, Bo Liu, Zhenwei Huang, Na Li, Bing Yang, Anguo Wang and Chunzhong Liu
Coatings 2025, 15(3), 282; https://doi.org/10.3390/coatings15030282 - 27 Feb 2025
Viewed by 740
Abstract
In this study, SmFeN/YSZ thermal barrier coating (TBC) composites with SmFeN mass fractions of 25 wt.%, 30 wt.%, and 50 wt.% were synthesized using plasma spraying technology. Testing methods, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and the coaxial method, were comprehensively [...] Read more.
In this study, SmFeN/YSZ thermal barrier coating (TBC) composites with SmFeN mass fractions of 25 wt.%, 30 wt.%, and 50 wt.% were synthesized using plasma spraying technology. Testing methods, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and the coaxial method, were comprehensively employed to systematically and thoroughly investigate the influence of SmFeN content on the microstructure, electromagnetic wave absorption performance, and the underlying mechanism of the composites. The research results show that during the plasma spraying process, a significant phase transformation occurred in the SmFeN/YSZ mixed powder, where the original Sm2Fe12N2.9 phase transformed into Fe4N and Sm3Fe5O12 phases. However, this phase transformation did not have an adverse effect on the electromagnetic wave absorption performance of the coating. On the contrary, further research revealed that the newly formed Fe4N phase plays a decisive role in the electromagnetic wave absorption performance of the coating. When the SmFeN mass fraction was 30%, the proportion of Fe4N in the coating reached its peak. At this time, the impedance matching characteristics of the coating were significantly optimized, and the dipole orientation polarization rate was significantly increased. This enhanced the dielectric relaxation loss capacity of the coating and broadened the electromagnetic wave absorption frequency band. Specifically, the coating exhibited a minimum reflection loss (RLmin) of −52.371 dB and an effective absorption bandwidth (EAB) as high as 2.1588 GHz, covering a frequency range from 11.0739 GHz to 13.2327 GHz. This result indicates that there is great application potential in preparing electromagnetic wave absorption coatings using SmFeN/YSZ mixed powder. Full article
Show Figures

Figure 1

20 pages, 8703 KiB  
Article
Atmospheric Variability and Sea-Ice Changes in the Southern Hemisphere
by Carlos Diego Gurjão, Luciano Ponzi Pezzi, Claudia Klose Parise, Flávio Barbosa Justino, Camila Bertoletti Carpenedo, Vanúcia Schumacher and Alcimoni Comin
Atmosphere 2025, 16(3), 284; https://doi.org/10.3390/atmos16030284 - 27 Feb 2025
Viewed by 954
Abstract
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern [...] Read more.
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern Annular Mode (SAM), and Antarctic Dipole (ADP). Using NSIDC satellite-derived sea ice data and ERA5 reanalysis from 1980 to 2022, we analyzed SIC anomalies in the Weddell, Ross, and Bellingshausen and Amundsen (B&A) Seas, assessing their response to climatic forcings across different timescales. Our findings reveal strong linkages between SIC variability and large-scale atmospheric circulation. ENSO-related teleconnections drive a dipolar SIC response, with warming in the Pacific sector and cooling in the Atlantic during El Niño, and the opposite pattern during La Niña. PSA and ADP further modulate this response by altering Rossby wave propagation and heat fluxes, leading to significant SIC fluctuations. The ADP emerges as a dominant driver of interannual SIC anomalies, showing an out-of-phase relationship between the Atlantic and Pacific sectors of the Southern Ocean. Regional SIC trends exhibit contrasting patterns: the Ross Sea shows a significant positive SIC trend, while the B&A and Weddell Seas experience persistent negative anomalies due to enhanced meridional heat transport and stronger westerly winds. SAM strongly influences SIC, particularly in the Atlantic sector, with delayed responses of up to six months, likely due to ice-albedo feedbacks and ocean memory effects. These results enhance our understanding of Antarctic sea ice variability and its sensitivity to large-scale climate oscillations. Given the observed trends and ongoing climate change, further research is needed to assess how these processes will evolve under future warming scenarios. This study highlights the importance of continuous satellite observations and high-resolution climate modeling for improving projections of Antarctic sea ice behavior and its implications for the global climate system. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

Back to TopTop