Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids
Abstract
1. Introduction
2. Lighthill Theory of Sound Generation
3. Extension of Lighthill’s Theory
3.1. Basic Equations
3.2. Wave Equation and Source Function
3.3. Transformed Wave Equation
3.4. Solution to the Wave Equation and Acoustic Cutoff Frequency
4. Emitted Acoustic Wave Energy Flux
4.1. Mean Acoustic Energy Flux
4.2. Asymptotic Fourier Transform
4.3. Evaluation of Spectral Efficiency
4.4. Convolution of Turbulence Energy Spectra
4.5. Acoustic Wave Energy Flux and Its Discussion
5. Possible Numerical Applications and Experimental Verifications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Derivation of the Source Function
Appendix A.2. Calculation of the Acoustic Flux
Appendix A.3. Fourth-Order Turbulent Correlations
References
- Lighthill, M.J. On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 1952, 211, 564. [Google Scholar]
- Proudman, I. The generation of noise by isotropic turbulence. Proc. R. Soc. Lond. A 1952, 214, 119. [Google Scholar]
- Heisenberg, W. On the theory of statistical and isotropic turbulence. Proc. R. Soc. Lond. A 1947, 189, 456. [Google Scholar]
- Kolmogorov, A.N. Doklady Akademy Nauk. SSSR 1941, 30, 301. [Google Scholar]
- Curle, N. The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 1955, 231, 505–514. [Google Scholar]
- Ffowcs Willaims, J.E.; Hall, L.H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 1970, 40, 657. [Google Scholar] [CrossRef]
- Kulsrud, R.M. Effect of Magnetic Field on Generation of Noise by Isotropic Turbulence. Astrophys. J. 1955, 121, 461. [Google Scholar] [CrossRef]
- Lighthill, M.J. Studies on Magneto-Hydrodynamic Waves and other Anisotropic Wave Motions. Phil. Trans. R. Soc. Lond. A 1960, 252, 397. [Google Scholar]
- Goldstein, M.E. Aeroacoustic; Mc-Graw-Hill International Book Co.: New York, NY, USA, 1976. [Google Scholar]
- Unno, W.; Kawabata, K. The effect of short-periodic oscillations in the photosphere on the spectral line profile. Publ. Astron. Soc. Jpn. 1955, 7, 21. [Google Scholar]
- de Jager, C.; Kuperus, M. The acoustic energy flux of the sun and the formation of the corona. Bull. Astron. Inst. Neth. 1961, 16, 71. [Google Scholar]
- Kuperus, M. The Transfer of Mechanical Energy in the Sun and the Heating of the Corona. Rech. Astron. Obs. Utrecht 1965, 17, 1. [Google Scholar]
- Renzini, A.; Cacciari, C.; Ulmschneider, P.; Schmitz, F. Theoretical chromospheres of late type stars. I - Acoustic energy generation. Astron. Astrophys. 1977, 61, 39. [Google Scholar]
- Bohn, H.U. Generation of acoustic energy from convection zones of late type stars. Astron. Astrophys. 1984, 136, 338. [Google Scholar]
- Stein, R.F. Generation of acoustic and gravity waves by turbulence in an isothermal stratified atmosphere. Sol. Phys. 1967, 2, 385. [Google Scholar] [CrossRef]
- Unno, W.; Kato, S. On the generation of acoustic noise from the turbulent atmosphere. Publ. Astron. Soc. Jpn. 1962, 14, 417. [Google Scholar]
- Musielak, Z.E.; Rosner, R.; Stein, R.F.; Ulmschneider, P. On sound generation by turbulent convection: A new look at old results. Astrophys. J. Part 1994, 423, 474. [Google Scholar] [CrossRef]
- Ulmschneider, P.; Theurer, J.; Musielak, Z.E. Acoustic wave energy fluxes for late-type stars. Astron. Astrophys. 1994, 315, 212. [Google Scholar]
- Goldreich, P.; Kumar, P. The interaction of acoustic radiation with turbulence. Astrophys. J. 1988, 326, 462. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Musielak, D.E.; Mobashi, H. Method to determine acoustic cutoff frequencies in nonisothermal atmosphere. Phys. Rev. E 2006, 73, 036612-1. [Google Scholar] [CrossRef]
- Murphy, G.M. Ordinary Differential Equations and Their Solutions; D. Van Nostrand Company: New York, NY, USA, 1960. [Google Scholar]
- Kahn, P.B. Mathematical Methods for Scientists and Engineers; John Wiley: New York, NY, USA, 1960. [Google Scholar]
- Lamb, H. On the theory of waves propagated vertically in the atmosphere. Proc. Lond. Math. Soc. Ser. 1908, 2, 122. [Google Scholar]
- Lamb, H. The Dynamical Theory of Sound; Dover Publications Inc.: Mineola, NY, USA, 1960. [Google Scholar]
- Suda, N.; Nawa, K.; Fukao, Y. Earth’s background oscillations. Science 1998, 279, 2089. [Google Scholar] [CrossRef]
- Rhie, J.; Romanowicz, B. Excitation of Earth’s continuous free oscillations by atmospheric-ocean-seafloor coupling. Nature 2004, 431, 552. [Google Scholar] [CrossRef] [PubMed]
- Lee, U. Acoustic oscillations of Jupiter. Astrophys. J. 1993, 405, 359. [Google Scholar] [CrossRef]
- Basu, S. Global seismology of the Sun. Living Rev. Sol. Phys. 2016, 13, 2. [Google Scholar] [CrossRef]
- Garcia, R.; Ballot, J. Asteroseismology of solar-type stars. Living Rev. Sol. Phys. 2019, 16, 4. [Google Scholar] [CrossRef]
- Bachelor, G.K. The Theory of Homogeneous Turbulence; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Hinze, J.O. Turbulence; McGraw Hill: New York, NY, USA, 1975. [Google Scholar]
- Candel, S.M. A Review of Numerical Methods in Acoustic Wave Propagation. In Recent Advances in Aeroacoustics; Krothapalli, A., Smith, C.A., Eds.; Springer: New York, NY, USA, 1986. [Google Scholar]
- Ben-Ami, Y.; Manela, A. Acoustic wave propagation at nonadiabatic conditions: The continuum limit of a thin acoustic laye. Phys. Rev. Fluids 2020, 5, 033401. [Google Scholar] [CrossRef]
- Kuźma, B.; Kadowaki, L.H.S.; Murawski, K.; Musielak, Z.E.; Poedts, S.; Yuan, D.; Feng, X. Magnetoacoustic cutoff effect in numerical simulations of the partially ionized solar atmosphere. Phil. Trans. R. Soc. A 2024, 382, 20230218. [Google Scholar] [CrossRef]
- Sarkar, S.; Hussaini, M.Y. Computation of the Sound Generated by Isotropic Turbulence; ICASE Report 93-74; NASA: Washington, DC, USA, 1993.
- Fortuné, V.; Lamballais, E.; Gervais, Y. Noise radiated by a non-isothermal, temporal mixing layer. Part I: Direct computation and prediction using compressible DNS. Theor. Comput. Fluid Dyn. 2004, 18, 61–81. [Google Scholar] [CrossRef]
- Lilley, G.F. The radiated noise from isotropic turbulence. Theor. Comput. Fluid Dyn. 1994, 6, 281–301. [Google Scholar] [CrossRef]
- Liu, Q.; Lai, H. Correlation analysis of flow and sound in non-isothermal subsonic jets based on large eddy simulations. Phys. Fluids 2022, 34, 045125. [Google Scholar] [CrossRef]
- Ilário, C.R.S.; Azarpeyvand, M.; Rosa, V.; Self, R.H.; Meneghini, J.R. Prediction of jet mixing noise with Lighthill’s acoustic analogy and geometrical acoustics. J. Acoust. Soc. Am. 2017, 141, 1203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Praskovsky, A.; Oncley, S. On the Lighthill relationship and sound generation from isotropic turbulence. Theor. Comput. Fluid Dyn. 1995, 7, 355. [Google Scholar] [CrossRef]
- Bai, C.; Chen, T.; Yu, W. Numerical and experimental research on single-valve and multi-valve resonant systems. Front. Mater. 2021, 8, 756158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routh, S.; Musielak, Z.E. Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids. Fluids 2025, 10, 156. https://doi.org/10.3390/fluids10060156
Routh S, Musielak ZE. Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids. Fluids. 2025; 10(6):156. https://doi.org/10.3390/fluids10060156
Chicago/Turabian StyleRouth, Swati, and Zdzislaw E. Musielak. 2025. "Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids" Fluids 10, no. 6: 156. https://doi.org/10.3390/fluids10060156
APA StyleRouth, S., & Musielak, Z. E. (2025). Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids. Fluids, 10(6), 156. https://doi.org/10.3390/fluids10060156