Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = diol catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2041 KiB  
Article
Carbohydrate-Based Chiral Ligands for the Enantioselective Addition of Diethylzinc to Aldehydes
by F. Javier López-Delgado, Daniele Lo Re, F. Franco and J. A. Tamayo
Pharmaceuticals 2025, 18(8), 1088; https://doi.org/10.3390/ph18081088 - 23 Jul 2025
Viewed by 365
Abstract
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series [...] Read more.
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series of chiral diols and β-amino alcohols was synthesized from methyl D-glucopyranoside, methyl D-galactopyranoside, and D-fructose. These ligands were tested in the titanium tetraisopropoxide-promoted enantioselective addition of diethylzinc to aromatic and aliphatic aldehydes. Results: Several ligands, particularly those with a D-fructopyranose backbone, exhibited excellent catalytic activity, with conversion rates up to 100% and enantioselectivities up to 96% ee. Notably, this study reports for the first time the use of β-amino alcohols derived from fructose and sorbose in this transformation. Conclusions: Carbohydrate-based ligands represent effective, inexpensive, and structurally versatile scaffolds for developing highly enantioselective catalysts, expanding the utility of sugars in asymmetric organometallic reactions. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 3564 KiB  
Article
Avocado Seed Waste as a Green Catalyst for the Sustainable Oxidation of Limonene with Molecular Oxygen
by Sylwia Gajewska, Joanna Siemak, Agnieszka Wróblewska and Beata Michalkiewicz
Sustainability 2025, 17(9), 3923; https://doi.org/10.3390/su17093923 - 27 Apr 2025
Viewed by 630
Abstract
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit [...] Read more.
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit is the flesh, while the seed is still considered biowaste. Currently, various methods for utilization of this biowaste are being explored, prompting the authors of this work to investigate the catalytic properties of ground avocado seeds. Dried, ground avocado seeds were used as the catalyst in the environmentally friendly oxidation of limonene with oxygen. The process was carried out in mild conditions, without the use of any solvent and at atmospheric pressure. The studies examined the influence of temperature (70–110 °C), the amount of the catalyst (0.5–5.0 wt%), and the reaction time (15–360 min). The analyses of the post-reaction mixtures were performed using the gas chromatography method (GC). The maximum value of the conversion of limonene obtained during the tests was 36 mol%. The main products of this process were as follows: 1,2-epoxylimonene, carveol, and perillyl alcohol. Also, the following compounds were determined in the post-reaction mixtures: carvone and 1,2-epoxylimonene diol. The studied process is interesting, taking into account both the management of waste in the form of avocado seeds and possible wide applications of limonene transformation products in medicine, cosmetics and the food industry. Given that limonene is now increasingly being extracted from waste orange peels, this is also a good way to manage the future naturally derived limonene and reduce the amount of waste orange peels. The presented studies fit perfectly with the goals of sustainable development and circular economy and may be the basis for the future development of “green technology” for obtaining value-added oxygenated derivatives of limonene. These studies show the use of waste biomass in the form of avocado seeds to obtain a green catalyst. In this context, our research presents an effective way of waste valorization. Full article
Show Figures

Figure 1

24 pages, 7885 KiB  
Article
Catalytic Screening for 1,2-Diol Protection: A Saccharose-Derived Hydrothermal Carbon Showcases Enhanced Performance
by Laura Moreno, Rosario Pardo-Botello, Carlos J. Durán-Valle, Marta Adame-Pereira, Pedro Cintas, Larrisa Chan, David Cantillo and Rafael Fernando Martínez
Appl. Sci. 2025, 15(2), 807; https://doi.org/10.3390/app15020807 - 15 Jan 2025
Cited by 1 | Viewed by 1500
Abstract
A benchmarking study is reported on a series of modified carbocatalysts to efficiently promote the acetalization of 1,2-diols under heterogeneous conditions. Among the catalysts surveyed, a hydrothermal carbon generated from saccharose, a cheap, abundant, and biobased material, showed excellent performance when tested on [...] Read more.
A benchmarking study is reported on a series of modified carbocatalysts to efficiently promote the acetalization of 1,2-diols under heterogeneous conditions. Among the catalysts surveyed, a hydrothermal carbon generated from saccharose, a cheap, abundant, and biobased material, showed excellent performance when tested on two representative diols. All catalysts have been thoroughly characterized, focusing on surface acidity and composition. Optimal working parameters such as temperature and catalyst loading could be established. Remarkably, sonication improved the diol protection, which proceeded faster at 25 °C. The catalyst could be easily recycled and reused several times. In addition, the protocol was successfully translated from batch to continuous flow operation using a packed-bed reactor. Full article
(This article belongs to the Special Issue Advances in Organic Synthetic Chemistry)
Show Figures

Figure 1

8 pages, 2031 KiB  
Article
Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions
by Xuesuo Ma and Weiqing Pan
Catalysts 2024, 14(11), 822; https://doi.org/10.3390/catal14110822 - 14 Nov 2024
Viewed by 1023
Abstract
This study introduces a metal-free binary catalytic system for coupling CO2 with cyclohexane oxide (CHO) under mild conditions, allowing for tunable product selectivity. Using trans-cyclohexane diol (trans-CHD) and phosphazene superbase (P4) as catalysts, the system selectively produces [...] Read more.
This study introduces a metal-free binary catalytic system for coupling CO2 with cyclohexane oxide (CHO) under mild conditions, allowing for tunable product selectivity. Using trans-cyclohexane diol (trans-CHD) and phosphazene superbase (P4) as catalysts, the system selectively produces cyclic carbonates and oligocarbonates at 1 bar CO2 pressure and 80 °C. By adjusting the catalyst ratio, varying proportions of cis-cyclohexane carbonate (cis-CHC), trans-cyclohexane carbonate (trans-CHC), and oligocarbonate are achieved, with 51 mol% CHO conversion and respective selectivities of 36%, 31%, and 33%. The catalytic efficiency and precise control of product outcomes underscore this system’s potential. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Figure 1

12 pages, 3721 KiB  
Article
Surface Alkali-Modified Nano-CeO2 for Atmospherically Catalytic Polycondensation of CO2 and Diol
by Wenbin Zhong, Rongbin Xiao, Sheng Huang, Min Xiao, Shuanjin Wang, Dongmei Han and Yuezhong Meng
Catalysts 2024, 14(11), 770; https://doi.org/10.3390/catal14110770 - 31 Oct 2024
Viewed by 1335
Abstract
The polycondensation of carbon dioxide and diols under atmospheric pressure has significant appeal, thus making the study of catalysts in this process very important. Here, a series of CeO2-X catalysts (X = 9/11/13) with surface modification by basic sites was synthesized [...] Read more.
The polycondensation of carbon dioxide and diols under atmospheric pressure has significant appeal, thus making the study of catalysts in this process very important. Here, a series of CeO2-X catalysts (X = 9/11/13) with surface modification by basic sites was synthesized via simple impregnation in KOH solution. The structure and morphology of the CeO2-X catalysts remained unchanged after KOH treatment. However, the specific surface area of modified catalysts showed a slight decrease compared with the unmodified samples due to the notable enhancement of basic sites on the surface, resulting in improvement of CO2 adsorption capacity. Furthermore, the catalytic performance of the resultant CeO2-X catalysts was evaluated by solvent-free polymerization of 1,6-hexanediol (HDO) and CO2 at atmospheric pressure (0.1 MPa) using a well-designed reaction apparatus. As a result, the modified catalysts exhibited better performance for CO2 activation due to the existence of abundant basic sites on the surfaces, while CeO2-11 possessed the most favorable catalytic activity and displayed an enhancement of approximately 50% in production compared with that of unmodified CeO2. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Graphical abstract

29 pages, 10746 KiB  
Review
Selective Control of Catalysts for Glycerol and Cellulose Hydrogenolysis to Produce Ethylene Glycol and 1,2-Propylene Glycol: A Review
by Jihuan Song, Dan Wang, Qiyuan Wang, Chenmeng Cui and Ying Yang
Catalysts 2024, 14(10), 685; https://doi.org/10.3390/catal14100685 - 2 Oct 2024
Viewed by 1990
Abstract
The bioconversion of cellulose and the transformation of glycerol can yield various diols, aligning with environmental sustainability goals by reducing dependence on fossil fuels, lowering raw material costs, and promoting sustainable development. However, in the selective hydrogenolysis of glycerol to ethylene glycol (EG) [...] Read more.
The bioconversion of cellulose and the transformation of glycerol can yield various diols, aligning with environmental sustainability goals by reducing dependence on fossil fuels, lowering raw material costs, and promoting sustainable development. However, in the selective hydrogenolysis of glycerol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG), challenges such as low selectivity of catalytic systems, poor stability, limited renewability, and stringent reaction conditions remain. The production of diols from cellulose involves multiple reaction steps, including hydrolysis, isomerization, retro-aldol condensation, hydrogenation, and dehydration. Consequently, the design of highly efficient catalysts with multifunctional active sites tailored to these specific reaction steps remains a significant challenge. This review aims to provide a comprehensive overview of the selective regulation of catalysts for producing EG and 1,2-PG from cellulose and glycerol. It discusses the reaction pathways, process methodologies, catalytic systems, and the performance of catalysts, focusing on active site characteristics. By summarizing the latest research in this field, we aim to offer a detailed understanding of the state-of-the-art in glycerol and cellulose conversion to diols and provide valuable guidance for future research and industrial applications. Through this review, we seek to clarify the current advancements and selective control strategies in diol production from glycerol or cellulose, thereby offering critical insights for future investigations and industrial scale-up. Full article
Show Figures

Graphical abstract

20 pages, 6241 KiB  
Article
Enhanced Synthesis of Poly(1,4-butanediol itaconate) via Box–Behnken Design Optimization
by Magdalena Miętus, Mateusz Cegłowski, Tomasz Gołofit and Agnieszka Gadomska-Gajadhur
Polymers 2024, 16(19), 2708; https://doi.org/10.3390/polym16192708 - 25 Sep 2024
Cited by 2 | Viewed by 1570
Abstract
At present, there are too few organ and tissue donors. Due to the needs of the medical market, scientists are seeking new solutions. Those can be found in tissue engineering by synthesizing synthetic cell scaffolds. We have decided to synthesize a potential UV-crosslinked [...] Read more.
At present, there are too few organ and tissue donors. Due to the needs of the medical market, scientists are seeking new solutions. Those can be found in tissue engineering by synthesizing synthetic cell scaffolds. We have decided to synthesize a potential UV-crosslinked bio-ink for 3D printing, poly(1,4-butanediol itaconate), in response to emerging needs. Diol polyesters are commonly investigated for their use in tissue engineering. However, itaconic acid makes it possible to post-modify the obtained polymer via UV-crosslinking. This work aims to optimize the synthesis of poly(1,4-butanediol itaconate) in the presence of a catalyst, zinc acetate, without using any toxic reactant. The experiments used itaconic acid and 1,4-butanediol using the Box–Behnken mathematical planning method. The input variables were the amount of the catalyst used, as well as the time and temperature of the synthesis. The optimized output variables were the percentage conversion of carboxyl groups, the percentage of unreacted C=C bonds, and the product’s visual and viscosity analysis. The significance of the varying synthesis parameters was determined in each statistical model. The optimum conditions were as follows: amount of catalyst 0.3%nCOOH, reaction time 4 h, and temperature 150 °C. The temperature had the most significant impact on the product characteristics, mainly due to side reactions. Experimentally developed models of the polymerization process enable the effective synthesis of a polymer “tailor-made” for a specific application. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

21 pages, 2478 KiB  
Article
Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of α-Alkyl-β-Ketoaldehydes via Dynamic Kinetic Resolution
by Daiene P. Lapa, Leticia H. S. Araújo, Sávio R. Melo, Paulo R. R. Costa and Guilherme S. Caleffi
Molecules 2024, 29(14), 3420; https://doi.org/10.3390/molecules29143420 - 21 Jul 2024
Cited by 1 | Viewed by 1925
Abstract
The (R,R)-Teth-TsDPEN-Ru(II) complex promoted the one-pot double C=O reduction of α-alkyl-β-ketoaldehydes through asymmetric transfer hydrogenation/dynamic kinetic resolution (ATH-DKR) under mild conditions. In this process, ten anti-2-benzyl-1-phenylpropane-1,3-diols (85:15 to 92:8 dr) were obtained in good yields (41–87%) and excellent [...] Read more.
The (R,R)-Teth-TsDPEN-Ru(II) complex promoted the one-pot double C=O reduction of α-alkyl-β-ketoaldehydes through asymmetric transfer hydrogenation/dynamic kinetic resolution (ATH-DKR) under mild conditions. In this process, ten anti-2-benzyl-1-phenylpropane-1,3-diols (85:15 to 92:8 dr) were obtained in good yields (41–87%) and excellent enantioselectivities (>99% ee for all compounds). Notably, the preferential reduction of the aldehyde moiety led to the in situ formation of 2-benzyl-3-hydroxy-1-phenylpropan-1-one intermediates. These intermediates played a crucial role in enhancing both reactivity and stereoselectivity through hydrogen bonding. Full article
(This article belongs to the Special Issue Recent Advances of Catalytic Asymmetric Synthesis)
Show Figures

Figure 1

14 pages, 6090 KiB  
Article
Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water
by Isabel Guerrero, Clara Viñas, Francesc Teixidor and Isabel Romero
Molecules 2024, 29(10), 2378; https://doi.org/10.3390/molecules29102378 - 18 May 2024
Viewed by 1197
Abstract
A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3′-Co(8,9,12-Cl3 [...] Read more.
A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2] [Cl6-1], a metallacarborane, and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+, 2 are linked by non-covalent interactions. This compound, along with the one previously synthesized by us, [RuII(trpy)(bpy)(H2O)][(3,3′-Co(1,2-C2B9H11)2]2, 4, are the only examples of cooperative molecular photocatalysts in which the catalyst and photosensitizer are not linked by covalent bonds. Both cooperative systems have proven to be efficient photocatalysts for the oxidation of alkenes in water through Proton Coupled Electron Transfer processes (PCETs). Using 0.05 mol% of catalyst 4, total conversion values were achieved after 15 min with moderate selectivity for the corresponding epoxides, which decreases with reaction time, along with the TON values. However, with 0.005 mol% of catalyst, the conversion values are lower, but the selectivity and TON values are higher. This occurs simultaneously with an increase in the amount of the corresponding diol for most of the substrates studied. Photocatalyst 4 acts as a photocatalyst in both the epoxidation of alkenes and their hydroxylation in aqueous medium. The hybrid system 5 shows generally higher conversion values at low loads compared to those obtained with 4 for most of the substrates studied. However, the selectivity values for the corresponding epoxides are lower even after 15 min of reaction. This is likely due to the enhanced oxidizing capacity of CoIV in catalyst 5, resulting from the presence of more electron-withdrawing substituents on the metallacarborane platform. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

19 pages, 3396 KiB  
Article
Mechanical Properties and Degradation Rate of Poly(Sorbitol Adipate-Co-Dioladipate) Copolymers Obtained with a Catalyst-Free Melt Polycondensation Method
by V. Kavimani, Sivarama Krishna Lakkaboyana, Herri Trilaksana and Leonard I. Atanase
Polymers 2024, 16(4), 499; https://doi.org/10.3390/polym16040499 - 11 Feb 2024
Cited by 2 | Viewed by 1667
Abstract
A new family of polyester-based copolymers—poly(sorbitol adipate-co-ethylene glycol adipate) (PSAEG), poly(sorbitol adipate-co-1,4 butane diol adipate) (PSABD), and poly (sorbitol adipate-co-1,6 hexane diol adipate) (PSAHD)—was obtained with a catalyst-free melt polycondensation procedure using the multifunctional non-toxic monomer sorbitol, adipic acid, and diol, which are [...] Read more.
A new family of polyester-based copolymers—poly(sorbitol adipate-co-ethylene glycol adipate) (PSAEG), poly(sorbitol adipate-co-1,4 butane diol adipate) (PSABD), and poly (sorbitol adipate-co-1,6 hexane diol adipate) (PSAHD)—was obtained with a catalyst-free melt polycondensation procedure using the multifunctional non-toxic monomer sorbitol, adipic acid, and diol, which are acceptable to the human metabolism. Synthesized polyesters were characterized by FTIR and 1H NMR spectroscopy. The molecular weight and thermal properties of the polymers were determined by MALDI mass spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis. The degradation rate was investigated, at 37 °C, in 0.1M NaOH (pH 13) and in phosphate-buffered solution (PBS) at pH 7.4. It was found that the polymers degraded faster in NaOH (i.e., in a day) compared to their degradation in PBS, which was much slower (in a week). The highest degradation rate was noticed for the PSAEG sample in both media, whereas PSAHD was the most stable polymer at pH 7.4 and 13. A reduced hydrophilicity of the polymers with diol length was indicated by low swelling percentage and sol content in water and DMSO. Mechanical studies prove that all the polymers are elastomers whose flexibility increases with diol length, shown by the increase in percentage of elongation at break and the decrease in tensile stress and Young’s modulus. These biodegradable copolymers with adaptable physicochemical characteristics might be useful for a broad variety of biological applications by merely varying the length of the diol. Full article
(This article belongs to the Special Issue Polyester-Based Materials II)
Show Figures

Figure 1

25 pages, 4573 KiB  
Article
Synthesis and Characterization of ABA-Type Triblock Copolymers Using Novel Bifunctional PS, PMMA, and PCL Macroinitiators Bearing p-xylene-bis(2-mercaptoethyloxy) Core
by Murat Mısır, Sevil Savaskan Yılmaz and Ahmet Bilgin
Polymers 2023, 15(18), 3813; https://doi.org/10.3390/polym15183813 - 18 Sep 2023
Cited by 8 | Viewed by 3107
Abstract
Syntheses of novel bifunctional poly(methyl methacrylate) (PMMA)-, poly(styrene) (PS)-, and (poly ε-caprolactone) (PCL)-based atom transfer radical polymerization (ATRP) macroinitiators derived from p-xylene-bis(1-hydroxy-3-thia-propanoloxy) core were carried out to obtain ABA-type block copolymers. Firstly, a novel bifunctional ATRP initiator, 1,4-phenylenebis(methylene-thioethane-2,1-diyl)bis(2-bromo-2-methylpropanoat) (PXTBR), synthesized the [...] Read more.
Syntheses of novel bifunctional poly(methyl methacrylate) (PMMA)-, poly(styrene) (PS)-, and (poly ε-caprolactone) (PCL)-based atom transfer radical polymerization (ATRP) macroinitiators derived from p-xylene-bis(1-hydroxy-3-thia-propanoloxy) core were carried out to obtain ABA-type block copolymers. Firstly, a novel bifunctional ATRP initiator, 1,4-phenylenebis(methylene-thioethane-2,1-diyl)bis(2-bromo-2-methylpropanoat) (PXTBR), synthesized the reaction of p-xylene-bis(1-hydroxy-3-thia-propane) (PXTOH) with α-bromoisobutryl bromide. The PMMA and PS macroinitiators were prepared by ATRP of methyl methacrylate (MMA) and styrene (S) as monomers using (PXTBR) as the initiator and copper(I) bromide/N,N,N′,N″,N″-pentamethyldiethylenetriamine (CuBr/PMDETA) as a catalyst system. Secondly, di(α-bromoester) end-functionalized PCL–based ATRP macronitiator (PXTPCLBr) was prepared by esterification of hydroxyl end groups of PCL-diol (PXTPCLOH) synthesized by Sn(Oct)2–catalyzed ring opening polymerization (ROP) of ε-CL in bulk using (PXTOH) as initiator. Finally, ABA-type block copolymers, PXT(PS-b-PMMA-b-PS), PXT(PMMA-b-PS-b-PMMA), PXT(PS-b-PCL-b-PS), and PXT(PMMA-b-PCL-b-PMMA), were synthesized by ATRP of MMA and S as monomers using PMMA-, PS-, and PCL-based macroinitiators in the presence of CuBr/PMDETA as the catalyst system in toluene or N,N-dimethylformamide (DMF) at different temperatures. In addition, the extraction abilities of PCL and PS were investigated under liquid–liquid phase conditions using heavy metal picrates (Ag+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+) as substrates and measuring with UV-Vis the amounts of picrate in the 1,2–dichloroethane phase before and after treatment with the polymers. The extraction affinity of PXTPCL and PXTPS for Hg2+ was found to be highest in the liquid–liquid phase extraction experiments. Characterizations of the molecular structures for synthesized novel initiators, macroinitiators, and the block copolymers were made by spectroscopic (FT–IR, ESI–MS, 1H NMR, 13C NMR), DSC, TGA, chromatographic (GPC), and morphologic SEM. Full article
(This article belongs to the Special Issue Characterization and Application of Block Copolymers)
Show Figures

Graphical abstract

2 pages, 157 KiB  
Correction
Correction: Fleischer et al. Similarities and Differences between Site-Selective Acylation and Phosphorylation of Amphiphilic Diols, Promoted by Nucleophilic Organocatalysts Decorated with Outer-Sphere Appendages. Catalysts 2023, 13, 361
by Or Fleischer, Tom Targel, Fatma Saady and Moshe Portnoy
Catalysts 2023, 13(7), 1098; https://doi.org/10.3390/catal13071098 - 14 Jul 2023
Viewed by 815
Abstract
The authors wish to make the following corrections to this paper [...] Full article
(This article belongs to the Special Issue Organocatalysis in the Chemical Transformations)
10 pages, 2111 KiB  
Communication
A General Protocol for Synthesizing Thiolated Folate Derivatives
by Jie Li, Yao Wang, Liangang Shan, Lei Qian, Wenchao Wang, Jixian Liu and Jianguo Tang
Molecules 2023, 28(13), 5228; https://doi.org/10.3390/molecules28135228 - 5 Jul 2023
Cited by 2 | Viewed by 1636
Abstract
Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic [...] Read more.
Folic acid (FA) has shown great potential in the fields of targeted drug delivery and disease diagnosis due to its highly tumor-targeting nature, biocompatibility, and low cost. However, FA is generally introduced in targeted drug delivery systems through macromolecular linkage via complex synthetic processes, resulting in lower yields and high costs. In this work, we report a general protocol for synthesizing thiolated folate derivatives. The small molecule thiolated folate (TFa) was first synthesized with a purity higher than 98.20%. First, S-S-containing diol was synthesized with a purity higher than 99.44 through a newly developed green oxidation protocol, which was carried out in water with no catalyst. Then, folic acid was modified using the diol through esterification, and TFa was finally synthesized by breaking the disulfide bond. Further, the synthesized TFa was utilized to modify silver nanoparticles. The results showed that TFa could be easily bonded to metal particles. The protocol could be extended to the synthesis of a series of thiolated derivatives of folate, such as mercaptohexyl folate, mercaptoundecyl folate, etc., which would greatly benefit the biological applications of FA. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 2nd Edition)
Show Figures

Figure 1

17 pages, 3723 KiB  
Article
Simple and Efficient Synthesis of Oligoetherdiamines: Hardeners of Epoxyurethane Oligomers for Obtaining Coatings with Shape Memory Effect
by Daria Slobodinyuk, Alexey Slobodinyuk, Vladimir Strelnikov and Dmitriy Kiselkov
Polymers 2023, 15(11), 2450; https://doi.org/10.3390/polym15112450 - 25 May 2023
Cited by 7 | Viewed by 2644
Abstract
In this work, new polymers with a shape memory effect for self-healing coatings based on oligomers with terminal epoxy groups, synthesized from oligotetramethylene oxide dioles of various molecular weights, were developed. For this purpose, a simple and efficient method for the synthesis of [...] Read more.
In this work, new polymers with a shape memory effect for self-healing coatings based on oligomers with terminal epoxy groups, synthesized from oligotetramethylene oxide dioles of various molecular weights, were developed. For this purpose, a simple and efficient method for the synthesis of oligoetherdiamines with a high yield of the product, close to 94%, was developed. Oligodiol was treated with acrylic acid in the presence of a catalyst, followed by the reaction of the reaction product with aminoethylpiperazine. This synthetic route can easily be upscaled. The resulting products can be used as hardeners for oligomers with terminal epoxy groups synthesized from cyclic and cycloaliphatic diisocyanates. The effect of the molecular weight of newly synthesized diamines on the thermal and mechanical properties of urethane-containing polymers has been studied. Elastomers synthesized from isophorone diisocyanate showed excellent shape fixity and shape recovery ratios of >95% and >94%, respectively. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites)
Show Figures

Figure 1

10 pages, 2325 KiB  
Communication
Ionic Liquid-Supported Photocatalysts: A Reusable Environmentally Friendly Oxidation Reaction System That Uses Air and Light
by Shinichi Koguchi, Haruto Fujita and Yuga Shibuya
Int. J. Mol. Sci. 2023, 24(8), 7141; https://doi.org/10.3390/ijms24087141 - 12 Apr 2023
Cited by 3 | Viewed by 1886
Abstract
Ionic liquids are used in various fields due to their unique physical properties and are widely utilized as reaction solvents in the field of synthetic organic chemistry. We have previously proposed a new organic synthetic method in which the catalyst and reaction reagents [...] Read more.
Ionic liquids are used in various fields due to their unique physical properties and are widely utilized as reaction solvents in the field of synthetic organic chemistry. We have previously proposed a new organic synthetic method in which the catalyst and reaction reagents are supported on ionic liquids. This method has various advantages, such as the ability to reuse the reaction solvent and catalyst and its facile post-reaction treatment. In this paper, we describe the synthesis of an ionic liquid-supported anthraquinone photocatalyst and the synthesis of benzoic acid derivatives using this system. This synthesis of benzoic acid derivatives via the cleavage of vicinal diols by an ionic liquid-supported anthraquinone photocatalyst is an environmentally friendly process, and furthermore, it has a simple post-reaction process, and the catalyst and solvent can both be reused. To the best of our knowledge, this is the first report on the synthesis of benzoic-acid derivatives via the cleavage of vicinal diols using light and an ionic-liquid-supported catalyst. Full article
(This article belongs to the Special Issue Advances in Ionic Liquids and Their Various Applications)
Show Figures

Scheme 1

Back to TopTop