A General Protocol for Synthesizing Thiolated Folate Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Dithiobisethanol (SS)
2.2. Synthesis of S-S-Containing Diol-Modified FA (Fa-SS)
2.3. Synthesis of TFa
2.4. Modification of Silver Nanoparticles (AgNPs) Using TFa
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Disulfide: 2,2′-Dithiobis-Ethanol (SS)
3.3. Synthesis of S-S-Containing Diol-Modified FA: 2,2′-Dithiobis-Ethyl Folate (Fa-SS)
3.4. Synthesis of Thiolated Folate Derivatives: Thiol-Ethyl Folate (TFa)
3.5. Modification of Silver Nanoparticles (AgNPs) Using TFa
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ebrahimnejad, P.; Sodagar Taleghani, A.; Asare-Addo, K.; Nokhodchi, A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov. Today 2022, 27, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Buskaran, K.; Bullo, S.; Hussein, M.Z.; Masarudin, M.J.; Mohd Moklas, M.A.; Fakurazi, S. Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials 2021, 14, 817. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhang, H.; Liu, Y.; Wang, G.; Shi, C.; Li, Z.; Feng, Y.; Cui, X. Folic acid functionalized reduction-responsive magnetic chitosan nanocapsules for targeted delivery and triggered release of drugs. Carbohydr. Polym. 2017, 168, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Talib, A.; Pandey, S.; Bhaisare, M.L.; Gedda, G.; Wu, H.F. Folic Acid navigated Silver Selenide nanoparticles for photo-thermal ablation of cancer cells. Colloids Surf. B Biointerfaces 2017, 159, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zong, Y.; Yang, Z.; Luo, M.; Li, G.; Yingsa, W.; Cao, Y.; Xiao, M.; Kong, T.; He, J.; et al. Dual-Targeted Controlled Delivery Based on Folic Acid Modified Pectin-Based Nanoparticles for Combination Therapy of Liver Cancer. ACS Sustain. Chem. Eng. 2019, 7, 3614–3623. [Google Scholar] [CrossRef]
- Fekry, A.M.; Abdel-Gawad, S.A.; Tammam, R.H.; Zayed, M.A. An electrochemical sensor for creatinine based on carbon nanotubes/folic acid/silver nanoparticles modified electrode. Measurement 2020, 163, 107958. [Google Scholar] [CrossRef]
- Jesna, K.K.; Ilanchelian, M. Photophysical changes of thionine dye with folic acid capped gold nanoparticles by spectroscopic approach and its in vitro cytotoxicity towards A-549 lung cancer cells. J. Mol. Liq. 2017, 242, 1042–1051. [Google Scholar] [CrossRef]
- Khademi, S.; Sarkar, S.; Shakeri-Zadeh, A.; Attaran, N.; Kharrazi, S.; Ay, M.R.; Ghadiri, H. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 89, 182–193. [Google Scholar] [CrossRef]
- Papaioannou, L.; Angelopoulou, A.; Hatziantoniou, S.; Papadimitriou, M.; Apostolou, P.; Papasotiriou, I.; Avgoustakis, K. Folic Acid-Functionalized Gold Nanorods for Controlled Paclitaxel Delivery: In Vitro Evaluation and Cell Studies. AAPS PharmSciTech 2018, 20, 13. [Google Scholar] [CrossRef]
- Wang, J.; Xu, T. Facile construction of multivalent targeted drug delivery system from Boltorn® series hyperbranched aliphatic polyester and folic acid. Polym. Adv. Technol. 2011, 22, 763–767. [Google Scholar] [CrossRef]
- Cheng, W.; Nie, J.; Xu, L.; Liang, C.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L.; Zeng, X. pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 18462–18473. [Google Scholar] [CrossRef] [PubMed]
- Chiani, M.; Norouzian, D.; Shokrgozar, M.A.; Azadmanesh, K.; Najmafshar, A.; Mehrabi, M.R.; Akbarzadeh, A. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif. Cells Nanomed. Biotechnol. 2018, 46, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 763–771. [Google Scholar] [CrossRef]
- Li, Y.-A.; Zhao, X.-D.; Yin, H.-P.; Chen, G.-J.; Yang, S.; Dong, Y.-B. A drug-loaded nanoscale metal–organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem. Commun. 2016, 52, 14113–14116. [Google Scholar] [CrossRef]
- Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.-L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013, 500, 486–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleymani, J.; Hasanzadeh, M.; Somi, M.H.; Shadjou, N.; Jouyban, A. Probing the specific binding of folic acid to folate receptor using amino-functionalized mesoporous silica nanoparticles for differentiation of MCF 7 tumoral cells from MCF 10A. Biosens. Bioelectron. 2018, 115, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, H.; Abbasi, R.; Charmi, J.; Rakhshbahar, A.; Aliakbarzadeh, F.; Danafar, H.; Davaran, S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol. 2018, 117, 1125–1132. [Google Scholar] [CrossRef]
- Wang, H.; Lin, S.; Wang, S.; Jiang, Z.; Ding, T.; Wei, X.; Lu, Y.; Yang, F.; Zhan, C. Folic Acid Enables Targeting Delivery of Lipodiscs by Circumventing IgM-Mediated Opsonization. Nano Lett. 2022, 22, 6516–6522. [Google Scholar] [CrossRef]
- Huang, S.; Duan, S.; Wang, J.; Bao, S.; Qiu, X.; Li, C.; Liu, Y.; Yan, L.; Zhang, Z.; Hu, Y. Folic-Acid-Mediated Functionalized Gold Nanocages for Targeted Delivery of Anti-miR-181b in Combination of Gene Therapy and Photothermal Therapy against Hepatocellular Carcinoma. Adv. Funct. Mater. 2016, 26, 2532–2544. [Google Scholar] [CrossRef]
- Wang, X.; Xia, J.; Wang, C.; Liu, L.; Zhu, S.; Feng, W.; Li, L. Preparation of Novel Fluorescent Nanocomposites Based on Au Nanoclusters and Their Application in Targeted Detection of Cancer Cells. ACS Appl. Mater. Interfaces 2017, 9, 44856–44863. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, R.; Wen, S.; Shen, M.; Zhu, M.; Wang, J.; Shi, X. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J. Mater. Chem. B 2014, 2, 7410–7418. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.D.; Mahesh, A.; Antoniraj, M.G.; Rathore, H.S.; Houreld, N.N.; Kandasamy, R. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. Int. J. Biol. Macromol. 2018, 109, 220–230. [Google Scholar] [CrossRef]
- Liu, Z.; Turyanska, L.; Zamberlan, F.; Pacifico, S.; Bradshaw, T.D.; Moro, F.; Fay, M.W.; Williams, H.E.L.; Thomas, N.R. Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells. Nanotechnology 2019, 30, 505102. [Google Scholar] [CrossRef] [PubMed]
- Delarue Bizzini, L.; Zwick, P.; Mayor, M. Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates. Eur. J. Org. Chem. 2019, 2019, 6956–6960. [Google Scholar] [CrossRef]
- Abbasian, M.; Judi, M.; Mahmoodzadeh, F.; Jaymand, M. Synthesis and characterization of a pH- and glucose-responsive triblock copolymer via RAFT technique and its conjugation with gold nanoparticles for biomedical applications. Polym. Adv. Technol. 2018, 29, 3097–3105. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Tang, J.; Wang, Y.; Yue, L.; Qiu, W.; Sun, Y.; Huang, Z. Preparation and characterization of thiolated folic acid. Guangzhou Chem. 2012, 40, 89–92. [Google Scholar]
- Yi, M.C.; Khosla, C. Thiol–Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 197–222. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Movassaghi, M. Biogenetically inspired syntheses of alkaloid natural products. Chem. Soc. Rev. 2009, 38, 3035–3050. [Google Scholar] [CrossRef]
- Mohammadpoor-Baltork, I.; Khodaei, M.M.; Nikoofar, K. Bismuth(III) nitrate pentahydrate: A convenient and selective reagent for conversion of thiocarbonyls to their carbonyl compounds. Tetrahedron Lett. 2003, 44, 591–594. [Google Scholar] [CrossRef]
- Oba, M.; Tanaka, K.; Nishiyama, K.; Ando, W. Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions. J. Org. Chem. 2011, 76, 4173–4177. [Google Scholar] [CrossRef]
- Zeynizadeh, B. Oxidative Coupling of Thiols to Disulfides with Iodine in Wet Acetonitrile. J. Chem. Res. 2002, 2002, 564–566. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, J.; Wang, Y.; Liu, F.; Zhou, X.; Liu, J.; Tang, J. Silver-Alkylamine Complex Mediated Single Micelle toward Synthesis of Sub-8 nm Silver Nanocrystals. Part. Part. Syst. Charact. 2020, 37, 2000161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Y.; Shan, L.; Qian, L.; Wang, W.; Liu, J.; Tang, J. A General Protocol for Synthesizing Thiolated Folate Derivatives. Molecules 2023, 28, 5228. https://doi.org/10.3390/molecules28135228
Li J, Wang Y, Shan L, Qian L, Wang W, Liu J, Tang J. A General Protocol for Synthesizing Thiolated Folate Derivatives. Molecules. 2023; 28(13):5228. https://doi.org/10.3390/molecules28135228
Chicago/Turabian StyleLi, Jie, Yao Wang, Liangang Shan, Lei Qian, Wenchao Wang, Jixian Liu, and Jianguo Tang. 2023. "A General Protocol for Synthesizing Thiolated Folate Derivatives" Molecules 28, no. 13: 5228. https://doi.org/10.3390/molecules28135228
APA StyleLi, J., Wang, Y., Shan, L., Qian, L., Wang, W., Liu, J., & Tang, J. (2023). A General Protocol for Synthesizing Thiolated Folate Derivatives. Molecules, 28(13), 5228. https://doi.org/10.3390/molecules28135228