Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = dimerized fatty acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4972 KB  
Article
Trichostatin A Influences Dendritic Cells’ Functions by Regulating Glucose and Lipid Metabolism via PKM2
by Xiaoyu Yang, Lihui Men, Yan Guo, Linnan Duan, Meiyi Yu, Leyi Zhang, Tongtong Song, Xiang Li and Xia Chen
Molecules 2026, 31(2), 319; https://doi.org/10.3390/molecules31020319 - 16 Jan 2026
Viewed by 127
Abstract
Dendritic cells (DCs) play a crucial role in immune protection against myocardial infarction (MI). Through multiple experimental methods including bioinformatics, qPCR, Western blotting, immunofluorescence, MTT assays, echocardiography, TTC staining, and flow cytometry, this study found that metabolism was demonstrated to be markedly altered [...] Read more.
Dendritic cells (DCs) play a crucial role in immune protection against myocardial infarction (MI). Through multiple experimental methods including bioinformatics, qPCR, Western blotting, immunofluorescence, MTT assays, echocardiography, TTC staining, and flow cytometry, this study found that metabolism was demonstrated to be markedly altered under oxygen–glucose deprivation (OGD) conditions in DCs. Pyruvate kinase M2 (PKM2) is a key protein in metabolism, and PKM2 was upregulated under OGD conditions in DCs. Trichostatin A (TSA) alleviated the OGD-induced cellular damage in DCs. Furthermore, TSA was shown to modulate DCs’ function by enhancing glycolysis while suppressing fatty acid synthesis and oxidation pathways. The metabolic changes caused by TSA and OGD were mechanistically mediated by PKM2. Mechanistically, PKM2 modulates glucose and lipid metabolism via its dimer formation. These results deepen our understanding of the interplay among TSA, glucose and lipid metabolism and DC functions in MI. Full article
Show Figures

Figure 1

28 pages, 1974 KB  
Review
Advances in Cardiolipin Analysis: Applications in Central Nervous System Disorders and Nutrition Interventions
by Chen Dong, Depeng Lv, Yanyan Dong, Zuohan Zhang, Quancai Li and Zhen Chen
Biomolecules 2026, 16(1), 71; https://doi.org/10.3390/biom16010071 - 1 Jan 2026
Viewed by 288
Abstract
Cardiolipin (CL), a unique dimeric phospholipid predominantly enriched in the inner mitochondrial membrane, is a crucial determinant of mitochondrial structure and function. Its content, fatty acyl composition, and oxidation state are associated with mitochondrial bioenergetics, dynamics, and cellular signaling. Disruptions in CL metabolism [...] Read more.
Cardiolipin (CL), a unique dimeric phospholipid predominantly enriched in the inner mitochondrial membrane, is a crucial determinant of mitochondrial structure and function. Its content, fatty acyl composition, and oxidation state are associated with mitochondrial bioenergetics, dynamics, and cellular signaling. Disruptions in CL metabolism are increasingly implicated in the pathogenesis of various central nervous system (CNS) disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, epilepsy, and traumatic brain injury. This narrative review summarizes recent advances in the analytical techniques employed for CL analysis. The principles and applications of mass spectrometry-based platforms, nuclear magnetic resonance, Fourier-transform infrared spectroscopy, atomic force microscopy-infrared spectroscopy, and fluorescent probes were discussed, with an emphasis on their strengths in revealing the structure, composition, dynamics, and spatial distribution of CL. Furthermore, the evidence of CL abnormalities in various CNS disorders was assessed, often showing decreased CL levels, loss of polyunsaturated species, and increased oxidation associated with mitochondrial dysfunction and neuronal apoptosis. Furthermore, the nutritional interventions for CL modulation were discussed, such as polyunsaturated fatty acids, polyphenols, carotenoids, retinoids, alkaloids, and triterpenoids, which summarize their potential health-beneficial effects in remodeling the CL acyl chain, preventing oxidation, and regulating mitochondrial homeostasis. Overall, this review provided insight into integrating CL analysis and dietary modulation in understanding CL-related pathologies in CNS disorders. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

36 pages, 6718 KB  
Article
Transylvanian Grape Pomaces as Sustainable Sources of Antioxidant Phenolics and Fatty Acids—A Study of White and Red Cultivars
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Maria Comșa, Ioana Corina Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Antioxidants 2025, 14(10), 1152; https://doi.org/10.3390/antiox14101152 - 23 Sep 2025
Viewed by 1052
Abstract
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP [...] Read more.
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP samples from Transylvanian cultivars. Polyphenolic content was determined using the Folin–Ciocalteu method and high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC–DAD–ESI MS) analysis. Fatty acid composition was analyzed using gas chromatography with flame ionization detection (GC–FID). Antioxidant capacity was assessed using five methods, which included the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2′-azino-bis (3-ethylbenzothialzoline-6-sulfonic acid) (ABTS) radical scavenging, ferric-reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), and reducing power (RP) assays. Additionally, all extracts were analyzed by Fourier transform infrared (FTIR) spectroscopy to identify the presence of functional groups and chemical bonds associated with bioactive compounds. The results showed that Neuburger (NE), Radames (RA), and Regent (RE) cultivars had the highest phenolic concentrations, particularly of catechin, epicatechin, and procyanidin dimers. NE and Feteascǎ Regalǎ (FR) exhibited the greatest radical scavenging and electron transfer activities across multiple antioxidant assays. Rose Blaj (RB) and Astra (AS) displayed the most favorable fatty acid profiles, with high unsaturated-to-saturated fatty acid (UFA/SFA) and hypocholesterolemic-to-hypercholesterolemic fatty acid (H/H) ratios, as well as low atherogenicity (AI) and thrombogenicity (TI) indices, suggesting cardioprotective potential. Additionally, RB and NE cultivars also demonstrated a strong chelation of Cu2+ and Fe2+ ions, enhancing their antioxidant efficacy by mitigating metal-catalyzed oxidative stress. These findings underscore the potential of GP, particularly from NE, RB, RA, and AS cultivars, the last three of which were homologated in Transylvania at SCDVV Blaj, as valuable sources of health-promoting compounds for use in food, nutraceuticals, and other health-related applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

22 pages, 7233 KB  
Article
Dimer Fatty Acid-Based Polyamide/Organoclays: Structural, Thermal Properties, and Statistical Analysis of Factors Affecting Polymer Chain Intercalation in Bentonite Layers
by Afonso D. Macheca, Diocrecio N. Microsse, Theophile M. Mujuri, Robert Kimutai Tewo, António Benjamim Mapossa and Shepherd M. Tichapondwa
Processes 2025, 13(7), 2168; https://doi.org/10.3390/pr13072168 - 7 Jul 2025
Cited by 1 | Viewed by 741
Abstract
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty [...] Read more.
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty acid-based polyamide chains using a solution casting method. X-ray diffraction (XRD) analysis confirmed polymer intercalation, with the basal spacing (d001) increasing from approximately 1.5 nm to 1.7 nm as the polymer concentration varied between 2.5 and 7.5 wt.%. However, the extent of intercalation was limited at this stage, suggesting that polymer concentration alone had a minimal effect, likely due to the formation of agglomerates. In a subsequent optimization phase, the influence of temperature (30–90 °C), stirring speed (1000–2000 rpm), and contact time (30–90 min) was evaluated while maintaining a constant polymer concentration. These parameters significantly enhanced intercalation, achieving d001 values up to 4 nm. Statistical Design of Experiments and Response Surface Methodology revealed that temperature and stirring speed exerted a stronger influence on d001 expansion than contact time. Optimal intercalation occurred at 90 °C, 1500 rpm, and 60 min. The predictive models demonstrated high accuracy, with R2 values of 0.9861 for white bentonite (WB) and 0.9823 for yellow bentonite (YB). From statistical modeling, several key observations emerged. Higher stirring speeds promoted intercalation by enhancing mass transfer and dispersion; increased agitation disrupted stagnant layers surrounding the clay particles, facilitating deeper penetration of the polymer chains into the interlayer galleries and preventing particle settling. Furthermore, the ANOVA results showed that all individual and interaction effects of the factors investigated had a significant influence on the d001 spacing for both WB and YB clays. Each factor exhibited a positive effect on the degree of intercalation. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

24 pages, 4182 KB  
Article
New Biobased Plasticizers for PVC Derived from Saturated Dimerized Fatty Acids
by Patryk Dziendzioł, Sylwia Waśkiewicz and Katarzyna Jaszcz
Materials 2025, 18(9), 2155; https://doi.org/10.3390/ma18092155 - 7 May 2025
Cited by 1 | Viewed by 1098
Abstract
Phthalates are compounds widely used as very effective plasticizers of PVC. Unfortunately, they are also widely known to be endocrine disruptors and are detrimental to human health and the environment. For this reason, environmentally friendly plasticizers are being intensively sought after in response [...] Read more.
Phthalates are compounds widely used as very effective plasticizers of PVC. Unfortunately, they are also widely known to be endocrine disruptors and are detrimental to human health and the environment. For this reason, environmentally friendly plasticizers are being intensively sought after in response to the market needs in the context of sustainable development and legislative changes regarding the use of phthalates. Our research presents an innovative approach to addressing this problem. In this paper, we propose new biobased oligoesters as non-toxic and harmless plasticizers of poly(vinyl chloride). New plasticizers were obtained by polyesterification of saturated dimerized fatty acid (DFA), adipic acid (ADA), triethylene glycol (TEG), and 2-ethylhexanol (2-EH), and were characterized by nuclear magnetic resonance, size exclusion chromatography, and viscosity analyses. The compatibility of the obtained oligoesters with PVC was determined using the method for obtaining PVC films by casting from a THF solution. Selected plasticizers were used to obtain PVC blends at 50 phr. They were then tested for plasticizer migration, hardness, thermogravimetric analysis, differential scanning calorimetry, and mechanical strength. Their properties were compared with the commercially available monomeric plasticizers di(2-ethylhexyl) terephthalate and di(2-ethylhexyl) adipate. The conducted study shows that the oligoesters obtained at a molar ratio of ADA to DFA of 9:1 and using an excess of 2-EH exhibit very good compatibility and plasticizing ability. The use of higher amounts of DFA worsens the compatibility of the oligoesters with PVC. However, a 4:1 ADA-to-DFA molar ratio produced results that still allow for the use of these compounds as plasticizers at lower concentrations or in combination with other plasticizers. Full article
Show Figures

Figure 1

18 pages, 1777 KB  
Article
Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use
by Marisa Ayelen Rivas, Enzo Agustin Matteucci, Ivana Fabiola Rodriguez, María Alejandra Moreno, Iris Catiana Zampini, Adriana Ramon and María Inés Isla
Plants 2025, 14(7), 1047; https://doi.org/10.3390/plants14071047 - 27 Mar 2025
Viewed by 1273
Abstract
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has [...] Read more.
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has a low carbohydrate content, containing about 9% protein and between 10 and 14% fat. Approximately 82–84% of the fatty acids were unsaturated (oleic and linoleic acids). A high polyphenol and dietary fiber content was detected. Flavonoids and condensed tannins were the dominant phenolics. Polyphenol-enriched extracts were obtained from seed flour. The HPLC–ESI-MS/MS analysis of these concentrated extracts allowed for the identification of six compounds including C-glycosyl flavones (vitexin and isovitexin), type A procyanidins (dimer and trimer), and epicatequin gallate. Polyphenolic extracts showed antioxidant capacity and were able to inhibit enzymes (α-glucosidase and α-amylase) related to carbohydrate metabolism and (lipoxygenase) pro-inflammatory enzymes and were not toxic. Flour and polyphenolic extract from chañar seeds could be considered as new alternative ingredients for the formulation of functional foods, nutraceuticals, or food supplements. The use of the seed flour in addition to the pulp of the fruit along with the rest of the plant would encourage the propagation of this species resistant to extreme arid environments for commercial and conservation purposes to boost the regional economies of vulnerable areas of South America. Full article
Show Figures

Figure 1

22 pages, 5025 KB  
Article
Biodegradable Polymer Composites Based on Poly(butylene succinate) Copolyesters and Wood Flour
by Agnieszka Kozłowska, Krzysztof Gorący and Miroslawa El Fray
Polymers 2025, 17(7), 883; https://doi.org/10.3390/polym17070883 - 26 Mar 2025
Cited by 6 | Viewed by 1717
Abstract
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while [...] Read more.
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while the hard phase consists of crystallizable PBS domains. Wood–plastic composites (WPCs) were prepared with WF at weight fractions of 10%, 20%, 30%, and 40% wt. and analyzed in terms of surface morphology, chemical structure, mechanical performance, and thermal stability before and after biodegradation in soil conditions. The results of microscopic analysis confirmed that the PBS-DLA copolymer and its composites undergo surface biodegradation as manifested by increased surface roughness and microcrack formation, particularly in composites with a higher WF content. ATR FT-IR spectroscopy indicated oxidation and hydrolysis, supporting the hypothesis of progressive surface erosion. Mechanical tests showed a decline in tensile strength and elongation at break, with the most pronounced changes in composites containing 20% WF. Thermal analysis (DSC, DMTA, and TGA) confirmed that the PBS-DLA copolymer retains its thermoplastic elastomeric behavior after a 3-month biodegradation experiment. The storage modulus (E′) remained stable, while only minor variations in melting and crystallization temperatures were observed. These findings reinforce the hypothesis of surface erosion rather than a bulk degradation mechanism. Given their biodegradability and retained thermoplastic behavior, WPC composites based on PBS-DLA copolyester could be promising for eco-friendly applications where controlled degradation is desirable, such as in packaging, agriculture, or biodegradable consumer goods. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 2903 KB  
Article
Green Plasticizers from Dimer Acids with Selected Esters Classified Through the Nile Red [E(NR)] Polarity Scale
by Franco Cataldo
Liquids 2025, 5(1), 6; https://doi.org/10.3390/liquids5010006 - 10 Mar 2025
Viewed by 2134
Abstract
Dimer and trimer acids are interesting viscous liquids produced from fatty acids derived from renewable sources. The chemical structures of dimer and trimer acids are known and quite complex and are presented here, discussed and further elucidated through electronic absorption spectroscopy, FT-IR and [...] Read more.
Dimer and trimer acids are interesting viscous liquids produced from fatty acids derived from renewable sources. The chemical structures of dimer and trimer acids are known and quite complex and are presented here, discussed and further elucidated through electronic absorption spectroscopy, FT-IR and Raman spectroscopy. Dimer and trimer acids have a number of applications in their original form or in the form of derivatives. In the present study, a series of esters of dimer and trimer acids with alcohols from renewable sources were synthesized for use as plasticizers for rubber and plastics. The polarity of the dimer and trimer acids as well as their esters with alcohols from renewable sources (dimerates and trimerates) were systematically studied using a Nile red solvatochromic probe. The resulting E(NR) values were compared with the E(NR) values of the most common types of rubber and plastics. Compatibility and other physical properties expected from the E(NR) scale were studied and successfully confirmed in tire tread rubber compound formulations and in nitrile rubber and PVC matrices, confirming once again the sensitivity and the validity of the Nile red solvatochromic polarity scale for the development of new plasticizers. The validity of the liquids polarity measured with the Nile Red dye is supported by the correlation found between the E(NR) scale and the dielectric constants (ε) of carboxylic acids (including dimer and trimer acids, hydrogenated dimer acids and isostearic acid) and alcohols. A correlation was even found linking the E(NR) values the with the ε values of thin solid films of rubbers and plastics. In the case of the esters the correlation of their E(NR) values was found with the length of the aliphatic chains of the alcohols used in the esterification. Full article
Show Figures

Figure 1

17 pages, 2078 KB  
Article
Depolymerization and Oxidation Events in Used Frying Oils Under Conditions Simulating Gastric Digestion
by Gloria Márquez-Ruiz, María Victoria Ruiz-Méndez and Francisca Holgado
Foods 2025, 14(6), 925; https://doi.org/10.3390/foods14060925 - 8 Mar 2025
Cited by 1 | Viewed by 1794
Abstract
The chemical modifications occurring to the multitude of compounds formed in oils during frying after ingestion and prior to absorption are still unknown. The objective of this work was to explore the depolymerization and oxidation events which may occur under simulated gastric conditions [...] Read more.
The chemical modifications occurring to the multitude of compounds formed in oils during frying after ingestion and prior to absorption are still unknown. The objective of this work was to explore the depolymerization and oxidation events which may occur under simulated gastric conditions and obtain quantitative data of the compounds formed. Samples of used frying sunflower oil with increasing alteration degree were selected for in vitro digestion. The methodology applied to determine changes in triacylglycerols (TAG), oxidized TAG monomers (oxTAGM), TAG dimers (TAGD) and higher oligomers (TAGO) consisted of a combination of adsorption and size exclusion chromatographies while changes in epoxy, hydroxy and keto fatty acyls were evaluated after oil transesterification by combination of adsorption and gas–liquid chromatographies. Among the results obtained, the large extent of depolymerization after digestion at pH 1.2, reaching levels as high as 70%, stood out. The release of unoxidized TAG from polymeric molecules was reflected in their significant increase after digestion. Hydroxy fatty acid methyl esters significantly increased in all samples after digestion. These results demonstrated that relevant structural modifications may occur to the compounds found in frying oils during gastric digestion. Further investigation is crucial to assess the potential health implications of the compounds formed. Full article
(This article belongs to the Special Issue Edible Oils: Composition, Processing and Nutritional Properties)
Show Figures

Graphical abstract

17 pages, 4608 KB  
Article
Proteomics Profiling Reveals Pharmaceutical Excipient PEG400 Induces Nuclear-Receptor-Activation-Affected Lipid Metabolism and Metabolic Enzyme Expression
by Mei Zhao, Siyuan Cao, Dan Yang, Leyuan Shang, Ye Hang, Pengjiao Wang, Shuo Zhang, Chaoji Li, Min Zhang and Xiuli Gao
Int. J. Mol. Sci. 2025, 26(4), 1732; https://doi.org/10.3390/ijms26041732 - 18 Feb 2025
Cited by 2 | Viewed by 2008
Abstract
PEG400 is widely used as a pharmaceutical excipient in the biomedical field. Increasing evidence suggests that PEG400 is not an inert drug carrier; it can influence the activity of various drug-metabolizing enzymes and transporters, thereby affecting the in vivo process of drugs. It [...] Read more.
PEG400 is widely used as a pharmaceutical excipient in the biomedical field. Increasing evidence suggests that PEG400 is not an inert drug carrier; it can influence the activity of various drug-metabolizing enzymes and transporters, thereby affecting the in vivo process of drugs. It can also alleviate obesity and adipose tissue inflammation induced by a high-fat diet. In this study, we employed proteomics to investigate the impact of PEG400 on hepatic protein expression in rats. We found that over 40 metabolic enzymes were altered, with UDP-glucuronosyltransferase 1a9 (Ugt1a9) showing the most significant upregulation. This observation is consistent with our previous findings. KEGG pathway enrichment analysis revealed that PEG400 influences retinol metabolism, steroid hormone biosynthesis, drug metabolism, bile secretion, fatty acid degradation, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and pentose and glucuronate interconversions. Western blot and molecular docking were used to quantitatively analyze related proteins. The results demonstrated that PEG400 promotes the metabolism of retinol to produce retinoic acid; enhances bile secretion by upregulating bile acid synthesis and transporter proteins; and activates the PPARα signaling pathway to regulate the expression of fat metabolism-related proteins, thereby reducing lipid accumulation. Furthermore, as natural ligands for nuclear receptors, retinoic acid and bile acids may activate nuclear receptors and initiate the regulation of target gene expression. We found upregulation of the nuclear receptors PPARα, retinoid X receptor alpha (RXRα), and pregnane X receptor (PXR). RXRα can form a dimer with PPARα or PXR to regulate the expression of target genes, which may explain the changes in the expression of numerous metabolic enzymes. This study provides a comprehensive understanding of the effects of PEG400 on liver metabolism in rats, reveals its potential biological functions, and offers new insights into the application and development of PEG400. Full article
(This article belongs to the Special Issue The Twist and Turn of Lipids in Human Diseases 2.0)
Show Figures

Figure 1

17 pages, 5794 KB  
Article
Thermally Healable Polyurethane Elastomers Based on Biomass Polyester Polyol from Isosorbide and Dimer Fatty Acid
by Se-Ra Shin and Dai-Soo Lee
Polymers 2024, 16(24), 3571; https://doi.org/10.3390/polym16243571 - 20 Dec 2024
Cited by 2 | Viewed by 1640
Abstract
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of [...] Read more.
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs. 65% for control PUE). The dynamic mechanical and rheological properties of DIS-based PUE were investigated to confirm their relationship with self-healing performance. The DIS-based PUE, featuring reversible urethane bonds, demonstrated rapid stress relaxation and maintained constant normal stress under external stimuli, contributing to its improved self-healing capabilities. Thus, ISB can be regarded as a promising bio-resource for synthesizing bio-based polyester polyols and, consequently, PUE with superior mechanical and self-healing properties. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Graphical abstract

26 pages, 2177 KB  
Article
Insights into Transient Dimerization of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis
by Nicola Giangregorio, Annamaria Tonazzi, Ciro Leonardo Pierri and Cesare Indiveri
Biomolecules 2024, 14(9), 1158; https://doi.org/10.3390/biom14091158 - 14 Sep 2024
Cited by 5 | Viewed by 1963
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived [...] Read more.
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping–pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC’s functional dynamics and its structural parallels with other MC family members. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

15 pages, 4742 KB  
Article
BnUC1 Is a Key Regulator of Epidermal Wax Biosynthesis and Lipid Transport in Brassica napus
by Fei Ni, Mao Yang, Jun Chen, Yifei Guo, Shubei Wan, Zisu Zhao, Sijie Yang, Lingna Kong, Pu Chu and Rongzhan Guan
Int. J. Mol. Sci. 2024, 25(17), 9533; https://doi.org/10.3390/ijms25179533 - 2 Sep 2024
Cited by 3 | Viewed by 1595
Abstract
The bHLH (basic helix–loop–helix) transcription factor AtCFLAP2 regulates epidermal wax accumulation, but the underlying molecular mechanism remains unknown. We obtained BnUC1mut (BnaA05g18250D homologous to AtCFLAP2) from a Brassica napus mutant with up-curling leaves (Bnuc1) and epidermal wax deficiency [...] Read more.
The bHLH (basic helix–loop–helix) transcription factor AtCFLAP2 regulates epidermal wax accumulation, but the underlying molecular mechanism remains unknown. We obtained BnUC1mut (BnaA05g18250D homologous to AtCFLAP2) from a Brassica napus mutant with up-curling leaves (Bnuc1) and epidermal wax deficiency via map-based cloning. BnUC1mut contains a point mutation (N200S) in the conserved dimerization domain. Overexpressing BnUC1mut in ZS11 (Zhongshuang11) significantly decreased the leaf epidermal wax content, resulting in up-curled and glossy leaves. In contrast, knocking out BnUC1mut in ZS11-NIL (Zhongshuang11-near-isogenic line) restored the normal leaf phenotype (i.e., flat) and significantly increased the leaf epidermal wax content. The point mutation weakens the ability of BnUC1mut to bind to the promoters of VLCFA (very-long-chain fatty acids) synthesis-related genes, including KCS (β-ketoacyl coenzyme synthase) and LACS (long-chain acyl CoA synthetase), as well as lipid transport-related genes, including LTP (non-specific lipid transfer protein). The resulting sharp decrease in the transcription of genes affecting VLCFA biosynthesis and lipid transport disrupts the normal accumulation of leaf epidermal wax. Thus, BnUC1 influences epidermal wax formation by regulating the expression of LTP and genes associated with VLCFA biosynthesis. Our findings provide a foundation for future investigations on the mechanism mediating plant epidermal wax accumulation. Full article
Show Figures

Figure 1

20 pages, 4230 KB  
Article
The Regulatory Impact of CFLAR Methylation Modification on Liver Lipid Metabolism
by Chen Ye, Wen Jiang, Ting Hu, Jichao Liang and Yong Chen
Int. J. Mol. Sci. 2024, 25(14), 7897; https://doi.org/10.3390/ijms25147897 - 19 Jul 2024
Cited by 5 | Viewed by 2408
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating kinase 1 (ASK1). While arginine methyltransferase 1 (PRMT1) was previously reported to be associated with increased hepatic glucose production, its involvement in hepatic lipid metabolism remains largely unexplored. The interaction between PRMT1 and CFLAR and the methylation of CFLAR were verified by Co-IP and immunoblotting assays. Recombinant adenoviruses were generated for overexpression or knockdown of PRMT1 in hepatocytes. The role of PRMT1 in NAFLD was investigated in normal and high-fat diet-induced obese mice. In this study, we found a significant upregulation of PRMT1 and downregulation of CFLAR after 48h of fasting, while the latter significantly rebounded after 12h of refeeding. The expression of PRMT1 increased in the livers of mice fed a methionine choline-deficient (MCD) diet and in hepatocytes challenged with oleic acid (OA)/palmitic acid (PA). Overexpression of PRMT1 not only inhibited the expression of genes involved in fatty acid oxidation (FAO) and promoted the expression of genes involved in fatty acid synthesis (FAS), resulting in increased triglyceride accumulation in primary hepatocytes, but also enhanced the gluconeogenesis of primary hepatocytes. Conversely, knockdown of hepatic PRMT1 significantly alleviated MCD diet-induced hepatic lipid metabolism abnormalities and liver injury in vivo, possibly through the upregulation of CFLAR protein levels. Knockdown of PRMT1 suppressed the expression of genes related to FAS and enhanced the expression of genes involved in FAO, causing decreased triglyceride accumulation in OA/PA-treated primary hepatocytes in vitro. Although short-term overexpression of PRMT1 had no significant effect on hepatic triglyceride levels under physiological conditions, it resulted in increased serum triglyceride and fasting blood glucose levels in normal C57BL/6J mice. More importantly, PRMT1 was observed to interact with and methylate CFLAR, ultimately leading to its ubiquitination-mediated protein degradation. This process subsequently triggered the activation of c-Jun N-terminal kinase 1 (JNK1) and lipid deposition in primary hepatocytes. Together, these results suggested that PRMT1-mediated methylation of CFLAR plays a critical role in hepatic lipid metabolism. Targeting PRMT1 for drug design may represent a promising strategy for the treatment of NAFLD. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 4392 KB  
Article
Impact of Drying Processes for Camellia Seeds on the Volatile Compounds of Camellia Seed Oil
by Li Ma, Jing Gao, Zhen Zhang, Xiaoyang Zhu, Bolin Chen, Yongzhong Chen, Senwen Deng, Zhigang Li and Xinzhi Chen
Processes 2024, 12(7), 1332; https://doi.org/10.3390/pr12071332 - 27 Jun 2024
Cited by 3 | Viewed by 2238
Abstract
The drying process employed for camellia seeds has a significant impact on the quality of camellia seed oil (CO), but research on its influence on the flavor of CO is limited. This study investigated the effects of two typical drying processes, sun-drying and [...] Read more.
The drying process employed for camellia seeds has a significant impact on the quality of camellia seed oil (CO), but research on its influence on the flavor of CO is limited. This study investigated the effects of two typical drying processes, sun-drying and hot-air-drying, on the volatile composition of CO using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) technology. The results revealed that the CO obtained from hot-air-drying seeds exhibited a higher content of saturated fatty acids, while the levels of unsaturated fatty acids decreased. Additionally, the acid value and peroxide value of the CO obtained from hot-air-drying seeds were also elevated. GC-IMS analysis detected a total of 53 volatile compounds (including monomers and dimers) in the CO. Notably, aldehyde compounds exhibited the highest relative content (38.56–40.75%), followed by alcohols (32.14–38.01%), acids (4.86–14.58%), and esters (3.61–17.73%), while ketones exhibited relatively lower content (2.33–3.75%). The fingerprint profiles indicated that most of the flavor compounds exhibited differences in their content between the two samples. Specifically, the relative abundance of complex aldehyde and ester compounds was higher in the hot-air-dried sample compared to the sun-dried one, while the relative content of acid compounds decreased significantly. The relative odor activity value (ROAV) method identified hexanal as the most important key aroma component in both oil samples. The fingerprint profiles combined with principal component analysis (PCA) demonstrated that GC-IMS can effectively distinguish samples obtained from different drying treatments. Therefore, through the adjustment of drying methods, CO with various flavor characteristics can be obtained. This study provides valuable theoretical and technical references for CO production and flavor research. Full article
(This article belongs to the Special Issue Advanced Drying Technologies in Food Processing)
Show Figures

Figure 1

Back to TopTop