Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = dimeric protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2725 KB  
Article
Chelidonine Induces Concurrent Elevation of pSer-STAT3 and Bcl-2 Levels in a Mitotic Subpopulation of Human T-Leukemia/Lymphoma Cells
by Saraa Baddour, János Szöllősi, László Mátyus, György Vámosi, István Csomós and Andrea Bodnár
Int. J. Mol. Sci. 2026, 27(3), 1200; https://doi.org/10.3390/ijms27031200 - 25 Jan 2026
Viewed by 85
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional [...] Read more.
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional activation, whereas serine phosphorylation of STAT3 has a postulated role in fine-tuning canonical functions and contributes to non-canonical roles as well. One of the transcriptional targets of STAT3 is the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, itself subject to phosphorylation-dependent regulation. In this study, we investigated the effect of chelidonine, an alkaloid component of Chelidonium majus L., on STAT3/Bcl-2 signaling in human T leukemia/lymphoma cells, reported to have numerous effects in common with microtubule-targeting agents (MTAs). Flow cytometry and confocal microscopy revealed that chelidonine transiently increased both serine-phosphorylated STAT3 (pSer-STAT3) and Bcl-2 levels in a distinct subpopulation of cells, with near-complete overlap between the affected cells. This effect appeared at least partially independent of interleukin-2 (IL-2) and was associated with the M-phase of the cell cycle, as indicated by enhanced phosphorylation of Bcl-2 at serine 70 and nuclear morphology characteristic of mitosis. Our study provides the first single-cell evidence that STAT3 and Bcl-2 undergo concurrent serine phosphorylation as a response to chelidonine treatment, with the effect tightly linked to the M-phase. Full article
(This article belongs to the Special Issue Antitumor Activity of Natural Products)
Show Figures

Figure 1

20 pages, 25350 KB  
Article
Comparison of Structure and Dynamics of ORF8 Binding with Different Protein Partners Through Simulation Studies
by Liqun Zhang
Biophysica 2026, 6(1), 6; https://doi.org/10.3390/biophysica6010006 - 20 Jan 2026
Viewed by 98
Abstract
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer [...] Read more.
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer structure and the complex structure of the ORF8 monomer bound to the IL-17RA receptor using docking and molecular dynamics simulation methods. It was found that ORF8 molecules bound to the central ORF8 molecule through covalent and noncovalent interactions exhibit similar RMSD and RMSF values as the central ORF8 molecule and form a similar buried surface area, but display different numbers of hydrogen bonds and varying dynamic correlations. Additionally, trimer formation increases the dynamic correlation of the noncovalently bound ORF8 unit. ORF8 can bind with the IL-17RA receptor stably. Regions on ORF8, including C25–I47, L60–S67, T80–C90, and S103–E110, and regions on IL-17RA, including L1–H63 and D122–M165, are involved in the binding interface of the complex. ORF8 becomes less rigid when bound to IL-17RA than in its monomer, dimer, and trimer forms. Based on dihedral angle correlation predictions, binding of ORF8 to IL-17RA reduces internal correlations within ORF8 while strengthening correlations within IL-17RA. The G50–T80 region of ORF8 appears to be critical for interaction with IL-17RA, and the L1–V150 region of IL-17RA should be critical for its dynamics once bound to ORF8. These results help elucidate the structure and dynamics of ORF8 in SARS-CoV-2. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Graphical abstract

23 pages, 8593 KB  
Article
Genome-Wide Identification of CmPOD Genes and Partial Functional Characterization of CmPOD52 in Lignin-Related Granulation of ‘Sanhong’ Pomelo (Citrus maxima)
by Yunxuan Liu, Xinjia Wang, Rong Lian, Yan Zhao, Yurong Zhou, Yuan Yu, Wenqin She, Zhixiong Guo, Heli Pan and Tengfei Pan
Horticulturae 2026, 12(1), 106; https://doi.org/10.3390/horticulturae12010106 - 19 Jan 2026
Viewed by 138
Abstract
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) [...] Read more.
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) activity paralleled changes in lignin content, suggesting a potential role for BPOD in lignin biosynthesis. A total of 71 CmPOD genes were identified in the pomelo genome through integrated HMMER and BLAST analyses. Among them, CmPOD52 was selected for functional characterization based on its alkaline peroxidase properties, absence of a CE domain, predicted extracellular localization, and gradually increasing expression pattern revealed by RT-qPCR. Its transient overexpression in ‘Sanhong’ pomelo juice sacs for 36 h increased BPOD activity 2.06-fold (p < 0.01) compared to the empty vector control, indicating that CmPOD52 may be a BPOD gene. The recombinant CmPOD52 protein was expressed in a prokaryotic system, purified, and used in enzymatic assays with sinapyl alcohol as the substrate. The recombinant CmPOD52 protein, assayed at 272 nm with controls (substrate-only blank and heat-inactivated protein), showed an activity of 13.67 ± 0.9 U. The experimental group showed new products, identified by mass spectrometry as sinapyl alcohol dimers, thus suggesting that the recombinant protein catalyzes the dehydrogenation and polymerization of sinapyl alcohol monomers. This study identified CmPOD52, a gene potentially involved in lignin polymerization in pomelo juice sacs, offering a key candidate for further in vivo validation. Full article
Show Figures

Figure 1

24 pages, 10697 KB  
Article
Molecular Strategies of Carbohydrate Binding to Intrinsically Disordered Regions in Bacterial Transcription Factors
by Yuri A. Purtov and Olga N. Ozoline
Int. J. Mol. Sci. 2026, 27(2), 941; https://doi.org/10.3390/ijms27020941 - 17 Jan 2026
Viewed by 141
Abstract
Intrinsically disordered regions enable transcription factors (TFs) to undergo structural changes upon ligand binding, facilitating the transduction of environmental signals into gene expression. In this study, we applied molecular modeling methods to explore the hypothesis that unstructured inter-domain and subdomain linkers in bacterial [...] Read more.
Intrinsically disordered regions enable transcription factors (TFs) to undergo structural changes upon ligand binding, facilitating the transduction of environmental signals into gene expression. In this study, we applied molecular modeling methods to explore the hypothesis that unstructured inter-domain and subdomain linkers in bacterial TFs can function as sensors for carbohydrate signaling molecules. We combined molecular dynamics simulations and carbohydrate docking to analyze six repressors with GntR-type DNA-binding domains, including UxuR, GntR and FarR from Escherichia coli, as well as AraR, NagR and YydK from Bacillus subtilis. Protein models obtained from different time points of the dynamic simulations were subjected to sequential carbohydrate docking. We found that the inter-domain linker of the UxuR monomer binds D-fructuronate, D-galacturonate, D-glucose, and D-glucuronate with an affinity comparable to nonspecific interactions. However, these ligands formed multimolecular clusters, a feature absent in the UxuR dimer, suggesting that protein dimerization may depend on linker occupancy by cellular carbohydrates. D-glucose interacted with linkers connecting subdomains of the LacI/GalR-type E-domains in GntR and AraR, forming hydrogen bonds that connected distant structural modules of the proteins, while in NagR, FarR and YydK, it bridged the inter-domain linkers and a β-sheet within the HutC-type E-domains. Hence, our results establish flexible linkers as pivotal metabolic sensors that directly integrate nutritional cues to alter gene expression in bacteria. Full article
Show Figures

Graphical abstract

21 pages, 4972 KB  
Article
Trichostatin A Influences Dendritic Cells’ Functions by Regulating Glucose and Lipid Metabolism via PKM2
by Xiaoyu Yang, Lihui Men, Yan Guo, Linnan Duan, Meiyi Yu, Leyi Zhang, Tongtong Song, Xiang Li and Xia Chen
Molecules 2026, 31(2), 319; https://doi.org/10.3390/molecules31020319 - 16 Jan 2026
Viewed by 219
Abstract
Dendritic cells (DCs) play a crucial role in immune protection against myocardial infarction (MI). Through multiple experimental methods including bioinformatics, qPCR, Western blotting, immunofluorescence, MTT assays, echocardiography, TTC staining, and flow cytometry, this study found that metabolism was demonstrated to be markedly altered [...] Read more.
Dendritic cells (DCs) play a crucial role in immune protection against myocardial infarction (MI). Through multiple experimental methods including bioinformatics, qPCR, Western blotting, immunofluorescence, MTT assays, echocardiography, TTC staining, and flow cytometry, this study found that metabolism was demonstrated to be markedly altered under oxygen–glucose deprivation (OGD) conditions in DCs. Pyruvate kinase M2 (PKM2) is a key protein in metabolism, and PKM2 was upregulated under OGD conditions in DCs. Trichostatin A (TSA) alleviated the OGD-induced cellular damage in DCs. Furthermore, TSA was shown to modulate DCs’ function by enhancing glycolysis while suppressing fatty acid synthesis and oxidation pathways. The metabolic changes caused by TSA and OGD were mechanistically mediated by PKM2. Mechanistically, PKM2 modulates glucose and lipid metabolism via its dimer formation. These results deepen our understanding of the interplay among TSA, glucose and lipid metabolism and DC functions in MI. Full article
Show Figures

Figure 1

11 pages, 1305 KB  
Protocol
Protocol for Engineered Compositional Asymmetry Within Nanodiscs
by Christopher F. Carnahan, Wei He, Yaqing Wang, Matthew A. Coleman and Atul N. Parikh
Membranes 2026, 16(1), 44; https://doi.org/10.3390/membranes16010044 - 16 Jan 2026
Viewed by 273
Abstract
Membrane proteins remain the most challenging targets for structural characterization, yet their elucidation provides valuable insights into protein function, disease mechanisms, and drug specificity. Structural biology platforms have advanced rapidly in recent years, notably through the development and implementation of nanodiscs—discoidal lipid–protein complexes [...] Read more.
Membrane proteins remain the most challenging targets for structural characterization, yet their elucidation provides valuable insights into protein function, disease mechanisms, and drug specificity. Structural biology platforms have advanced rapidly in recent years, notably through the development and implementation of nanodiscs—discoidal lipid–protein complexes that encapsulate and solubilize membrane proteins within a controlled, native-like environment. While nanodiscs have become powerful tools for studying membrane proteins, faithfully reconstituting the compositional asymmetry intrinsic to nearly all biological membranes has not yet been achieved. Proper membrane leaflet lipid distribution is critical for accurate protein folding, stability, and insertion. Here, we share a protocol for reconstituting tailored compositional asymmetry within nanodiscs through membrane extraction from giant unilamellar vesicles (GUVs) treated with a leaflet-specific methyl-β-cyclodextrin (mβCD) lipid exchange. Nanodisc asymmetry is verified through a geometric approach: biotin-DPPE-preloaded mβCD engages in lipid exchange with the outer leaflet of POPC GUVs solubilized by the lipid-free membrane scaffold protein (MSP) Δ49ApoA-I to form nanodisc structures. Once isolated, nanodiscs are introduced to the biotin-binding bacterial protein streptavidin. High-speed atomic force microscopy imaging depicts nanodisc–dimer complexes, indicating that biotin-DPPE was successfully reconstituted into a single leaflet of the nanodiscs. This finding outlines the first step toward engineering tailored nanodisc asymmetry and mimicking the native environment of integral proteins—a potentially powerful tool for accurately reconstituting and structurally analyzing integral membrane proteins whose functions are modulated by lipid asymmetry. Full article
Show Figures

Figure 1

7 pages, 221 KB  
Article
Impact of Seasonal, Environmental, and Inflammatory Factors on Chronic Urticaria Activity and Serum Biomarkers: A Prospective Cohort Study
by Gulistan Alpagat, Ayşe Fusun Kalpaklioglu and Ayse Baccioglu
J. Clin. Med. 2026, 15(2), 645; https://doi.org/10.3390/jcm15020645 - 13 Jan 2026
Viewed by 194
Abstract
Background: Chronic urticaria (CU) is characterized by recurrent wheals and/or angioedema persisting for more than six weeks. While disease triggers are often unidentified, seasonal and environmental factors may modulate disease activity; however, evidence regarding their clinical impact remains limited. Objective: This study aimed [...] Read more.
Background: Chronic urticaria (CU) is characterized by recurrent wheals and/or angioedema persisting for more than six weeks. While disease triggers are often unidentified, seasonal and environmental factors may modulate disease activity; however, evidence regarding their clinical impact remains limited. Objective: This study aimed to evaluate the effects of seasonal, meteorological, and pollutant-specific environmental factors on urticaria control using the Urticaria Control Test (UCT), and to compare these effects between chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIU) in relation to inflammatory serum biomarkers. Materials and Methods: This prospective observational study was conducted at the Allergy and Clinical Immunology outpatient clinic of Kirikkale University Faculty of Medicine between 1 June 2023 and 1 April 2024. Patients with CU were classified as CSU or CIU according to international guidelines. Each participant was evaluated during summer and winter seasons. Area-level air pollution data and meteorological parameters were obtained from national monitoring systems. Disease control was assessed using the UCT, and inflammatory biomarkers were analyzed. Results: Urticaria control showed significant seasonal variation, with lower UCT scores during summer and higher scores during winter in both CSU and CIU patients. Among environmental factors, ozone (O3) was the only pollutant consistently associated with poorer urticaria control, whereas particulate matter and traffic-related pollutants, despite being higher in winter, showed no clinically relevant association. Summer months were characterized by increased inflammatory activity, including elevated leukocyte counts, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), and D-dimer levels, particularly in CSU patients. D-dimer emerged as an independent marker associated with poor disease control during summer. Conclusions: CU demonstrates marked seasonal variation, with disease worsening during summer months. Pollutant-specific effects, particularly O3 exposure, rather than overall air pollution burden, appear to be clinically relevant in urticaria control. Inflammatory and coagulation-related biomarkers may provide additional insight into disease activity. These findings support a season-aware and individualized management approach and highlight the need for future studies incorporating individual-level exposure assessment and biomarker-guided strategies. Full article
(This article belongs to the Section Immunology & Rheumatology)
24 pages, 4916 KB  
Article
Mechanism of SARS-CoV-2 Nucleocapsid Protein Phosphorylation-Induced Functional Switch
by Megan S. Sullivan, Michael Morse, Kaylee Grabarkewitz, Dina Bayachou, Ioulia Rouzina, Vicki Wysocki, Mark C. Williams and Karin Musier-Forsyth
Viruses 2026, 18(1), 105; https://doi.org/10.3390/v18010105 - 13 Jan 2026
Viewed by 515
Abstract
The SARS-CoV-2 nucleocapsid protein (Np) is essential for viral RNA replication and genomic RNA packaging. Phosphorylation of Np within its central Ser-Arg-rich (SRR) linker is proposed to modulate these functions. To gain mechanistic insights into these distinct roles, we performed in vitro biophysical [...] Read more.
The SARS-CoV-2 nucleocapsid protein (Np) is essential for viral RNA replication and genomic RNA packaging. Phosphorylation of Np within its central Ser-Arg-rich (SRR) linker is proposed to modulate these functions. To gain mechanistic insights into these distinct roles, we performed in vitro biophysical and biochemical studies using recombinantly expressed ancestral Np and phosphomimetic SRR variants. Limited-proteolysis showed minor cleavage differences between wild-type (WT) and phosphomimetic Np, but no major structure or stability changes in the N- and C-terminal domains were observed by circular dichroism spectroscopy and differential scanning fluorimetry, respectively. Mass photometry (MP) revealed that WT Np dimerized more readily than phosphomimetic variants. Crosslinking-MP showed that WT Np formed discrete complexes on viral 5′ UTR stem-loop (SL) 5 RNA, whereas phosphomimetic Np assembled preferentially on SL1–4. WT Np bound non-specifically to all RNAs tested primarily via hydrophobic interactions, whereas phosphomimetic Np showed selectivity for SARS-CoV-2-derived RNAs despite binding more electrostatically. A major difference was observed in the binding kinetics; WT Np compacted and irreversibly bound single-stranded DNA, whereas phosphomimetic Np displayed reduced compaction and fast on/off binding kinetics. These mechanistic insights support a model where phosphorylated Np functions in RNA replication and chaperoning, while non-phosphorylated Np facilitates genomic RNA packaging. The findings also help to explain infectivity differences and clinical outcomes associated with SRR linker variants. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

16 pages, 7510 KB  
Article
Determining the Optimal Heparin Binding Domain Distance in VEGF165 Using Umbrella Sampling Simulations for Optimal Dimeric Aptamer Design
by Jung Seok Lee, Yeon Ju Go and Young Min Rhee
Int. J. Mol. Sci. 2026, 27(2), 712; https://doi.org/10.3390/ijms27020712 - 10 Jan 2026
Viewed by 189
Abstract
Vascular endothelial growth factor 165 (VEGF165) stands out as a pivotal isoform of the VEGF-A protein and is critically involved in various angiogenesis-related diseases. Consequently, it has emerged as a promising target for diagnosing and treating such conditions. Structurally, VEGF165 [...] Read more.
Vascular endothelial growth factor 165 (VEGF165) stands out as a pivotal isoform of the VEGF-A protein and is critically involved in various angiogenesis-related diseases. Consequently, it has emerged as a promising target for diagnosing and treating such conditions. Structurally, VEGF165 forms a homodimer, and each of its constituting monomers comprises a receptor-binding domain (RBD) and a heparin-binding domain (HBD). These two domains are linked by a flexible linker, and thus the overall structure of VEGF165 remains incompletely understood. Aptamers are known as potent drugs that interact with VEGF165, and dimeric aptamers that can simultaneously interact with two distant domains are frequently adopted to improve the potency. However, designing such aptamer dimers faces challenges in regard to determining the appropriate length of the linker connecting the two aptamer fragments. To gain insight into this distance information, we here employ biased molecular dynamics (MD) simulations with the umbrella sampling method, with the distance between the two HBDs serving as a reaction coordinate. Our simulations reveal an overall preference for compact conformations with HBD-HBD distances below 3 nm, with the minimum of the potential of mean force located at 1.1 nm. We find that VEGF165 with the optimal HBD-HBD distance forms hydrogen bonds with its receptor VEGFR-2 that well match experimentally known key hydrogen bonds. We then try to computationally design aptamer homodimers consisting of two del5-1 aptamers connected by various linker lengths to target VEGF165. Collectively, our findings may provide quantitative guidelines for rationally designing high-affinity aptamers for targeting VEGF165. Full article
(This article belongs to the Special Issue Nucleic Acid Aptamers in Molecular Medicine)
Show Figures

Figure 1

14 pages, 2321 KB  
Article
The Cold Shock Protein CspB from Mycobacterium tuberculosis Binds to MTS0997 sRNA and MTS1338 sRNA as a Dimer
by Natalia Lekontseva, Alisa Mikhaylina, Polina Pankratova and Alexey Nikulin
Int. J. Mol. Sci. 2026, 27(2), 663; https://doi.org/10.3390/ijms27020663 - 9 Jan 2026
Viewed by 143
Abstract
RNA chaperones play a crucial role in the biogenesis and function of various RNAs in bacteria. They facilitate the interaction of small regulatory trans-encoded sRNAs with mRNAs, thereby significantly altering the pattern of gene expression in cells. This allows bacteria to respond quickly [...] Read more.
RNA chaperones play a crucial role in the biogenesis and function of various RNAs in bacteria. They facilitate the interaction of small regulatory trans-encoded sRNAs with mRNAs, thereby significantly altering the pattern of gene expression in cells. This allows bacteria to respond quickly to changing environmental conditions, such as stress or adaptation to host organisms. Despite the identification of a large number of sRNAs in mycobacteria, none of the most common RNA chaperones have been found in their genomes. We determined the crystal structure of the cold shock protein CspB from Mycobacterium tuberculosis. It forms a dimer due to its elongated C-terminal region, which is a hairpin composed of two α-helices. It was also demonstrated that CspB from M. tuberculosis exhibits high affinity for MTS0997 sRNA and MTS1338 sRNA from the same organism, which is consistent with classical RNA chaperons such as Hfq and ProQ. Based on the putative RNA chaperone activity of bacterial proteins with cold-shock domains, we propose that CspB from M. tuberculosis may be involved in the regulation of mycobacterial pathogenesis through interaction with sRNAs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

35 pages, 942 KB  
Article
Parametric Resonance, Arithmetic Geometry, and Adelic Topology of Microtubules: A Bridge to Orch OR Theory
by Michel Planat
Int. J. Topol. 2026, 3(1), 1; https://doi.org/10.3390/ijt3010001 - 7 Jan 2026
Viewed by 392
Abstract
Microtubules are cylindrical protein polymers that organize the cytoskeleton and play essential roles in intracellular transport, cell division, and possibly cognition. Their highly ordered, quasi-crystalline lattice of tubulin dimers, notably tryptophan residues, endows them with a rich topological and arithmetic structure, making them [...] Read more.
Microtubules are cylindrical protein polymers that organize the cytoskeleton and play essential roles in intracellular transport, cell division, and possibly cognition. Their highly ordered, quasi-crystalline lattice of tubulin dimers, notably tryptophan residues, endows them with a rich topological and arithmetic structure, making them natural candidates for supporting coherent excitations at optical and terahertz frequencies. The Penrose–Hameroff Orch OR theory proposes that such coherences could couple to gravitationally induced state reduction, forming the quantum substrate of conscious events. Although controversial, recent analyses of dipolar coupling, stochastic resonance, and structured noise in biological media suggest that microtubular assemblies may indeed host transient quantum correlations that persist over biologically relevant timescales. In this work, we build upon two complementary approaches: the parametric resonance model of Nishiyama et al. and our arithmetic–geometric framework, both recently developed in Quantum Reports. We unify these perspectives by describing microtubules as rectangular lattices governed by the imaginary quadratic field Q(i), within which nonlinear dipolar oscillations undergo stochastic parametric amplification. Quantization of the resonant modes follows Gaussian norms N=p2+q2, linking the optical and geometric properties of microtubules to the arithmetic structure of Q(i). We further connect these discrete resonances to the derivative of the elliptic L-function, L(E,1), which acts as an arithmetic free energy and defines the scaling between modular invariants and measurable biological ratios. In the appended adelic extension, this framework is shown to merge naturally with the Bost–Connes and Connes–Marcolli systems, where the norm character on the ideles couples to the Hecke character of an elliptic curve to form a unified adelic partition function. The resulting arithmetic–elliptic resonance model provides a coherent bridge between number theory, topological quantum phases, and biological structure, suggesting that consciousness, as envisioned in the Orch OR theory, may emerge from resonant processes organized by deep arithmetic symmetries of space, time, and matter. Full article
Show Figures

Figure 1

18 pages, 5588 KB  
Article
Regulation of Plasmodesmata Function Through Lipid-Mediated PDLP7 or PDLP5 Strategies in Arabidopsis Leaf Cells
by Xin Chen, Ning-Jing Liu, Jia-Rong Hu, Hao Shi, Jin Gao and Yu-Xian Zhu
Plants 2026, 15(1), 145; https://doi.org/10.3390/plants15010145 - 4 Jan 2026
Viewed by 579
Abstract
Plasmodesmata (PDs) are enriched in sphingolipids and sterols, creating a specialized environment for regulatory proteins like plasmodesmata-localized proteins (PDLPs). How PDLPs regulate PD function in a specific lipid environment remains poorly understood. Here, we provide a unique insight from the interaction network of [...] Read more.
Plasmodesmata (PDs) are enriched in sphingolipids and sterols, creating a specialized environment for regulatory proteins like plasmodesmata-localized proteins (PDLPs). How PDLPs regulate PD function in a specific lipid environment remains poorly understood. Here, we provide a unique insight from the interaction network of two different PDLPs together with sphingolipids and propose a concept that PDLPs form homo- or hetero-dimers only in the presence of sphingolipids. Located in the detergent resistance region, PDLP7 demonstrated the ability to influence the sphingolipid composition in PD-enriched fraction, particularly the GIPC content, and finally, modulating the membrane order. The presence of sphingolipids, in turn, affected the oligomeric state of PDLP7 in membranes. The PDLP7 recombinant protein existed as a monomer in vitro, but it formed self-aggregates in yeast and plant cells. We further examined PDLP5, another known phytosphinganine (t18:0)-specific binding PDLP, alongside PDLP7, and confirmed a similar interaction pattern: no direct interaction was observed in vitro, but interactions were noted in vivo. Co-overexpression of the two disrupted their PD localization and induced the upregulation of pathogenesis-related protein 1 (PR1). In summary, we gained insights into the network of PDLPs with lipids and propose that PDLPs were under precise regulation during plant development and stress responses. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

13 pages, 253 KB  
Study Protocol
Novel Biomarkers for Prognostic Assessment of Patients with Acute Exacerbation of COPD in the Emergency Department—Tools to Enhance the Quality of Care in Critical Patient Management
by Raluca Mihaela Tat, Sonia Luka, Eugenia Maria Lupan-Mureșan, George Teo Voicescu, Luca David, Adela Golea and Ștefan Cristian Vesa
Diagnostics 2026, 16(1), 122; https://doi.org/10.3390/diagnostics16010122 - 1 Jan 2026
Viewed by 432
Abstract
Background/Objectives: Chronic obstructive pulmonary disease (COPD) remains a major global health problem, affecting over 300 million people worldwide. Its high morbidity and mortality rates impose substantial psychosocial and financial burdens on patients and healthcare systems. In the emergency setting, managing acute exacerbations [...] Read more.
Background/Objectives: Chronic obstructive pulmonary disease (COPD) remains a major global health problem, affecting over 300 million people worldwide. Its high morbidity and mortality rates impose substantial psychosocial and financial burdens on patients and healthcare systems. In the emergency setting, managing acute exacerbations of COPD (AECOPD) poses a major clinical challenge, as these patients often present with multi-organ dysfunction secondary to hypoxia and hypercapnia. Identifying reliable prognostic biomarkers could improve early risk stratification, guide therapeutic decisions, and enhance patient outcomes. Methods: This multicenter, prospective, observational study aims to evaluate the prognostic significance of several novel biomarkers—resistin, club cell secretory protein 16 (CC16), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), S100β protein—alongside conventional markers such as N-terminal-pro–B-type-Natriuretic-Peptide (NT-proBNP), D-dimer, high-sensitivity troponin I (hs-cTnI), C-reactive protein (CRP), and procalcitonin in patients with AECOPD admitted to the Emergency Department (ED). Blood samples will be collected at admission. The novel biomarkers (resistin, CC16, IL-6, TNF-α, S100β) will be measured using standardized ELISA kits, while conventional biomarkers (NT-proBNP, troponin I, CRP, procalcitonin) will be analyzed using routine automated clinical laboratory methods. Correlations between biomarker levels, clinical and imaging data, severity scores (GCS, SOFA, CFS, Ottawa COPD Risk Scale, DECAF, BAP-65), and short-term outcomes (hospital discharge status and 28-day survival) will be assessed. The study has received approval from the Ethics Committee of the “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, and all participating hospitals. Written informed consent will be obtained from all participants or their legal representatives. Results: This study protocol does not report results, as data collection and analysis are ongoing. Conclusions /Expected Impact: By identifying novel biomarkers with prognostic and pathophysiological relevance, this research aims to inform the development of early risk stratification tools and support future evidence-based approaches to the management of critically ill COPD patients in the ED. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemical Testing)
16 pages, 667 KB  
Article
Search for Potential VDR/Partner Composite Elements in Regulatory DNA of Genes Associated with Respiratory Infections and Atopic Diseases
by Alexey V. Popov, Dmitry Yu. Oshchepkov, Vladislav V. Kononchuk, Tatiana S. Kalinina, Ilya S. Valembakhov, Alexander D. Lukin, Elena G. Kondyurina, Vera V. Zelenskaya and Valentin Vavilin
Int. J. Mol. Sci. 2026, 27(1), 409; https://doi.org/10.3390/ijms27010409 - 30 Dec 2025
Viewed by 350
Abstract
Vitamin D deficiency is associated with the risk of atopic diseases and respiratory infections. The activated vitamin D receptor (VDR) forms a dimer with the retinoid X receptor alpha (RXRA) and binds to VDR/RXRA composite elements (CEs) in enhancers of target genes. However, [...] Read more.
Vitamin D deficiency is associated with the risk of atopic diseases and respiratory infections. The activated vitamin D receptor (VDR) forms a dimer with the retinoid X receptor alpha (RXRA) and binds to VDR/RXRA composite elements (CEs) in enhancers of target genes. However, VDR/RXRA CEs are identified in only 11.5% of cases in ChIP-Seq peaks. Our hypothesis was that VDR could form a VDR-Partner complex with transcription factor for which CEs have not yet been identified. We utilized Web-MCOT to search for novel VDR/Partner CEs in regulatory DNA. The potential formation of the VDR-Partner protein complex was assessed using the AlphaFold machine learning model. Through real-time RT-PCR, we measured the expression of immune system genes in a culture of U937 macrophage-like cells incubated with the active metabolite of vitamin D, calcitriol. We have predicted novel VDR/NR2C2 and VDR/PPARG CEs in the regulatory regions of immune system genes. We found potential synergism of VDR/NR2C2 and VDR/RXRA CEs in relation to the IRF5 gene, as well as potential synergism of VDR/PPARG and VDR/RXRA CEs for MAPK13. Predicting new regulatory relationships through the identification of new potential VDR/Partner CEs may provide insight into the deep mechanisms of vitamin D involvement in the pathogenesis of atopic dermatitis, bronchial asthma, allergic rhinitis, and pulmonary infections. Full article
(This article belongs to the Special Issue Vitamin D Signaling in Human Health and Diseases)
Show Figures

Figure 1

18 pages, 2599 KB  
Article
Structure-Functional Examination of Cysteine Synthase A (CysK) from Limosilactobacillus reuteri LR1
by Anastasia A. Pometun, Evgenii K. Les, Alla V. Chernobrovkina, Anastasiia V. Gorbovskaia, Natalia Yu Chikurova, Anastasia A. Loginova, Alexey N. Antipov, Nadezhda N. Mordkovich, Leonid A. Shaposhnikov, Svyatoslav S. Savin, Sergey Yu Kleymenov, Ilya O. Matyuta, Konstantin M. Boyko, Mikhail E. Minyaev, Dmitry M. Hushpulian, Evgenii V. Pometun and Vladimir I. Tishkov
Int. J. Mol. Sci. 2026, 27(1), 327; https://doi.org/10.3390/ijms27010327 - 28 Dec 2025
Viewed by 313
Abstract
This study presents a comprehensive analysis of cysteine synthase A (CysK) from Limosilactobacillus reuteri LR1 (LreCysK), an enzyme involved in the biosynthesis of L-cysteine. This protein supports crucial cellular functions such as sulfur metabolism, antioxidant defense, detoxification, and protein synthesis. Previously, the gene [...] Read more.
This study presents a comprehensive analysis of cysteine synthase A (CysK) from Limosilactobacillus reuteri LR1 (LreCysK), an enzyme involved in the biosynthesis of L-cysteine. This protein supports crucial cellular functions such as sulfur metabolism, antioxidant defense, detoxification, and protein synthesis. Previously, the gene encoding LreCysK was cloned, and the enzyme with His-tag on the N-terminus was obtained in active and soluble form. Here, kinetic parameters of the enzyme were determined by the previously developed high-pressure liquid chromatography (HPLC) and ninhydrin methods. It was found that LreCysK has similar KMOAS and kcat as CysKs from Escherichia coli and from the model plant Arabidopsis thaliana. The thermal stability of LreCysK was studied using differential scanning calorimetry. It was revealed that the melting point of the enzyme increases to almost 90°C when Pyridoxal-5 phosphate (PLP) is added, indicating that the stability of the enzyme complex with PLP is relatively high. Structural studies revealed that LreCysK is a dimer, and its active site is similar to those of other enzymes, but exhibits some features characteristic of lactobacilli CysKs (GISA), as well as unique residues, such as Ile50. Also, the potential biotechnological applications of LreCysK are discussed. These findings enhance our understanding of LreCysK’s biochemical versatility and its potential applications in biotechnology and medicine. Full article
Show Figures

Figure 1

Back to TopTop