Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = diketopiperazines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3439 KiB  
Article
The Novel Diketopiperazine Derivative, Compound 5-3, Selectively Inhibited the Proliferation of FLT3-ITD Mutant Acute Myeloid Leukemia (AML) Cells
by Shijie Bi, Yating Cao, Shiyuan Fang, Yanyan Chu, Zixuan Zhang, Meng Li, Rilei Yu, Jinbo Yang, Yu Tang and Peiju Qiu
Mar. Drugs 2025, 23(7), 289; https://doi.org/10.3390/md23070289 - 16 Jul 2025
Viewed by 507
Abstract
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by [...] Read more.
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by targeting β-tubulin. We designed and synthesized a novel FLT3 inhibitor, namely 5-3, based on the structure of plinabulin and evaluated its effect on FLT3-ITD mutant AML cells. The results indicated that 5-3 potently and selectively inhibits the growth of mutant FLT3-expressingleukemia cells, and had no effect on FLT3 wide-type cancer cells, suggesting the antiproliferative activity of 5-3 depends highly on FLT3-ITD expression. Mechanically, 5-3 significantly suppressed the phosphorylation of FLT3 signaling pathway, including STAT5, Erk and Akt. Moreover, the efficiency of compound 5-3 is not associated with Plinabulin’s typical target, β-tubulin. In conclusion, the study identified diketopiperazine derivative as a novel FLT3-ITD selective inhibitor. These results demonstrated that 5-3 might be a drug candidate for the treatment of FLT3-ITD-positive AML. Full article
Show Figures

Graphical abstract

6 pages, 570 KiB  
Proceeding Paper
In Silico Evaluation of Diketopiperazine (DPK) Derivatives as Potential Inhibitors for G-Protein-Coupled Receptors (GPCRs)
by Sepideh Jafari and Joanna Bojarska
Med. Sci. Forum 2025, 34(1), 2; https://doi.org/10.3390/msf2025034002 - 19 Jun 2025
Viewed by 346
Abstract
G-protein-coupled receptors (GPCRs) are a group of various membrane proteins that mediate essential physiological processes by translating extracellular signals into intracellular responses. The β2-Adrenergic Receptor (β2-AR), a key GPCR, plays a critical role in smooth muscle relaxation, bronchodilation, and cardiovascular function, making it [...] Read more.
G-protein-coupled receptors (GPCRs) are a group of various membrane proteins that mediate essential physiological processes by translating extracellular signals into intracellular responses. The β2-Adrenergic Receptor (β2-AR), a key GPCR, plays a critical role in smooth muscle relaxation, bronchodilation, and cardiovascular function, making it an important therapeutic target for diseases such as asthma and hypertension. Diketopiperazines (DPKs), as cyclic peptides, have shown promise as scaffolds for inhibiting protein interactions and modulating receptor activity, offering a potential alternative to traditional small-molecule inhibitors with reduced side effects. In this study, five DPK derivatives were selected from the PubChem database and evaluated for their binding affinity to the 3D structure of β2-AR (PDB ID = 2RH1) through molecular docking studies using AutoDock 4.6 and MGLTools. The binding energy and hydrogen bond formation of each compound were evaluated to determine their interaction efficiency. Among the compounds, tryptophan-proline diketopiperazine (compound 3) exhibited the highest binding affinity with a binding energy of −5.89 kcal/mol. This enhanced interaction is attributed to the aromatic nature of tryptophan, which promotes strong π-π stacking interactions, and the rigidity of proline, which optimally fits within the receptor’s binding pocket. Hydrophobic interactions further stabilized the complex. These findings highlight compound 3 as a promising β2-AR modulator, providing valuable insights for the design of peptide-based inhibitors targeting β2-AR-related pathologies. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomedicines)
Show Figures

Figure 1

24 pages, 1714 KiB  
Review
Engineering and Exploiting Immobilized Peptide Organocatalysts for Modern Synthesis
by Marco Francescato, Hang Liao and Luca Gentilucci
Molecules 2025, 30(12), 2517; https://doi.org/10.3390/molecules30122517 - 9 Jun 2025
Viewed by 754
Abstract
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions [...] Read more.
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions have been described. However, peptide synthesis typically implicates the use of toxic reagents and generates wastes; therefore, peptide recycling is expected to significantly improve the overall sustainability of the process. Easy recovery and recycling of peptide catalysts can be expediently attained by covalent binding, inclusion, or adsorption. In addition, immobilization can significantly accelerate the screening of new peptide catalysts. For these reasons, diverse supports have been tested, including natural or synthetic polymers, porous polymeric networks, inorganic porous materials, organic-inorganic hybrid materials, and finally metal–organic frame-works. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

14 pages, 1175 KiB  
Article
Isolation and Identification of Cis-2,5-Diketopiperazine from a Novel Bacillus Strain and Synthesis of Its Four Stereoisomers
by Alan M. C. Obled, Refaat B. Hamed, Edward Spence, Marija K. Zacharova, Sunil V. Sharma, Yunpeng Wang, Rosemary Lynch, Helen Connaris, Adina Tatheer, Marie-Lise Bourguet-Kondracki, Gordon J. Florence and Rebecca J. M. Goss
Mar. Drugs 2025, 23(6), 234; https://doi.org/10.3390/md23060234 - 29 May 2025
Viewed by 816
Abstract
The Bacillus horneckiae-like strain 2011SOCCUF3 was isolated from the marine sponge Spongia officinalis and its metabolome was studied for secondary metabolites with antimicrobial activity. Culturing in the presence of Diaion HP-20 resin and purifying the culture extract identified cyclo-phenylalanine-proline (cyclo-(Phe-Pro)), a 2,5-diketopiperazine [...] Read more.
The Bacillus horneckiae-like strain 2011SOCCUF3 was isolated from the marine sponge Spongia officinalis and its metabolome was studied for secondary metabolites with antimicrobial activity. Culturing in the presence of Diaion HP-20 resin and purifying the culture extract identified cyclo-phenylalanine-proline (cyclo-(Phe-Pro)), a 2,5-diketopiperazine (2,5-DKP), isolated as a major metabolite. Further, LCMS analysis of the extract showed the presence of two isomers of the molecule in the culture broth. To confirm the stereochemistry of the isomers observed in the natural extract, all four stereoisomers of cyclo-(Phe-Pro) were synthesised. NMR and LCMS studies identified the presence of both cis- and trans-cyclo-(Phe-Pro) isomers. Stability and epimerisation studies on synthetic isomers and the effect of culturing conditions suggested that the less stable cis isomer was naturally produced, which epimerised in culture broth. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

12 pages, 3679 KiB  
Article
Orychophragvioline A, a Novel Alkaloid Isolated from Orychophragmus violaceus with Anti-Cervical Cancer Activity
by Ya Li, Tonghe Liu, Guangjie Pan, Yihang Li, Guoxu Ma, Yong Hou, Nailiang Zhu and Xudong Xu
Molecules 2025, 30(8), 1759; https://doi.org/10.3390/molecules30081759 - 14 Apr 2025
Viewed by 537
Abstract
A new alkaloid (orychophragvioline A) and nine known compounds were yielded from the seeds of Orychophragmus violaceus. Their structures were determined by various spectroscopic techniques and single-crystal X-ray diffraction. Orychophragvioline A is a rare alkaloid with an unusual 1-methyl-4-phenyl-2,3-diketopiperazine skeleton connected with [...] Read more.
A new alkaloid (orychophragvioline A) and nine known compounds were yielded from the seeds of Orychophragmus violaceus. Their structures were determined by various spectroscopic techniques and single-crystal X-ray diffraction. Orychophragvioline A is a rare alkaloid with an unusual 1-methyl-4-phenyl-2,3-diketopiperazine skeleton connected with a guanidine group via an amide bond. The results of antitumor tests in vitro showed that it exhibited prominent cytotoxicity against Hela cells with an IC50 value of 11.95 ± 1.52 μM. Further investigations suggested that it significantly inhibited cellular proliferation, migration, and invasion in a dose-dependent manner, thus inducing the apoptosis of Hela cells. These findings indicate that orychophragvioline A can be regarded as a potential natural leading compound against cervical cancer. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Graphical abstract

12 pages, 983 KiB  
Article
Novel Epidithiodiketopiperazine Derivatives in the Mutants of the Filamentous Fungus Trichoderma hypoxylon
by Zedong Ren, Yuanyuan Li, Peng-Lin Wei, Shengquan Zhang, Dong Wang, Jie Fan and Wen-Bing Yin
J. Fungi 2025, 11(4), 241; https://doi.org/10.3390/jof11040241 - 22 Mar 2025
Viewed by 497
Abstract
Epidithiodiketopiperazines (ETPs) are a class of fungal secondary metabolites (SMs) featuring a transannular disulfide bridge at the diketopiperazine (DKP) core. The complex structures and biological activities have attracted widespread attention from biologists and chemists. In this study, we identified five novel ETP derivatives [...] Read more.
Epidithiodiketopiperazines (ETPs) are a class of fungal secondary metabolites (SMs) featuring a transannular disulfide bridge at the diketopiperazine (DKP) core. The complex structures and biological activities have attracted widespread attention from biologists and chemists. In this study, we identified five novel ETP derivatives 47 and 4′ from three gene deletion mutants of Trichoderma hypoxylon CGMCC 3.17906, including ΔtdaP, ΔtdaQ, and ΔtdaQΔtdaI. Their structures were characterized through NMR and HR-ESI-MS data analysis. Compounds 4 and 4′ have unique heteroatom substitutions at the α and α′ positions, compound 5 possesses a unique α, β′-disulfide bridge, and compounds 6 and 7 contain a C3-(thio)carbonyl group. Based on structural elucidation and biosynthetic pathway of α, β′-disulfide bridged ETPs, we also proposed the formation of 47 and 4′. This study not only expands the chemical diversity of ETPs, but also offers new mechanistic insights into the biosynthetic pathways of fungal ETPs. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

17 pages, 2983 KiB  
Article
Base-Labile Safety-Catch Linker: Synthesis and Applications in Solid-Phase Peptide Synthesis
by Sikabwe Noki, Hossain Saneii, Beatriz G. de la Torre and Fernando Albericio
Int. J. Mol. Sci. 2025, 26(5), 2210; https://doi.org/10.3390/ijms26052210 - 28 Feb 2025
Viewed by 1779
Abstract
The safety-catch concept involves a protecting group that remains stable under a range of chemical conditions and subsequently becomes labile under one of those conditions upon a chemical modification of the protecting group. The safety-catch approach introduces flexibility into the scheme, enabling the [...] Read more.
The safety-catch concept involves a protecting group that remains stable under a range of chemical conditions and subsequently becomes labile under one of those conditions upon a chemical modification of the protecting group. The safety-catch approach introduces flexibility into the scheme, enabling the use of the same reagent in two distinct steps of the chemical process. For example, it facilitates α-amino deprotection and final cleavage in a solid-phase peptide synthesis scheme. Herein, we developed a safety-catch linker based on sulfinyl designed to enable peptide elongation via fluorenylmethoxycarbonyl (Fmoc) chemistry. Subsequently, upon chemical modification (oxidation of the sulfinyl group into the corresponding sulfone), the peptide is released using a secondary amine via a β-elimination reaction, which also serves to remove the Fmoc group in each step. The optimization of both key reactions, oxidation of the linker, and peptide release were achieved using a multi-detachable system, which allows specific control of both reactions. The use of this linker opens the possibility of cleaving peptides from the solid support without trifluoroacetic acid. Full article
(This article belongs to the Special Issue Solid-Phase Peptides: Syntheses and Applications)
Show Figures

Graphical abstract

12 pages, 826 KiB  
Article
Isolation, Spectral Assignments and Absolute Configuration of a Linear Hexapeptide from the Culture Broth of the Plant-Associated Actinomycete Actinomycetospora sp. CA-287887
by Katerina Georgousaki, Nikolaos Tsafantakis, Ignacio González, Jesús Martin, Thomas Andrew Mackenzie, Sentiljana Gumeni, Ioannis P. Trougakos, Fernando Reyes, Olga Genilloud and Nikolas Fokialakis
Separations 2025, 12(3), 57; https://doi.org/10.3390/separations12030057 - 21 Feb 2025
Viewed by 524
Abstract
A high proteolytic-resistant hexapeptide (αs1-CN 181–186) (1) along with two known 2,5-diketopiperazines, namely cyclo-(L-Pro-L-Phe) (2) and cyclo-(L-Pro-L-Tyr) (3), as well as the carboxylic acid 2-hydroxyphenylacetic acid (4), were isolated from the actinomycete strain [...] Read more.
A high proteolytic-resistant hexapeptide (αs1-CN 181–186) (1) along with two known 2,5-diketopiperazines, namely cyclo-(L-Pro-L-Phe) (2) and cyclo-(L-Pro-L-Tyr) (3), as well as the carboxylic acid 2-hydroxyphenylacetic acid (4), were isolated from the actinomycete strain CA287887. The morphological 16S rRNA gene sequence and phylogenetic data of the strain exhibited high similarity with members of the genus Actinomycetospora. The structure of 1 was thoroughly investigated for the first time through the extensive use of 1D and 2D NMR experiments while its absolute configuration was determined by Marfey’s analysis. The anti-tyrosinase effects of the aforementioned compounds were investigated in vitro using kojic acid as the positive control (IC50 14.07 μΜ). Compound 3 exhibited the highest activity (IC50 28.69 μΜ), followed by compound 4 (IC50 98.29 μΜ). Compound 1 was further evaluated for cytotoxicity against HepG2, A2058, A549, and MiaPaca-2 cell lines. At all the tested concentrations (0.01–200 μg/mL), no cytotoxic effect was observed. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

13 pages, 996 KiB  
Article
Biosynthesis of a Novel Diketopiperazine Aspkyncin Incorporating a Kynurenine Unit from Aspergillus aculeatus
by Dekun Kong, Xin Wang and Li Liu
J. Fungi 2025, 11(3), 171; https://doi.org/10.3390/jof11030171 - 20 Feb 2025
Viewed by 1000
Abstract
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome [...] Read more.
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome mining and heterologous expression in Aspergillus nidulans. The two core genes, aacA and aacB, within the gene cluster were characterized for their role in the biossoynthesis of aspkyncin, a novel DKP compound that incorporates a l-kynurenine (l-Kyn) unit. Furthermore, we successfully reconstituted the activities of the minimal bimodular non-ribosomal peptide synthetase (NRPS) AacA and the methyltransferase AacB both in vivo and in vitro. Our findings demonstrate that AacA catalyzes the condensation and cyclization of two non-proteinogenic amino acids, l-Kyn and N-methyl-l-alanine, to produce aspkyncin without the involvement of any release domain. Notably, the N-methyl-l-alanine is generated by a specialized l-alanine N-methyltransferase AacB prior to NRP assembly. This study reveals an unconventional pathway for the biosynthesis of fungal DKPs. Full article
(This article belongs to the Special Issue Discovery and Biosynthesis of Fungal Natural Products, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2112 KiB  
Article
Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified
by Bianca Vilas Boas Alves, Letícia Jambeiro Borges, Samira Abdallah Hanna, Milena Botelho Pereira Soares, Daniel Pereira Bezerra, Laysa Lanes Pereira Ferreira Moreira, Warley de Souza Borges, Ricardo Wagner Dias Portela, Clara Couto Fernandez and Marcelo Andrés Umsza-Guez
Microorganisms 2025, 13(2), 277; https://doi.org/10.3390/microorganisms13020277 - 26 Jan 2025
Cited by 1 | Viewed by 972
Abstract
Filamentous fungi are among the most commonly used microorganisms for producing various metabolites including dyes. Ensuring the safety of products derived from microorganisms is always essential. In this study, the isolated fungus was identified as Pseudofusicoccum sp., a producer of the burgundy pigment [...] Read more.
Filamentous fungi are among the most commonly used microorganisms for producing various metabolites including dyes. Ensuring the safety of products derived from microorganisms is always essential. In this study, the isolated fungus was identified as Pseudofusicoccum sp., a producer of the burgundy pigment through submerged fermentation. The fungus exhibited enhanced growth and pigment production under yellow light. The extract obtained showed no cytotoxicity in the tested cell lines (HepG2, SCC4, BJ, and MRC-5). Among the compounds isolated and identified through NMR analysis, cyclo(L-Pro-L-Val) and cyclo(L-Leu-L-Pro) (diketopiperazines) had been previously reported in foods and are known to be produced by various organisms, with several beneficial biological activities. This identified fungus represents a promising source of biopigments with a crude extract that is non-cytotoxic. Additionally, the isolated compounds exhibit significant biological properties, such as antibacterial, antifungal, and antioxidant activities, highlighting their potential as natural pigments for use in food products. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

26 pages, 3868 KiB  
Article
Antibacterial, Antifungal, and Cytotoxic Effects of Endophytic Streptomyces Species Isolated from the Himalayan Regions of Nepal and Their Metabolite Study
by Ram Prabodh Yadav, Chen Huo, Rabin Budhathoki, Padamlal Budthapa, Bibek Raj Bhattarai, Monika Rana, Ki Hyun Kim and Niranjan Parajuli
Biomedicines 2024, 12(10), 2192; https://doi.org/10.3390/biomedicines12102192 - 26 Sep 2024
Cited by 3 | Viewed by 3450
Abstract
Background/Objectives: Recently, antimicrobial-resistant pathogens and cancers have emerged as serious global health problems, highlighting the immediate need for novel therapeutics. Consequently, we aimed to isolate and characterize endophytic Streptomyces strains from the rhizospheres of the Himalayan region of Nepal and identify specialized metabolites [...] Read more.
Background/Objectives: Recently, antimicrobial-resistant pathogens and cancers have emerged as serious global health problems, highlighting the immediate need for novel therapeutics. Consequently, we aimed to isolate and characterize endophytic Streptomyces strains from the rhizospheres of the Himalayan region of Nepal and identify specialized metabolites with antibacterial, antifungal, and cytotoxic potential. Methods: To isolate Streptomyces sp., we collected two soil samples and cultured them on an ISP4 medium after pretreatment. We isolated and identified the strains PY108 and PY109 using a combination of morphological observations and 16S rRNA gene sequencing. Results: The BLAST results showed that PY108 and PY109 resembled Streptomyces hundungensis PSB170 and Streptomyces sp. Ed-065 with 99.28% and 99.36% nucleotide similarity, respectively. Antibacterial assays of ethyl acetate (EA) extracts from both isolates PY108 and PY109 in a tryptic soy broth (TSB) medium were conducted against four pathogenic bacteria. They showed significant antibacterial potential against Staphylococcus aureus and Klebsiella pneumoniae. Similarly, these extracts exhibited moderate antifungal activities against Saccharomyces cerevisiae and Aspergillus niger. Cytotoxicity assays on cervical cancer cells (HeLa) and breast cancer cells (MCF-7) revealed significant potential for both extracts. LC-MS/MS profiling of the EA extracts identified 27 specialized metabolites, including diketopiperazine derivatives, aureolic acid derivatives such as chromomycin A, and lipopeptide derivatives. In comparison, GC-MS analysis detected 34 metabolites, including actinomycin D and γ-sitosterol. Furthermore, a global natural product social molecular networking (GNPS)-based molecular networking analysis dereplicated 24 metabolites in both extracts. Conclusions: These findings underscore the potential of endophytic Streptomyces sp. PY108 and PY109 to develop new therapeutics in the future. Full article
Show Figures

Graphical abstract

18 pages, 2447 KiB  
Article
Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Pseudomonas chlororaphis Isolated from Chamaecytisus albus (Hack.) Rothm.
by Wojciech Sokołowski, Monika Marek-Kozaczuk, Piotr Sosnowski, Ewa Sajnaga, Monika Elżbieta Jach and Magdalena Anna Karaś
Molecules 2024, 29(18), 4370; https://doi.org/10.3390/molecules29184370 - 14 Sep 2024
Cited by 4 | Viewed by 1710
Abstract
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus [...] Read more.
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus albus, classified as Pseudomonas chlororaphis acting as antifungal agents. The efficiency of production of their diffusible and volatile antifungal compounds (VOCs) was verified in antagonistic assays with the use of soil-borne phytopathogens: B. cinerea, F. oxysporum, and S. sclerotiorum. Diffusible metabolites were identified using chromatographic and spectrometric analyses (HPTLC, GC-MS, and LC-MS/MS). The phzF, phzO, and prnC genes in the genomes of bacterial strains were confirmed by PCR. In turn, the plant growth promotion (PGP) properties (production of HCN, auxins, siderophores, and hydrolytic enzymes, phosphate solubilization) of pseudomonads were bioassayed. The data analysis showed that all tested strains have broad-range antifungal activity with varying degrees of antagonism. The most abundant bioactive compounds were phenazine derivatives: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, and diketopiperazine derivatives as well as ortho-dialkyl-aromatic acids, pyrrolnitrin, siderophores, and HCN. The results indicate that the tested P. chlororaphis isolates exhibit characteristics of biocontrol organisms; therefore, they have potential to be used in sustainable agriculture and as commercial postharvest fungicides to be used in fruits and vegetables. Full article
(This article belongs to the Topic Natural Products in Crop Pest Management)
Show Figures

Figure 1

44 pages, 3898 KiB  
Review
Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species
by Jueying Shi, Miao Yu, Weikang Chen, Shiji Chen, Yikang Qiu, Zhenyang Xu, Yi Wang, Guolei Huang and Caijuan Zheng
Mar. Drugs 2024, 22(7), 321; https://doi.org/10.3390/md22070321 - 18 Jul 2024
Cited by 6 | Viewed by 4241
Abstract
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and [...] Read more.
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories—indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids—are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Figure 1

14 pages, 1733 KiB  
Article
Miniaturized Cultivation Profiling (MATRIX)-Facilitated Discovery of Noonazines A–C and Noonaphilone A from an Australian Marine-Derived Fungus, Aspergillus noonimiae CMB-M0339
by Sarani Kankanamge, Paul V. Bernhardt, Zeinab G. Khalil and Robert J. Capon
Mar. Drugs 2024, 22(6), 243; https://doi.org/10.3390/md22060243 - 27 May 2024
Cited by 1 | Viewed by 1706
Abstract
Subjecting the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339 to cultivation profiling using an innovative miniaturized 24-well plate format (MATRIX) enabled access to new examples of the rare class of 2,6-diketopiperazines, noonazines A–C (13), along with the known analogue coelomycin [...] Read more.
Subjecting the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339 to cultivation profiling using an innovative miniaturized 24-well plate format (MATRIX) enabled access to new examples of the rare class of 2,6-diketopiperazines, noonazines A–C (13), along with the known analogue coelomycin (4), as well as a new azaphilone, noonaphilone A (5). Structures were assigned to 15 on the basis of a detailed spectroscopic analysis, and in the case of 12, an X-ray crystallographic analysis. Plausible biosynthetic pathways are proposed for 14, involving oxidative Schiff base coupling/dimerization of a putative Phe precursor. Of note, 2 incorporates a rare meta-Tyr motif, typically only reported in a limited array of Streptomyces metabolites. Similarly, a plausible biosynthetic pathway is proposed for 5, highlighting a single point for stereo-divergence that allows for the biosynthesis of alternate antipodes, for example, the 7R noonaphilone A (5) versus the 7S deflectin 1a (6). Full article
(This article belongs to the Special Issue MS- or NMR-Guided Discovery of Marine Specialized Metabolites)
Show Figures

Graphical abstract

31 pages, 18598 KiB  
Article
A Comprehensive Study to Determine the Residual Elimination Pattern of Major Metabolites of Amoxicillin–Sulbactam Hybrid Molecules in Rats by UPLC–MS/MS
by Feike Zhao, Xueyan Sun, Jian Li, Junyuan Du, Zhiyi Wu, Shujuan Liu, Liangzhu Chen and Binghu Fang
Molecules 2024, 29(10), 2169; https://doi.org/10.3390/molecules29102169 - 7 May 2024
Viewed by 1300
Abstract
Amoxicillin and sulbactam are widely used in animal food compounding. Amoxicillin–sulbactam hybrid molecules are bicester compounds made by linking amoxicillin and sulbactam with methylene groups and have good application prospects. However, the residual elimination pattern of these hybrid molecules in animals needs to [...] Read more.
Amoxicillin and sulbactam are widely used in animal food compounding. Amoxicillin–sulbactam hybrid molecules are bicester compounds made by linking amoxicillin and sulbactam with methylene groups and have good application prospects. However, the residual elimination pattern of these hybrid molecules in animals needs to be explored. In the present study, the amoxicillin–sulbactam hybrid molecule (AS group) and a mixture of amoxicillin and sulbactam (mixture group) were administered to rats by gavage, and the levels of the major metabolites of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were determined by UPLC–MS/MS. The residue elimination patterns of the major metabolites in the liver, kidney, urine, and feces of rats in the AS group and the mixture group were compared. The results showed that the total amount of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and the highest concentration of sulbactam in the liver and kidney samples of the AS group and the mixture group appeared at 1 h after drug withdrawal. Between 1 h and 12 h post discontinuation, the total amount of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine in the two tissues decreased rapidly, and the elimination half-life of the AS group was significantly higher than that in the mixture group (p < 0.05); the residual amount of sulbactam also decreased rapidly, and the elimination half-life was not significantly different (p > 0.05). In 72 h urine samples, the total excretion rates were 60.61 ± 2.13% and 62.62 ± 1.73% in the AS group and mixture group, respectively. The total excretion rates of fecal samples (at 72 h) for the AS group and mixture group were 9.54 ± 0.26% and 10.60 ± 0.24%, respectively. These results showed that the total quantity of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine was eliminated more slowly in the liver and kidney of the AS group than those of the mixture group and that the excretion rate through urine and feces was essentially the same for both groups. The residual elimination pattern of the hybrid molecule in rats determined in this study provides a theoretical basis for the in-depth development and application of hybrid molecules, as well as guidelines for the development of similar drugs. Full article
Show Figures

Figure 1

Back to TopTop