Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = digital transformation maturity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 2632 KiB  
Review
A Review of Digital Twin Integration in Circular Manufacturing for Sustainable Industry Transition
by Seyed Mohammad Mehdi Sajadieh and Sang Do Noh
Sustainability 2025, 17(16), 7316; https://doi.org/10.3390/su17167316 - 13 Aug 2025
Viewed by 309
Abstract
The integration of digital twin (DT) technology into circular economy (CE) frameworks has emerged as a critical pathway for achieving sustainable and intelligent manufacturing under the Industry 4.0 paradigm. This study addresses the lack of structured guidance for DT adoption in CE strategies [...] Read more.
The integration of digital twin (DT) technology into circular economy (CE) frameworks has emerged as a critical pathway for achieving sustainable and intelligent manufacturing under the Industry 4.0 paradigm. This study addresses the lack of structured guidance for DT adoption in CE strategies by proposing two interrelated frameworks: the Sustainable Digital Twin Maturity Path (SDT-MP) and the Digital Twin Nexus. The SDT-MP outlines progressive stages of DT deployment—from data acquisition and real-time monitoring to AI-enabled decision-making—aligned with CE principles and Industry 4.0 capabilities. The DT Nexus complements this maturity model by structuring the integration of enabling technologies such as AI, IoT, and edge/cloud computing to support closed-loop control, resource optimization, and predictive analytics. Through a mixed-methods approach combining literature analysis and real-world case validation, this research demonstrates how DTs can facilitate lifecycle intelligence, enhance operational efficiency, and drive sustainable transformation in manufacturing. The proposed frameworks offer a scalable roadmap for intelligent circular systems, addressing implementation challenges while supporting Sustainable Development Goal 9 (Industry, Innovation, and Infrastructure) by promoting digital infrastructure, innovation-driven manufacturing, and environmentally responsible industrial growth. This study contributes to the advancement of digital infrastructure and sustainable circular supply chains in the context of smart, connected industrial ecosystems. Full article
(This article belongs to the Special Issue Sustainable Circular Economy in Industry 4.0)
Show Figures

Figure 1

22 pages, 9279 KiB  
Article
ORD-YOLO: A Ripeness Recognition Method for Citrus Fruits in Complex Environments
by Zhaobo Huang, Xianhui Li, Shitong Fan, Yang Liu, Huan Zou, Xiangchun He, Shuai Xu, Jianghua Zhao and Wenfeng Li
Agriculture 2025, 15(15), 1711; https://doi.org/10.3390/agriculture15151711 - 7 Aug 2025
Viewed by 323
Abstract
With its unique climate and geographical advantages, Yunnan Province in China has become one of the country’s most important citrus-growing regions. However, the dense foliage and large fruit size of citrus trees often result in significant occlusion, and the fluctuating light intensity further [...] Read more.
With its unique climate and geographical advantages, Yunnan Province in China has become one of the country’s most important citrus-growing regions. However, the dense foliage and large fruit size of citrus trees often result in significant occlusion, and the fluctuating light intensity further complicates accurate assessment of fruit maturity. To address these challenges, this study proposes an improved model based on YOLOv8, named ORD-YOLO, for citrus fruit maturity detection. To enhance the model’s robustness in complex environments, several key improvements have been introduced. First, the standard convolution operations are replaced with Omni-Dimensional Dynamic Convolution (ODConv) to improve feature extraction capabilities. Second, the feature fusion process is optimized and inference speed is increased by integrating a Re-parameterizable Generalized Feature Pyramid Network (RepGFPN). Third, the detection head is redesigned using a Dynamic Head structure that leverages dynamic attention mechanisms to enhance key feature perception. Additionally, the loss function is optimized using InnerDIoU to improve object localization accuracy. Experimental results demonstrate that the enhanced ORD-YOLO model achieves a precision of 93.83%, a recall of 91.62%, and a mean Average Precision (mAP) of 96.92%, representing improvements of 4.66%, 3.3%, and 3%, respectively, over the original YOLOv8 model. ORD-YOLO not only maintains stable and accurate citrus fruit maturity recognition under complex backgrounds, but also significantly reduces misjudgment caused by manual assessments. Furthermore, the model enables real-time, non-destructive detection. When deployed on harvesting robots, it can substantially increase picking efficiency and reduce post-maturity fruit rot due to delayed harvesting. These advancements contribute meaningfully to the quality improvement, efficiency enhancement, and digital transformation of the citrus industry. Full article
(This article belongs to the Special Issue Application of Smart Technologies in Orchard Management)
Show Figures

Figure 1

38 pages, 5974 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 - 6 Aug 2025
Viewed by 183
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
Show Figures

Figure 1

33 pages, 1497 KiB  
Article
Beyond Compliance: How Disruptive Innovation Unleashes ESG Value Under Digital Institutional Pressure
by Fang Zhang and Jianhua Zhu
Systems 2025, 13(8), 644; https://doi.org/10.3390/systems13080644 - 1 Aug 2025
Viewed by 508
Abstract
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study [...] Read more.
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study utilizes panel data of Chinese listed firms from 2009 to 2023 and applies multi-period Difference-in-Differences (DID) and Spatial DID models to rigorously identify the policy’s effects on corporate ESG performance. Empirical results indicate that the impact of digital economy policy is not exerted through a direct linear pathway but operates via three institutional mechanisms, enhanced information transparency, eased financing constraints, and expanded fiscal support, collectively constructing a logic of “institutional embedding–governance restructuring.” Moreover, disruptive technological innovation significantly amplifies the effects of the transparency and fiscal mechanisms, but exhibits no statistically significant moderating effect on the financing constraint pathway, suggesting a misalignment between innovation heterogeneity and financial responsiveness. Further heterogeneity analysis confirms that the policy effect is concentrated among firms characterized by robust governance structures, high levels of property rights marketization, and greater digital maturity. This study contributes to the literature by developing an integrated moderated mediation framework rooted in institutional theory, agency theory, and dynamic capabilities theory. The findings advance the theoretical understanding of ESG policy transmission by unpacking the micro-foundations of institutional response under digital policy regimes, while offering actionable insights into the strategic alignment of digital transformation and sustainability-oriented governance. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

22 pages, 1968 KiB  
Article
Evaluating the Implementation of Information Technology Audit Systems Within Tax Administration: A Risk Governance Perspective for Enhancing Digital Fiscal Integrity
by Murat Umbet, Daulet Askarov, Kristina Rudžionienė, Česlovas Christauskas and Laura Alikulova
J. Risk Financial Manag. 2025, 18(8), 422; https://doi.org/10.3390/jrfm18080422 - 1 Aug 2025
Viewed by 437
Abstract
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research [...] Read more.
This study evaluates the impact of digital systems and IT audit frameworks on tax performance and integrity within tax administrations. Using international data from organizations like the World Bank, OECD (Organisation for Economic Co-operation and Development), and IMF (International Monetary Fund), the research examines the relationship between tax revenue as a percentage of GDP, digital infrastructure, corruption perception, e-government development, and cybersecurity readiness. Quantitative analysis, including correlation, regression, and clustering methods, reveals a strong positive relationship between digital maturity, e-governance, and tax performance. Countries with advanced digital governance systems and robust IT audit frameworks, such as COBIT, tend to show higher tax revenues and lower corruption levels. The study finds that e-government development and anti-corruption measures explain over 40% of the variance in tax performance. Cluster analysis distinguishes between digitally advanced, high-compliance countries and those lagging in IT adoption. The findings suggest that digital transformation strengthens fiscal integrity by automating compliance and reducing human contact, which in turn mitigates bribery risks and enhances fraud detection. The study highlights the need for adopting international best practices to guide the digitalization of tax administrations, improving efficiency, transparency, and trust in public finance. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

24 pages, 624 KiB  
Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 345
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

48 pages, 835 KiB  
Review
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review
by Jorge Gomes and Mário Romão
Healthcare 2025, 13(15), 1847; https://doi.org/10.3390/healthcare13151847 - 29 Jul 2025
Viewed by 601
Abstract
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by [...] Read more.
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by assessing readiness, process efficiency, technology adoption, and interoperability. This study presents a comprehensive literature review identifying 45 Maturity Models used across various healthcare domains, including telemedicine, analytics, business intelligence, and electronic medical records. These models, often based on Capability Maturity Model Integration (CMMI), vary in structure, scope, and maturity stages. The findings demonstrate that structured maturity assessments help healthcare organizations plan, implement, and optimize HIS more effectively, leading to enhanced clinical and operational performance. This review contributes to an understanding of how different MMs can support healthcare digital transformation and provides a resource for selecting appropriate models based on specific organizational goals and technological contexts. Full article
Show Figures

Figure 1

31 pages, 7290 KiB  
Article
Freight Rate Decisions in Shipping Logistics Service Supply Chains Considering Blockchain Adoption Risk Preferences
by Yujing Chen, Jiao Mo and Bin Yang
Mathematics 2025, 13(15), 2339; https://doi.org/10.3390/math13152339 - 22 Jul 2025
Viewed by 295
Abstract
This paper explores the strategic implications of technological adoption within shipping logistics service supply chains, with a particular focus on blockchain technology (BCT). When integrating new technologies, supply chain stakeholders evaluate associated risks alongside complexity, profitability, and operational challenges, which influence their strategic [...] Read more.
This paper explores the strategic implications of technological adoption within shipping logistics service supply chains, with a particular focus on blockchain technology (BCT). When integrating new technologies, supply chain stakeholders evaluate associated risks alongside complexity, profitability, and operational challenges, which influence their strategic behaviors. Anchored in the concept of technology trust, this study examines how different risk preferences affect BCT adoption decisions and freight rate strategies. A game-theoretic model is constructed using a mean-variance utility framework to analyze interactions between shipping companies and freight forwarders under three adoption scenarios: no adoption (NN), partial adoption (BN), and full adoption (BB). The results indicate that risk-seeking agents are more likely to adopt BCT early but face greater freight rate volatility in the initial stages. As the technology matures, strategic variability declines and the influence of adaptability on pricing becomes less pronounced. In contrast, risk-neutral and risk-averse participants tend to adopt more conservatively, resulting in slower but more stable pricing dynamics. These findings offer new insights into how technology trust and risk attitudes shape strategic decisions in digitally transforming supply chains. The study also provides practical implications for differentiated pricing strategies, BCT adoption incentives, and collaborative policy design among logistics stakeholders. Full article
(This article belongs to the Special Issue Advances in Mathematical Optimization in Operational Research)
Show Figures

Figure 1

32 pages, 2529 KiB  
Article
Cloud Adoption in the Digital Era: An Interpretable Machine Learning Analysis of National Readiness and Structural Disparities Across the EU
by Cristiana Tudor, Margareta Florescu, Persefoni Polychronidou, Pavlos Stamatiou, Vasileios Vlachos and Konstadina Kasabali
Appl. Sci. 2025, 15(14), 8019; https://doi.org/10.3390/app15148019 - 18 Jul 2025
Viewed by 391
Abstract
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to [...] Read more.
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to uncover the drivers of national cloud adoption across 27 EU countries using harmonized panel datasets spanning 2014–2021 and 2014–2024. A methodological pipeline combining Random Forests (RF), XGBoost, Support Vector Machines (SVM), and Elastic Net regression is implemented, with model tuning conducted via nested cross-validation. Among individual models, Elastic Net and SVM delivered superior predictive performance, while a stacked ensemble achieved the best overall accuracy (MAE = 0.214, R2 = 0.948). The most interpretable model, a standardized RF with country fixed effects, attained MAE = 0.321, and R2 = 0.864, making it well-suited for policy analysis. Variable importance analysis reveals that the density of ICT specialists is the strongest predictor of adoption, followed by broadband access and higher education. Fixed-effect modeling confirms significant national heterogeneity, with countries like Finland and Luxembourg consistently leading adoption, while Bulgaria and Romania exhibit structural barriers. Partial dependence and SHAP analyses reveal nonlinear complementarities between digital skills and infrastructure. A hierarchical clustering of countries reveals three distinct digital maturity profiles, offering tailored policy pathways. These results directly support the EU Digital Decade’s strategic targets and provide actionable insights for advancing inclusive and resilient digital transformation across the Union. Full article
(This article belongs to the Special Issue Advanced Technologies Applied in Digital Media Era)
Show Figures

Figure 1

31 pages, 4728 KiB  
Article
A Dynamic Assessment of Digital Maturity in Industrial SMEs: An Adaptive AHP-Based Digital Maturity Model (DMM)with Customizable Weighting and Multidimensional Classification (DAMA-AHP)
by Elvis Krulčić, Sandro Doboviček, Duško Pavletić and Ivana Čabrijan
Technologies 2025, 13(7), 282; https://doi.org/10.3390/technologies13070282 - 3 Jul 2025
Viewed by 742
Abstract
The ongoing digitalization of industrial companies requires a structured, strategic integration of digital concepts into business processes. Digital transformation (DT) requires clearly defined roadmaps that align digital technologies with business objectives. Although there are many digital maturity models (DMMs), most are industry-specific and [...] Read more.
The ongoing digitalization of industrial companies requires a structured, strategic integration of digital concepts into business processes. Digital transformation (DT) requires clearly defined roadmaps that align digital technologies with business objectives. Although there are many digital maturity models (DMMs), most are industry-specific and do not address the unique characteristics of individual companies. Even SME-focused models often struggle to close the gap between current and target maturity levels, hindering effective DT implementation. This study examines the existing academic and professional literature on DMMs for SMEs and assesses digital readiness in an industrial context. From these findings, the Dynamic Adaptive Maturity Assessment Model (DAMA-AHP) was developed. It comprises 66 DT elements in six dimensions: People and Expertise, Operability, Organization, Products and Production Processes, Strategy, and Technology. DAMA-AHP incorporates the Analytic Hierarchy Process (AHP), which has been enhanced with customizable weighting at both the dimension and element levels. This enables precise alignment with the company’s priorities and the definition of customized target maturity levels that form the basis for a tailored transformation roadmap. Validation through a case study confirmed the practical value of DAMA-AHP in measuring digital maturity and defining strategic DT priorities. It provides a comprehensive, adaptable, and dynamic framework that promotes continuous improvement and sustainable competitiveness of SMEs in the evolving digital economy. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Graphical abstract

23 pages, 1549 KiB  
Review
Digital Transitions of Critical Energy Infrastructure in Maritime Ports: A Scoping Review
by Emmanuel Itodo Daniel, Augustine Makokha, Xin Ren and Ezekiel Olatunji
J. Mar. Sci. Eng. 2025, 13(7), 1264; https://doi.org/10.3390/jmse13071264 - 29 Jun 2025
Viewed by 636
Abstract
This scoping review investigates the digital transition of critical energy infrastructure (CEI) in maritime ports, which are increasingly vital as energy hubs amid global decarbonisation efforts. Recognising the growing role of ports in integrating offshore renewables, hydrogen, and LNG systems, the study examines [...] Read more.
This scoping review investigates the digital transition of critical energy infrastructure (CEI) in maritime ports, which are increasingly vital as energy hubs amid global decarbonisation efforts. Recognising the growing role of ports in integrating offshore renewables, hydrogen, and LNG systems, the study examines how digital technologies (such as automation, IoT, and AI) support the resilience, efficiency, and sustainability of port-based CEI. A multifaceted search strategy was implemented to identify relevant academic and grey literature. The search was performed between January 2025 and 30 April 2025. The strategy focused on databases such as Scopus. Due to limitations encountered in retrieving sufficient, directly relevant academic papers from databases alone, the search strategy was systematically expanded to include grey literature such as reports, policy documents, and technical papers from authoritative industry, governmental, and international organisations. Employing Arksey and O’Malley’s framework and PRISMA-ScR (scoping review) guidelines, the review synthesises insights from 62 academic and grey literature sources to address five core research questions relating to the current state, challenges, importance, and future directions of digital CEI in ports. Literature distribution of articles varies across continents, with Europe contributing the highest number of publications (53%), Asia (24%) and North America (11%), while Africa and Oceania account for only 3% of the publications. Findings reveal significant regional disparities in digital maturity, fragmented governance structures, and underutilisation of digital systems. While smart port technologies offer operational gains and support predictive maintenance, their effectiveness is constrained by siloed strategies, resistance to collaboration, and skill gaps. The study highlights a need for holistic digital transformation frameworks, cross-border cooperation, and tailored approaches to address these challenges. The review provides a foundation for future empirical work and policy development aimed at securing and optimising maritime port energy infrastructure in line with global sustainability targets. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 1094 KiB  
Article
Smart Water Management: Governance Innovation, Technological Integration, and Policy Pathways Toward Economic and Ecological Sustainability
by Yongyu Dai, Zhengwei Huang, Naveed Khan and Muwaffaq Safiyanu Labbo
Water 2025, 17(13), 1932; https://doi.org/10.3390/w17131932 - 27 Jun 2025
Viewed by 1381
Abstract
Smart water management (SWM) represents a transformative shift in urban water governance, integrating advanced digital technologies—including the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, and digital twin modeling—to enable real-time monitoring, predictive analytics, and adaptive decision-making. While drawing extensively on [...] Read more.
Smart water management (SWM) represents a transformative shift in urban water governance, integrating advanced digital technologies—including the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, and digital twin modeling—to enable real-time monitoring, predictive analytics, and adaptive decision-making. While drawing extensively on a structured literature review to build its theoretical foundation, this manuscript is primarily presented as a research paper that combines conceptual analysis with empirical insights derived from comparative case studies, rather than a standalone comprehensive review. A five-layer system architecture—encompassing data sensing, transmission, processing, intelligent analysis, and decision support—is introduced to evaluate how technological components interact across operational layers. The model is applied to two representative cases: Singapore’s Smart Water Grid and selected pilot programs in Chinese cities (Shenzhen, Hangzhou, Beijing). These cases are analyzed for their level of digital integration, policy alignment, and performance outcomes, offering insights into both mature and emerging smart water implementations. Findings indicate that the transition from manual to intelligent governance significantly enhances system performance and robustness, particularly in response to climate-induced disruptions. Despite benefits such as reduced non-revenue water and improved pollution control, challenges including high initial investment, data interoperability issues, and cybersecurity risks remain critical barriers to widespread adoption. Policy recommendations focus on establishing national standards, promoting cross-sectoral data sharing, encouraging public–private partnerships, and investing in workforce development to support the long-term sustainability and scalability of smart water initiatives. Full article
Show Figures

Figure 1

35 pages, 14963 KiB  
Article
Research on the Digital Twin System of Welding Robots Driven by Data
by Saishuang Wang, Yufeng Jiao, Lijun Wang, Wenjie Wang, Xiao Ma, Qiang Xu and Zhongyu Lu
Sensors 2025, 25(13), 3889; https://doi.org/10.3390/s25133889 - 22 Jun 2025
Viewed by 744
Abstract
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital [...] Read more.
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital empowerment, this paper takes a welding robot arm as the research object and constructs a welding robot arm digital twin system. Using three-dimensional modeling technology and model rendering, the welding robot arm digital twin simulation environment was built. Parent–child hierarchy and particle effects were used to truly restore the movement characteristics of the robot arm and the welding effect, with the help of TCP communication and Bluetooth communication to realize data transmission between the virtual segment and the physical end. A variety of UI components were used to design the human–machine interaction interface of the digital twin system, ultimately realizing the data-driven digital twin system. Finally, according to the digital twin maturity model constructed by Prof. Tao Fei’s team, the system was scored using five dimensions and 19 evaluation factors. After testing the system, we found that the combination of digital twin technology and automation is feasible and achieves the expected results. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 1103 KiB  
Article
The Overton Window in Smart City Governance: The Methodology and Results for Mediterranean Cities
by Aristi Karagkouni and Dimitrios Dimitriou
Smart Cities 2025, 8(3), 98; https://doi.org/10.3390/smartcities8030098 - 13 Jun 2025
Viewed by 1138
Abstract
Mediterranean island cities face unique challenges in implementing smart city initiatives due to fragmented governance structures, seasonal economic pressures, and evolving societal expectations. This study investigates how strategic aspirations and public discourse shape the feasibility of smart city policies in insular contexts. Specifically, [...] Read more.
Mediterranean island cities face unique challenges in implementing smart city initiatives due to fragmented governance structures, seasonal economic pressures, and evolving societal expectations. This study investigates how strategic aspirations and public discourse shape the feasibility of smart city policies in insular contexts. Specifically, it combines SOAR (Strengths, Opportunities, Aspirations, Results) analysis with the Overton Window framework to examine both the strategic capacities and normative acceptability of technological interventions. The Overton Window, a model originally developed in political theory, is applied here to evaluate how public and policy acceptance of smart technologies, ranging from digital governance systems to AI-based mobility, varies across different islands. While this study draws on cross-case comparisons of multiple Mediterranean island contexts, the primary data were collected in Athens, Greece, through surveys and focus groups with citizens and stakeholders. The findings reveal disparities in institutional maturity, stakeholder coordination, and levels of citizen support. This study concludes that successful smart city transformation requires both strategic coherence and alignment with evolving public values. It proposes the ‘Ecopolis’ model as a conceptual planning framework that integrates sustainability, citizen participation, and data-driven governance in tourism-dependent island settings. Full article
Show Figures

Figure 1

25 pages, 5228 KiB  
Article
Leveraging BIM Data Schema for Data Interoperability in Ports and Waterways: A Semantic Alignment Framework for openBIM Workflows
by Guoqian Ren, Ali Khudhair, Haijiang Li, Xi Wen and Xiaofeng Zhu
Buildings 2025, 15(12), 2007; https://doi.org/10.3390/buildings15122007 - 11 Jun 2025
Viewed by 561
Abstract
The demand for interoperable, lifecycle-oriented data exchange in the port and waterway sector is intensifying amid global digital transformation and infrastructure modernisation. Traditional Building Information Modelling (BIM) practices often fail to capture the domain-specific complexity and multidisciplinary collaboration required in maritime infrastructure. This [...] Read more.
The demand for interoperable, lifecycle-oriented data exchange in the port and waterway sector is intensifying amid global digital transformation and infrastructure modernisation. Traditional Building Information Modelling (BIM) practices often fail to capture the domain-specific complexity and multidisciplinary collaboration required in maritime infrastructure. This paper critically evaluates the IFC 4.3 schema as a foundational standard for openBIM-based integration in this sector, offering a semantic alignment framework designed for the planning, design, and operational phases of port projects. Rather than proposing schema extensions, the framework interprets existing IFC constructs to model port-specific assets while supporting environmental and geospatial integration. Two case studies, a master planning project for a shipyard and a design coordination project for a ship lock complex, demonstrate the schema’s capability to facilitate federated modelling, reduce semantic discrepancies, and enable seamless data exchange across disciplines and software platforms. The research delivers actionable implementation strategies for practitioners, identifies technical limitations in current toolchains, and outlines pathways for advancing standardisation efforts. It further contributes to the evolving discourse on digital twins, GIS-BIM convergence, and semantic enrichment in infrastructure modelling. This work provides a scalable, standards-based roadmap to improve interoperability and enhance the digital maturity of port and waterway infrastructure. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Back to TopTop