Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = digital speckle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8480 KB  
Article
Digital Image Correlation-Based Bolt Preload Monitoring
by Linsheng Huo, Liukun Zhao, Aocheng Hu, Fanwei Meng and Hongnan Li
Sensors 2026, 26(3), 913; https://doi.org/10.3390/s26030913 - 30 Jan 2026
Viewed by 167
Abstract
Bolt connections are widely used in engineering structures but are susceptible to loosening during operation, which can result in significant safety concerns. Consequently, reliable bolt-loosening detection is of paramount importance. Conventional detection methodologies frequently exhibit deficiencies, including reduced efficiency, constrained accuracy, and the [...] Read more.
Bolt connections are widely used in engineering structures but are susceptible to loosening during operation, which can result in significant safety concerns. Consequently, reliable bolt-loosening detection is of paramount importance. Conventional detection methodologies frequently exhibit deficiencies, including reduced efficiency, constrained accuracy, and the requirement for contact sensors. To overcome these limitations, this study proposes a novel non-contact approach for bolt preload monitoring based on Digital Image Correlation (DIC). In this method, an industrial camera captures speckle images of the bolt head before and after deformation, thereby enabling measurement of the surface strain. The DIC technique is employed to calculate the strain field on the bolt head surface, which exhibits a linear relationship with the bolt preload. The proposed method utilizes strain field tracking to facilitate effective and precise monitoring of bolt preload. Experimental results demonstrate that the method provides a precise, efficient, and user-friendly solution for bolt preload monitoring, showing great potential for applications in structural health monitoring. Full article
(This article belongs to the Special Issue Novel Sensor Technologies for Civil Infrastructure Monitoring)
21 pages, 10830 KB  
Article
A Study of Speckle Materials for Digital Image Correlation (DIC): Thermal Stability and Color Change Mechanisms at High Temperatures
by Yunzhu Ni, Yan Wang, Zhongya Zhang and Huilong Zheng
Coatings 2025, 15(12), 1444; https://doi.org/10.3390/coatings15121444 - 8 Dec 2025
Viewed by 548
Abstract
This study focused on the measurement requirements of Digital Image Correlation (DIC) in high-temperature environments of aero-engines and systematically investigated the applicability and stability of high-temperature speckle materials. Five common coating materials (Ti, TiN, Ta, NiCr alloy, and SiC) were selected. Corresponding thin [...] Read more.
This study focused on the measurement requirements of Digital Image Correlation (DIC) in high-temperature environments of aero-engines and systematically investigated the applicability and stability of high-temperature speckle materials. Five common coating materials (Ti, TiN, Ta, NiCr alloy, and SiC) were selected. Corresponding thin films were deposited on Al2O3 ceramic substrates using magnetron sputtering technology, and their surface color evolution from room temperature up to 1200 °C was examined. The film compositions were analyzed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), revealing the mechanisms behind the color changes. The results indicate that Ti, TiN, Ta, and NiCr alloy exhibit significant color variations, which leads to insufficient color contrast for high-temperature speckle patterns. Further investigation shows that depositing an outer SiO2 coating can improve surface scattering and reflection, while also inhibiting oxygen penetration, thereby enhancing oxidation resistance and improving speckle contrast. The SiC/SiO2 composite structure demonstrates excellent thermal stability, making it an ideal speckle material for high-temperature DIC measurements. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 4297 KB  
Article
Camera-in-the-Loop Realization of Direct Search with Random Trajectory Method for Binary-Phase Computer-Generated Hologram Optimization
by Evgenii Yu. Zlokazov, Rostislav S. Starikov, Pavel A. Cheremkhin and Timur Z. Minikhanov
J. Imaging 2025, 11(12), 434; https://doi.org/10.3390/jimaging11120434 - 5 Dec 2025
Viewed by 435
Abstract
High-speed realization of computer-generated holograms (CGHs) is a crucial problem in the field of modern 3D visualization and optical image processing system development. Binary CGHs can be realized using high-resolution, high-speed spatial light modulators such as ferroelectric liquid crystals on silicon devices or [...] Read more.
High-speed realization of computer-generated holograms (CGHs) is a crucial problem in the field of modern 3D visualization and optical image processing system development. Binary CGHs can be realized using high-resolution, high-speed spatial light modulators such as ferroelectric liquid crystals on silicon devices or digital micro-mirror devices providing the high throughput of optoelectronic systems. However, the quality of holographic images restored by binary CGHs often suffers from distortions, background noise, and speckle noise caused by the limitations and imperfections of optical system components. The present manuscript introduces a method based on the optimization of CGH models directly in the optical system with a camera-in-the-loop configuration using effective direct search with a random trajectory algorithm. The method was experimentally verified. The results demonstrate a significant enhancement in the quality of the holographic images optically restored by binary-phase CGH models optimized through this method compared to purely digitally generated models. Full article
(This article belongs to the Section Mixed, Augmented and Virtual Reality)
Show Figures

Figure 1

16 pages, 3294 KB  
Article
A Spatial Resolution-Based Evaluation Method for Subpixel Registration Algorithms
by Fan Li, Junliang Yang, Hui Zhang and Pingquan Wang
Optics 2025, 6(4), 54; https://doi.org/10.3390/opt6040054 - 2 Nov 2025
Viewed by 601
Abstract
Digital image correlation (DIC) technology is widely employed in speckle-based measurement techniques, including X-ray speckle tracking. By enhancing DIC’s measurement capability to the subpixel scale through subpixel registration technology, the accuracy of such tracking methods is significantly improved. Consequently, selecting an appropriate subpixel [...] Read more.
Digital image correlation (DIC) technology is widely employed in speckle-based measurement techniques, including X-ray speckle tracking. By enhancing DIC’s measurement capability to the subpixel scale through subpixel registration technology, the accuracy of such tracking methods is significantly improved. Consequently, selecting an appropriate subpixel registration algorithm becomes crucial for advancing the precision of both DIC and its application in tracking methods. Nevertheless, current evaluation approaches for these algorithms overlook spatial resolution—an essential metric not only for X-ray speckle tracking but also for other comparable methodologies. Inspired by the modulation transfer function, this study proposes a novel evaluation method that uses the root mean square error of displacement measurement at different spatial frequencies to assess spatial resolution. Two widely used subpixel registration algorithms—the peak-finding algorithm and the iterative spatial domain cross-correlation algorithm—are evaluated and compared. The result strongly contrasts with traditional evaluations based on ideal translational conditions, and underscores the necessity of incorporating spatial resolution and speckle size into algorithm selection criteria for practical applications. Full article
Show Figures

Figure 1

36 pages, 5641 KB  
Article
Experimental Analysis of Fractured Human Bones: Brief Review and New Approaches
by Ioan Száva, Iosif Șamotă, Teofil-Florin Gălățanu, Dániel-Tamás Száva and Ildikó-Renáta Száva
Prosthesis 2025, 7(5), 126; https://doi.org/10.3390/prosthesis7050126 - 9 Oct 2025
Viewed by 653
Abstract
Long bone fractures are breaks or cracks in a long bone of the body typically caused by trauma like a fall, sport injury, accidents etc. This study investigates the effectiveness of experimental methods for fast and safe healing of long bone fractures in [...] Read more.
Long bone fractures are breaks or cracks in a long bone of the body typically caused by trauma like a fall, sport injury, accidents etc. This study investigates the effectiveness of experimental methods for fast and safe healing of long bone fractures in humans, highlighting both their advantages and disadvantages, respectively finding the most effective and safe methods for evaluating the types of fixators that can be used in the consolidation of fractured long bones. As for the preliminary data, numerical methods and applied mathematics were used to address this problem. After collecting of preliminary data there were performed a series of experimental analysis as follows: Electrical Strain Gauges (ESGs); the Moiré Fringes method; Photo-Elasticity, with the particular technique thereof, the so-called Photo-Stress method; Holographic Interferometry (HI); Speckle Pattern Interferometry (ESPI) and Shearography; and Video Image Correlation (VIC), which is also called Digital Image Correlation (DIC). By analyzing different methods, the following two methods resulted to be widely applicable, namely, ESG and DIC/VIC. The findings highlight the net advantages regarding the objective choice of these types of fixators, thereby contributing to a possible extension of these approaches for the benefit of medical surgical practice Full article
Show Figures

Figure 1

22 pages, 4621 KB  
Article
Determination of the Mechanical Tensile Characteristics of Some 3D-Printed Specimens from NYLON 12 CARBON Fiber Material
by Claudiu Babiș, Andrei Dimitrescu, Sorin Alexandru Fica, Ovidiu Antonescu, Daniel Vlăsceanu and Constantin Stochioiu
Technologies 2025, 13(10), 456; https://doi.org/10.3390/technologies13100456 - 8 Oct 2025
Viewed by 1177
Abstract
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, [...] Read more.
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, vertical, and lateral. Each specimen was printed with a soluble SR-30 support material, which was subsequently dissolved in an SCA 1200-HT wash station using heated alkaline solution. Following support removal, all samples underwent thermal annealing at 80 °C for 5 h in the printer’s controlled chamber to eliminate residual moisture and improve structural integrity. The annealed specimens were subjected to uniaxial tensile testing using an Instron 8875 electrohydraulic machine, with strain measured by digital image correlation (DIC) on a speckle-patterned gauge section. Key mechanical properties, including Young’s modulus, Poisson’s ratio, yield strength, and ultimate tensile strength, were determined. Finally, a finite element analysis (FEA) was performed using MSC Visual Nastran for Windows to simulate the tensile loading conditions and assess internal stress distributions for each print orientation. The combined experimental and numerical results confirm the feasibility of using additively manufactured parts in demanding engineering applications. Full article
Show Figures

Graphical abstract

15 pages, 2939 KB  
Article
DIC-Aided Mechanoluminescent Film Sensor for Quantitative Measurement of Full-Field Strain
by Guoqing Gu, Liya Dai and Liyun Chen
Sensors 2025, 25(19), 6018; https://doi.org/10.3390/s25196018 - 1 Oct 2025
Viewed by 1151
Abstract
To break through the bottleneck in the mapping of the mechanoluminescent (ML) intensity field to the strain field, a quantification method for full-field strain measurement based on pixel-level data fusion is proposed, integrating ML imaging with digital image correlation (DIC) to achieve precise [...] Read more.
To break through the bottleneck in the mapping of the mechanoluminescent (ML) intensity field to the strain field, a quantification method for full-field strain measurement based on pixel-level data fusion is proposed, integrating ML imaging with digital image correlation (DIC) to achieve precise reconstruction of the strain field. Experiments are conducted using aluminum alloy specimens coated with ML film sensor on their surfaces. During the tensile process, ML images of the films and speckle images of the specimen backsides are simultaneously acquired. Combined with DIC technology, high-precision full-field strain distributions are obtained. Through spatial registration and region matching algorithms, a quantitative calibration model between ML intensity and DIC strain is established. The research results indicate that the ML intensity and DIC strain exhibit a significant linear correlation (R2 = 0.92). To verify the universality of the model, aluminum alloy notched specimen tests show that the reconstructed strain field is in good agreement with the DIC and finite element analysis results, with an average relative error of 0.23%. This method enables full-field, non-contact conversion of ML signals into strain distributions with high spatial resolution, providing a quantitative basis for studying ML response mechanisms under complex loading. Full article
Show Figures

Figure 1

11 pages, 2553 KB  
Article
A Multiscale Investigation of Cross-Sectional Shrinkage in Bamboo Culms Using Natural-Speckle Digital Image Correlation During Drying
by Chengjian Huang, Yongjie Bao, Neng Li and Junfeng Hou
Forests 2025, 16(9), 1444; https://doi.org/10.3390/f16091444 - 10 Sep 2025
Cited by 3 | Viewed by 845
Abstract
Bamboo cracking is primarily attributed to the influence of moisture on its structure. Natural-speckle digital image correlation (DIC) was employed to characterize tangential shrinkage in cross-sections, using parenchyma cells as intrinsic speckle patterns. Shrinkage behavior during the 24 h drying process at a [...] Read more.
Bamboo cracking is primarily attributed to the influence of moisture on its structure. Natural-speckle digital image correlation (DIC) was employed to characterize tangential shrinkage in cross-sections, using parenchyma cells as intrinsic speckle patterns. Shrinkage behavior during the 24 h drying process at a temperature of 103 °C across the external, middle, and internal layers was comparatively analyzed in bamboo nodal regions (NR), internodal regions (IR), and transitional zones (TZ, i.e., node–internode interfaces). Moisture had the most pronounced effect on NR, which consistently exhibited the highest moisture content and shrinkage ratios during the drying process. Notably, the drying shrinkage of the external layer was significantly greater than that of other layers. Specifically, the drying shrinkage strain ratio of the external layer of NR is 3.02 times higher than that of the internal layer, while for IR, it is 3.60 times higher. Furthermore, the external layer of NR exhibits substantial deformation during the initial stages of drying, with a drying shrinkage strain ratio of 5.96% for 2 h. The results demonstrated that shrinkage deformation in bamboo nodes was significantly greater than in other regions, offering valuable insights for developing strategies to mitigate bamboo cracking. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Graphical abstract

21 pages, 8775 KB  
Article
Speckle Noise Reduction in Digital Holography by 3D Adaptive Filtering
by Andrey A. Kerov, Alexander V. Kozlov, Pavel A. Cheremkhin, Anna V. Shifrina, Rostislav S. Starikov, Evgenii Y. Zlokazov, Elizaveta K. Petrova, Vsevolod A. Nebavskiy and Nikolay N. Evtikhiev
Sensors 2025, 25(17), 5402; https://doi.org/10.3390/s25175402 - 1 Sep 2025
Cited by 1 | Viewed by 1350
Abstract
Digital holography enables the reconstruction of both 2D and 3D object information from interference patterns captured by digital cameras. A major challenge in this field is speckle noise, which significantly degrades the quality of the reconstructed images. We propose a novel speckle noise [...] Read more.
Digital holography enables the reconstruction of both 2D and 3D object information from interference patterns captured by digital cameras. A major challenge in this field is speckle noise, which significantly degrades the quality of the reconstructed images. We propose a novel speckle noise reduction method based on 3D adaptive filtering. Our technique processes a stack of holograms, each with an uncorrelated speckle pattern, using an adapted 3D Frost filter. Unlike conventional filtering techniques, our approach exploits statistical adaptivity to enhance noise suppression while preserving fine image details in the reconstructed holograms. Both numerical simulations and optical experiments confirm that our 3D filtering technique significantly enhances reconstruction quality. Specifically, it reduces the normalized standard deviation by up to 40% and improves the structural similarity index by up to 60% compared to classical 2D, 3D median, BM3D, and BM4D filters. Optical experiments validate the method’s effectiveness in practical digital holography scenarios by local and global image quality estimation metrics. These results highlight adaptive 3D filtering as a promising approach for mitigating speckle noise while maintaining structural integrity in digital holography reconstructions. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

23 pages, 3851 KB  
Review
Speckle-Correlation Holographic Imaging: Advances, Techniques, and Current Challenges
by Vinu R. V., Ziyang Chen and Jixiong Pu
Photonics 2025, 12(8), 776; https://doi.org/10.3390/photonics12080776 - 31 Jul 2025
Cited by 2 | Viewed by 3277
Abstract
The imaging modalities of correlation-assisted techniques utilize the inherent information present in the spatial correlation of random intensity patterns for the successful reconstruction of object information. However, most correlation approaches focus only on the reconstruction of amplitude information, as it is a direct [...] Read more.
The imaging modalities of correlation-assisted techniques utilize the inherent information present in the spatial correlation of random intensity patterns for the successful reconstruction of object information. However, most correlation approaches focus only on the reconstruction of amplitude information, as it is a direct byproduct of the correlation, disregarding the phase information. Complex-field reconstruction requires additional experimental or computational schemes, alongside conventional correlation geometry. The resurgence of holography in recent times, with advanced digital techniques and the adoption of the full-field imaging potential of holography in correlation with imaging techniques, has paved the way for the development of various state-of-the-art approaches to correlation optics. This review article provides an in-depth discussion of the recent developments in speckle-correlation-assisted techniques by focusing on various quantitative imaging scenarios. Furthermore, the recent progress and application of correlation-assisted holographic imaging techniques are reviewed, along with its potential challenges. Full article
(This article belongs to the Special Issue Recent Progress in Holography and Its Future Prospects)
Show Figures

Figure 1

26 pages, 7999 KB  
Article
Intelligent Frequency Domain Image Filtering Based on a Multilayer Neural Network with Multi-Valued Neurons
by Igor Aizenberg and Yurii Tovt
Algorithms 2025, 18(8), 461; https://doi.org/10.3390/a18080461 - 24 Jul 2025
Cited by 2 | Viewed by 1659
Abstract
Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued [...] Read more.
Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural network—a multilayer neural network with multi-valued neurons (MLMVN)—for filtering two types of noise in digital images: additive Gaussian noise and multiplicative speckle noise. The proposed approach involves processing images as a set of overlapping patches in the frequency domain using MLMVN. Training was performed using a batch learning algorithm, which proved to be more efficient for big learning sets: it results in fewer learning epochs and a better generalization capability. Experimental results demonstrated that MLMVN achieves noise filtering quality comparable to well-established methods, such as the BM3D, Lee, and Frost filters. These findings suggest that MLMVN offers a viable framework for image denoising, particularly in scenarios where frequency domain processing is advantageous. Also, complex-valued logistic and hyperbolic tangent activation functions were used for multi-valued neurons for the first time and have shown their efficiency. Full article
Show Figures

Figure 1

16 pages, 5373 KB  
Article
Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications
by Elizabeth Espitia-Romero, Adriana Guzmán-López, Micael Gerardo Bravo-Sánchez, Juan José Martínez-Nolasco, José Alfredo Padilla Medina and Francisco Villaseñor-Ortega
Technologies 2025, 13(7), 270; https://doi.org/10.3390/technologies13070270 - 25 Jun 2025
Viewed by 2134
Abstract
The increasing demand for accurate and accessible medical imaging has driven efforts to develop technologies that overcome limitations associated with conventional imaging techniques, such as MRI and CT scans. This study presents the design and implementation of an electronic interface for acquiring signals [...] Read more.
The increasing demand for accurate and accessible medical imaging has driven efforts to develop technologies that overcome limitations associated with conventional imaging techniques, such as MRI and CT scans. This study presents the design and implementation of an electronic interface for acquiring signals from a piezoelectric ultrasound sensor with the aim of improving image reconstruction quality by addressing electromagnetic interference and speckle noise, two major factors that degrade image fidelity. The proposed interface is installed between the ultrasound transducer and acquisition system, allowing real-time signal capture without altering the medical equipment’s operation. Using a printed circuit board with 110-pin connectors, signals from individual piezoelectric elements were analyzed using an oscilloscope. Results show that noise amplitudes occasionally exceed those of the acoustic echoes, potentially compromising image quality. By enabling direct observation of these signals, the interface facilitates the future development of analog filtering solutions to mitigate high-frequency noise before digital processing. This approach reduces reliance on computationally expensive digital filtering, offering a low-cost, real-time alternative. The findings underscore the potential of the interface to enhance diagnostic accuracy and support further innovation in medical imaging technologies. Full article
(This article belongs to the Special Issue Image Analysis and Processing)
Show Figures

Graphical abstract

14 pages, 2219 KB  
Article
Digital Image Speckle Correlation (DISC): Facial Muscle Tracking for Neurological and Psychiatric Disorders
by Shi Fu, Pawel Polak, Susan Fiore, Justin N. Passman, Raphael Davis, Lucian M. Manu and Miriam Rafailovich
Diagnostics 2025, 15(13), 1574; https://doi.org/10.3390/diagnostics15131574 - 20 Jun 2025
Viewed by 1176
Abstract
Background/Objectives: Quantitative assessments of facial muscle function and cognitive responses can enhance the clinic evaluations in neuromuscular disorders such as Bell’s palsy and psychiatric conditions including anxiety and depression. This study explored the application of Digital Image Speckle Correlation (DISC) in detecting [...] Read more.
Background/Objectives: Quantitative assessments of facial muscle function and cognitive responses can enhance the clinic evaluations in neuromuscular disorders such as Bell’s palsy and psychiatric conditions including anxiety and depression. This study explored the application of Digital Image Speckle Correlation (DISC) in detecting enervation of facial musculature and assessing reaction times in response to visual stimuli. Methods: A consistent video recording setup was used to capture facial movements of human subjects in response to visual stimuli from a calibrated database. The DISC method utilizes the displacement of naturally occurring skin pores to map the specific locus of underlying muscular movement. The technique was applied to two distinct case studies: Patient 1 had unilateral Bell’s palsy and was monitored for 1 month of recovery. Patient 2 had a comorbidity of refractory depression and anxiety disorders with ketamine treatment and was assessed over 3 consecutive weekly visits. For patient 1, facial asymmetry was calculated by comparing left-to-right displacement signals. For patient 2, visual reaction time was measured, and facial motion intensity and response rate were compared with self-reported depression and anxiety scales. Results: DISC effectively mapped biomechanical properties of facial motions, providing detailed spatial and temporal resolution of muscle activity. In a control cohort of 10 subjects, when executing a facial expression, the degree of left/right facial asymmetry was determined to be 13.2 (8)%. And showed a robust response in an average of 275 (81) milliseconds to five out of the five images shown. For patient 1, obtained an initial asymmetry of nearly 100%, which decreased steadily to 20% in one month, demonstrating a progressive recovery. Patient 2 exhibited a prolonged reaction time of 518 (93) milliseconds and reduced response rates compared with controls of 275 (81) milliseconds and a decrease in the overall rate of response relative to the control group. The data obtained before treatment in three visits correlated strongly with selected depression and anxiety scores. Conclusions: These findings highlight the utility of DISC in enhancing clinical monitoring, complementing traditional examinations and self-reported measures. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 5272 KB  
Article
Biomechanics of Spiral Fractures: Investigating Periosteal Effects Using Digital Image Correlation
by Ghaidaa A. Khalid, Ali Al-Naji and Javaan Chahl
J. Imaging 2025, 11(6), 187; https://doi.org/10.3390/jimaging11060187 - 7 Jun 2025
Viewed by 1885
Abstract
Spiral fractures are a frequent clinical manifestation of child abuse, particularly in non-ambulatory infants. Approximately 50% of fractures in children under one year of age are non-accidental, yet differentiating between accidental and abusive injuries remains challenging, as no single fracture type is diagnostic [...] Read more.
Spiral fractures are a frequent clinical manifestation of child abuse, particularly in non-ambulatory infants. Approximately 50% of fractures in children under one year of age are non-accidental, yet differentiating between accidental and abusive injuries remains challenging, as no single fracture type is diagnostic in isolation. The objective of this study is to investigate the biomechanics of spiral fractures in immature long bones and the role of the periosteum in modulating fracture behavior under torsional loading. Methods: Paired metatarsal bone specimens from immature sheep were tested using controlled torsional loading at two angular velocities (90°/s and 180°/s). Specimens were prepared through potting, application of a base coat, and painting of a speckle pattern suitable for high-speed digital image correlation (HS-DIC) analysis. Both periosteum-intact and periosteum-removed groups were included. Results: Spiral fractures were successfully induced in over 85% of specimens. Digital image correlation revealed localized diagonal tensile strain at the fracture initiation site, with opposing compressive zones. Notably, bones with intact periosteum exhibited broader tensile stress regions before and after failure, suggesting a biomechanical role in constraining deformation. Conclusion: This study presents a novel integration of high-speed digital image correlation (DIC) with paired biomechanical testing to evaluate the periosteum’s role in spiral fracture formation—an area that remains underexplored. The findings offer new insight into the strain distribution dynamics in immature long bones and highlight the periosteum’s potential protective contribution under torsional stress. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

21 pages, 6990 KB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Cited by 2 | Viewed by 3295
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

Back to TopTop