Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications
Abstract
1. Introduction
- The design and development of an electronic interface for acquiring ultrasonic signals generated by a piezoelectric transducer in a commercial ultrasound device, with a focus on improving medical image reconstruction.
- The implementation of a low-cost, modular, and replicable acquisition system that can be integrated into future portable medical imaging solutions.
- The functional validation through the acquisition of real signals and testing under controlled experimental conditions, providing preliminary evidence of its potential usefulness for future clinical and research applications.
2. Electronic Interface Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malinowska, N.; Phang, S.; Furniss, D.; Seddon, A.B.; Benson, T.M.; Domagała, Z.; Beres-Pawlik, E. Evolutionary Methods in Clinical Diagnostics. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Amini, M.; Liu, P.; Umbaugh, S.E.; Marino, D.J.; Loughin, C.A. Thermographic Image Analysis Method in Detection of Canine Bone Cancer (Osteosarcoma). In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18 October 2012; pp. 485–489. [Google Scholar] [CrossRef]
- Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.; Foran, D.; Do, N.; Golemati, S.; Kurc, T.; et al. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857. [Google Scholar] [CrossRef] [PubMed]
- Ladrova, M.; Martinek, R.; Nedoma, J.; Hanzlikova, P.; Nelson, M.D.; Kahankova, R.; Brablik, J.; Kolarik, J. Monitoring and Synchronization of Cardiac and Respiratory Traces in Magnetic Resonance Imaging: A Review. IEEE Rev. Biomed. Eng. 2022, 15, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.K.; Padmanabhan, P.; Yang, C.-T.; Ng, D.C.E.; Palanivel, M.; Mishra, S.; Halldin, C.; Gulyás, B. Positron Emission Tomographic Imaging in Drug Discovery. Drug Discov. Today 2022, 27, 280–291. [Google Scholar] [CrossRef]
- Cao, W.; Wu, R.; Cao, G.; He, Z. A Comprehensive Review of Computer-Aided Diagnosis of Pulmonary Nodules Based on Computed Tomography Scans. IEEE Access 2020, 8, 154007–154023. [Google Scholar] [CrossRef]
- Abdulbaqi, H.S.; Mutter, K.N.; Jafri, M.Z.M.; Al-Khafaji, Z.A. Estimation of Brain Tumour Volume Using Expanded Computed Tomography Scan Images. In Proceedings of the 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 24–25 November 2016; pp. 117–121. [Google Scholar] [CrossRef]
- Verveld, W.; de Wolf, J.R.; Legtenberg, C.G.; Knop, T.; Bosschaart, N. Human Milk Fat Globule Size Distributions: Comparison between Laser Diffraction and 3D Confocal Laser Scanning Microscopy. Food Res. Int. 2024, 198, 115282. [Google Scholar] [CrossRef]
- Neprokin, A.; Broadway, C.; Myllyla, T.; Bykov, A.; Meglinski, I. Photoacoustic Imaging in Biomedicine and Life Sciences. Life 2022, 12, 588. [Google Scholar] [CrossRef]
- Palma-Chavez, J.; Keith, A.; Yash, M.; Jesse, V.; Jokerst, W. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts. Photoacoustics 2022, 26, 100348. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, S.; Liu, Z.; Zhang, X.; Mo, Z.; Zhang, Y.; Hu, H.; Chen, W.; Qi, L. Unsupervised Fusion of Misaligned PAT and MRI Images via Mutually Reinforcing Cross-Modality Image Generation and Registration. IEEE Trans. Med. Imaging 2024, 43, 1702–1714. [Google Scholar] [CrossRef]
- Baun, J. Advances in Ultrasound Imaging Architecture: The Future Is Now. J. Diagn. Med. Sonogr. 2021, 37, 312–314. [Google Scholar] [CrossRef]
- Tanter, M.; Fink, M. Ultrafast Imaging in Biomedical Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; You, F.; Xiao, H. Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances. Micromachines 2023, 14, 1487. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Yuan, J.; Cheng, Q.; Wang, X.; Carson, P.L. Medical Breast Ultrasound Image Segmentation by Machine Learning. Ultrasonics 2019, 91, 1–9. [Google Scholar] [CrossRef]
- Jiang, X.; Du, B. Photoacoustic Imaging of Nanoparticle Transport in the Kidneys at High Temporal Resolution. Angew. Chem. 2019, 131, 6055–6061. [Google Scholar] [CrossRef]
- Choi, S.; Young, K. Internal Defect Detection Using Laser-Generated Longitudinal Waves in Ablation Regime. J. Mech. Sci. Technol. 2018, 32, 4192–4200. [Google Scholar] [CrossRef]
- Nyayapathi, N.; Xia, J. Photoacoustic Imaging of Breast Cancer: A Mini Review of System Design and Image Features. J. Biomed. Opt. 2019, 24, 121911. [Google Scholar] [CrossRef]
- Kang, L.; Li, X.; Zhang, Y.; Wong, T.T.W. Deep Learning Enables Ultraviolet Photoacoustic Microscopy Based Histological Imaging with Near Real-Time Virtual Staining. Photoacoustics 2022, 25, 100308. [Google Scholar] [CrossRef]
- Chowdary, J.; Yogarajah, P.; Chaurasia, P.; Guruviah, V. A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors from Ultrasound Images. Ultrason. Imaging 2022, 44, 3–12. [Google Scholar] [CrossRef]
- Deng, J.; Qu, G.; Ren, S.; Wang, C.; Wang, J.; Zhao, X.; Bai, G. Experimental Study on Acoustic Wave Propagation Characteristics and Main Paths in Loose Coal. J. China Coal Soc. 2023, 48, 1238–1245. [Google Scholar]
- Przybył, K.; Duda, A.; Koszela, K.; Stangierski, J.; Polarczyk, M.; Gierz, Ł. Classification of Dried Strawberry by the Analysis of the Acoustic Sound with Artificial Neural Networks. Sensors 2020, 20, 499. [Google Scholar] [CrossRef]
- Grahama, M.; Huang, J. Simulations and Human Cadaver Head Studies to Identify Optimal Acoustic Receiver Locations for Minimally Invasive Photoacoustic-Guided Neurosurgery. Photoacoustics 2020, 19, 100183. [Google Scholar] [CrossRef]
- Huang, Y.; Das, P.K.; Bhethanabotla, V.R. Surface Acoustic Waves in Biosensing Applications. Sens. Actuators Rep. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Hakakzadeh, S.; Mozaffarzadeh, M. Multi-Angle Data Acquisition to Compensate Transducer Finite Size in Photoacoustic Tomography. Photoacoustics 2022, 27, 100373. [Google Scholar] [CrossRef]
- Steinberg, I.; Schneider, M. Superiorized Photo-Acoustic Non-Negative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging. IEEE Trans. Med. Imaging 2021, 40, 1888–1897. [Google Scholar] [CrossRef]
- Yang, G.; Amidi, E. Photoacoustic Tomography Reconstruction Using Lag-Based Delay Multiply and Sum with a Coherence Factor Improves In Vivo Ovarian Cancer Diagnosis. Biomed. Opt. Express 2021, 12, 2250–2263. [Google Scholar] [CrossRef]
- Ruiz, M.; Gutiérrez, G.; Polo, L.; Cortalezzi, F. Image Reconstruction Algorithm for Laser-Induced Ultrasonic Imaging: The Single Sensor Scanning Synthetic Aperture Focusing Technique. J. Acoust. Soc. Am. 2023, 153, 560–572. [Google Scholar] [CrossRef]
- Garcia, D. SIMUS: An Open-Source Simulator for Medical Ultrasound Imaging. Part I: Theory & Examples. Comput. Methods Programs Biomed. 2022, 218, 106726. [Google Scholar] [CrossRef]
- Quien, M.M.; Saric, M. Ultrasound Imaging Artifacts: How to Recognize Them and How to Avoid Them. Echocardiography 2018, 35, 1388–1401. [Google Scholar] [CrossRef]
- Claudon, M.; Bergès, O. Artifacts in Ultrasound. In Echography of the Eye and Orbit; Bergès, O., Ed.; Springer: Cham, Germany, 2024. [Google Scholar] [CrossRef]
- Hakakzadeh, S.; Amjadian, M.; Zhang, Y.; Mostafavi, S.; Kavehvash, Z.; Wang, L. Signal Restoration Algorithm for Photoacoustic Imaging Systems. Biomed. Opt. Express 2023, 14, 651–666. [Google Scholar] [CrossRef]
- Kremkau, F.W.; Taylor, K.J. Artifacts in Ultrasound Imaging. J. Ultrasound Med. 1986, 5, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.T.; Flint, K.M.; McNally, P.J.; Ellestad, S.C.; Trahey, G.E. Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications. Ultrason. Imaging 2024, 46, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Gokhan, G.; Nasire, U.; Aytac, D.; Aytac, E. Comparison of Noise Reduction Methods in Photoacoustic Microscopy. Comput. Biol. Med. 2019, 109, 333–341. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J. Despeckling Algorithm for Removing Speckle Noise from Ultrasound Images. Symmetry 2020, 12, 938. [Google Scholar] [CrossRef]
- Duarte, A.; Castro, M.A.B.; Becerra, E.; Delgado-Trejos, E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access 2020, 8, 15983–15999. [Google Scholar] [CrossRef]
- Rodríguez, N.A.; Cruz, V.; Gómez, A.; Hernández-Alvarado, R.; Nava-Balanzar, L.; Salgado-Jiménez, T.; Soto-Cajiga, J.A. Improvement of Ultrasonic Pulse Generator for Automatic Pipeline Inspection. Sensors 2018, 18, 2950. [Google Scholar] [CrossRef]
- Bushberg, J.T.; Seibert, J.A.; Leidholdt, E.M.; Boone, J.M. The Essential Physics of Medical Imaging, 3rd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Mahesh, M. The Essential Physics of Medical Imaging, Third Edition. Med. Phys. 2013, 40, 077301. [Google Scholar] [CrossRef]
- Balcells, J. Interferencias Electromagnéticas en Sistemas Electrónicos; Marcombo: Barcelona, Spain, 1991. [Google Scholar]
- Veraguas, J.P.L. Compatibilidad Electromagnética y Seguridad Funcional en Sistemas Electrónicos; Marcombo: Barcelona, Spain, 2010. [Google Scholar]
- Banco de México. Moneda de 50 Centavos de la Familia D, Circulación. Available online: https://www.banxico.org.mx (accessed on 2 May 2025).
Parameter | Specification |
---|---|
Phenolic board material | Epoxy fiberglass |
Maximum deformation temperature | 130 °C |
Breakdown voltage | 3000 V |
Thermal conductivity | 1 W/mK |
Copper weight | 1 OZ |
Color | Verde |
Phenolic board dimensions | 60 mm × 78 mm |
Number of planes | 6 planes |
Plate thickness | 1.6 mm |
Average number of tracks per plan | 36 |
Inlet and outlet port dimensions | 10 mm × 50 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espitia-Romero, E.; Guzmán-López, A.; Bravo-Sánchez, M.G.; Martínez-Nolasco, J.J.; Padilla Medina, J.A.; Villaseñor-Ortega, F. Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications. Technologies 2025, 13, 270. https://doi.org/10.3390/technologies13070270
Espitia-Romero E, Guzmán-López A, Bravo-Sánchez MG, Martínez-Nolasco JJ, Padilla Medina JA, Villaseñor-Ortega F. Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications. Technologies. 2025; 13(7):270. https://doi.org/10.3390/technologies13070270
Chicago/Turabian StyleEspitia-Romero, Elizabeth, Adriana Guzmán-López, Micael Gerardo Bravo-Sánchez, Juan José Martínez-Nolasco, José Alfredo Padilla Medina, and Francisco Villaseñor-Ortega. 2025. "Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications" Technologies 13, no. 7: 270. https://doi.org/10.3390/technologies13070270
APA StyleEspitia-Romero, E., Guzmán-López, A., Bravo-Sánchez, M. G., Martínez-Nolasco, J. J., Padilla Medina, J. A., & Villaseñor-Ortega, F. (2025). Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications. Technologies, 13(7), 270. https://doi.org/10.3390/technologies13070270