Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,657)

Search Parameters:
Keywords = digital model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5287 KB  
Article
Doing Good or Doing Better? Comparing Freelance and Employment Models for a Social Sustainable Food Delivery Sector
by Riccardo Tronconi and Francesco Pilati
Sustainability 2025, 17(19), 8876; https://doi.org/10.3390/su17198876 (registering DOI) - 4 Oct 2025
Abstract
Delivery platforms in urban logistics connect providers with customers through distribution riders, who are usually distinguished by low incomes and limited social rights. This paper aims to compare and analyze the freelance and employment models for riders in different European countries in terms [...] Read more.
Delivery platforms in urban logistics connect providers with customers through distribution riders, who are usually distinguished by low incomes and limited social rights. This paper aims to compare and analyze the freelance and employment models for riders in different European countries in terms of social sustainability, i.e., work motivation and labor rights. To reach this goal, two activities were performed. On the one hand, qualitative interviews with German and Italian riders were carried out. On the other hand, a dynamic metaheuristic algorithm was developed and implemented to simulate an employment model with a central provider that manages order requests in real-time. The qualitative interviews indicate that riders’ motivations differ between freelance riders and employed riders: freelance riders do feel more controlled. Using a quantitative algorithm, this manuscript shows that when an efficient centralized order–rider assignment strategy is applied, a socially sustainable and simultaneously profitable employment model for food delivery businesses is possible. The results have the potential to legitimize adequate rights and salaries for riders while allowing digital platforms to operate profitably. Such win–win situations could support the implementation of platform structures across different logistics sectors and overcome conflicts regarding working rights in such contexts. Full article
(This article belongs to the Section Sustainable Engineering and Science)
40 pages, 4433 KB  
Article
Economic Convergence Analyses in Perspective: A Bibliometric Mapping and Its Strategic Implications (1982–2025)
by Geisel García-Vidal, Néstor Alberto Loredo-Carballo, Reyner Pérez-Campdesuñer and Gelmar García-Vidal
Economies 2025, 13(10), 289; https://doi.org/10.3390/economies13100289 (registering DOI) - 4 Oct 2025
Abstract
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: [...] Read more.
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: (1) formal statistical models, (2) institutional-contextual approaches, (3) theoretical–statistical foundations, (4) nonlinear historical dynamics, and (5) normative and policy assessments. These reflect a shift from descriptive to explanatory and prescriptive frameworks, with growing integration of sustainability, spatial analysis, and institutional factors. The most productive journals include Journal of Econometrics (121 articles), Applied Economics (117), and Journal of Cleaner Production (81), while seminal contributions by Quah, Im et al., and Levin et al. anchor the co-citation network. International collaboration is significant, with 25.99% of publications involving cross-country co-authorship, particularly in European and North American networks. The field has grown at a compound annual rate of 14.4%, accelerating after 2000 and peaking in 2022–2024, indicating sustained academic interest. These findings highlight the maturation of convergence analysis as a multidisciplinary domain. Practically, this study underscores the value of composite indicators and spatial econometric models for monitoring regional, environmental, and technological convergence—offering policymakers tools for inclusive growth, climate resilience, and innovation strategies. Moreover, the emergence of clusters around sustainability and digital transformation reveals fertile ground for future research at the intersection of transitions in energy, digital, and institutional domains and sustainable development (a broader sense of structural change). Full article
(This article belongs to the Special Issue Regional Economic Development: Policies, Strategies and Prospects)
Show Figures

Figure 1

18 pages, 6931 KB  
Article
Research on Multi-Sensor Data Fusion Based Real-Scene 3D Reconstruction and Digital Twin Visualization Methodology for Coal Mine Tunnels
by Hongda Zhu, Jingjing Jin and Sihai Zhao
Sensors 2025, 25(19), 6153; https://doi.org/10.3390/s25196153 (registering DOI) - 4 Oct 2025
Abstract
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The [...] Read more.
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The research employs cubemap-based mapping technology to project acquired real-time tunnel images onto six faces of a cube, combined with navigation information, pose data, and synchronously acquired point cloud data to achieve spatial alignment and data fusion. On this basis, inner/outer corner detection algorithms are utilized for precise image segmentation, and a point cloud region growing algorithm integrated with information entropy optimization is proposed to realize complete recognition and segmentation of tunnel planes (e.g., roof, floor, left/right sidewalls) and high-curvature feature objects (e.g., ventilation ducts). Furthermore, geometric dimensions extracted from segmentation results are used to construct 3D models, and real-scene images are mapped onto model surfaces via UV (U and V axes of texture coordinate) texture mapping technology, generating digital twin models with authentic texture details. Experimental validation demonstrates that the method performs excellently in both simulated and real coal mine environments, with models capable of faithfully reproducing tunnel spatial layouts and detailed features while supporting multi-view visualization (e.g., bottom view, left/right rotated views, front view). This approach provides efficient and precise technical support for digital twin construction, fine-grained structural modeling, and safety monitoring of coal mine tunnels, significantly enhancing the accuracy and practicality of photorealistic 3D modeling in intelligent mining applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 815 KB  
Article
Synthetic Indicator of the Use of Mobile Technologies in Spanish Universities by Teachers of Social Sciences
by Rosaura Fernández-Pascual, María Pinto and David Caballero Mariscal
Metrics 2025, 2(4), 20; https://doi.org/10.3390/metrics2040020 (registering DOI) - 4 Oct 2025
Abstract
Digital transformation in higher education necessitates a central role for university faculty, yet there is a lack of comprehensive tools to measure their actual pedagogical use of technology. This study aims to refine the definition of a composite indicator to evaluate mobile technology [...] Read more.
Digital transformation in higher education necessitates a central role for university faculty, yet there is a lack of comprehensive tools to measure their actual pedagogical use of technology. This study aims to refine the definition of a composite indicator to evaluate mobile technology adoption among social science university teachers. Using the results of the validated MOBILE-APP questionnaire, administered to a sample of N = 295 teachers from various social science degree programs, we employed multilevel structural equation modeling (SEM) to develop and implement a synthetic indicator for assessing mobile technology adoption levels among educators. The analysis of the considered factors (motivation, training, tools, and use) revealed differences in mobile technology adoption based on degree program, age, and previous experience. High motivation, training, use of institutional tools, and propensity for use promote the adoption of mobile technologies. Three levels of mobile technology adoption are identified and characterized. This synthetic indicator can be used both technically and socially to track the evolution of mobile technology adoption, enabling comparative analyses and longitudinal assessments that inform strategic decisions in training, infrastructure, and curriculum development. This research represents a step forward in the development of quantitative indicators and the assessment of research practices. Full article
Show Figures

Figure 1

21 pages, 4282 KB  
Article
PoseNeRF: In Situ 3D Reconstruction Method Based on Joint Optimization of Pose and Neural Radiation Field for Smooth and Weakly Textured Aeroengine Blade
by Yao Xiao, Xin Wu, Yizhen Yin, Yu Cai and Yuanhan Hou
Sensors 2025, 25(19), 6145; https://doi.org/10.3390/s25196145 (registering DOI) - 4 Oct 2025
Abstract
Digital twins are essential for the real-time health management and monitoring of aeroengines, and the in situ three-dimensional (3D) reconstruction technology of key components of aeroengines is an important support for the construction of a digital twin model. In this paper, an in [...] Read more.
Digital twins are essential for the real-time health management and monitoring of aeroengines, and the in situ three-dimensional (3D) reconstruction technology of key components of aeroengines is an important support for the construction of a digital twin model. In this paper, an in situ high-fidelity 3D reconstruction method, named PoseNeRF, for aeroengine blades based on the joint optimization of pose and neural radiance field (NeRF), is proposed. An aeroengine blades background filtering network based on complex network theory (ComBFNet) is designed to filter out the useless background information contained in the two-dimensional (2D) images and improve the fidelity of the 3D reconstruction of blades, and the mean intersection over union (mIoU) of the network reaches 95.5%. The joint optimization loss function, including photometric loss, depth loss, and point cloud loss is proposed. The method solves the problems of excessive blurring and aliasing artifacts, caused by factors such as smooth blade surface and weak texture information in 3D reconstruction, as well as the cumulative error problem caused by camera pose pre-estimation. The PSNR, SSIM, and LPIPS of the 3D reconstruction model proposed in this paper reach 25.59, 0.719, and 0.239, respectively, which are superior to other general models. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

24 pages, 11415 KB  
Article
Multi-Scale Investigation on Bearing Capacity and Load-Transfer Mechanism of Screw Pile Group via Model Tests and DEM Simulation
by Fenghao Bai, Ye Lu and Jiaxiang Yang
Buildings 2025, 15(19), 3581; https://doi.org/10.3390/buildings15193581 (registering DOI) - 4 Oct 2025
Abstract
Screw piles are widely used in infrastructure, such as railways, highways, and ports, etc., owing to their large pile resistance compared to unthreaded piles. While most screw pile research focuses on single pile behavior under rotational installation using torque-capacity correlations. Limited studies investigate [...] Read more.
Screw piles are widely used in infrastructure, such as railways, highways, and ports, etc., owing to their large pile resistance compared to unthreaded piles. While most screw pile research focuses on single pile behavior under rotational installation using torque-capacity correlations. Limited studies investigate group effects under alternative installation methods. In this study, the load-transfer mechanism of screw piles and soil displacement under vertical installation was explored using laboratory model tests combined with digital image correlation techniques. In addition, numerical simulations using the discrete element method were performed. Based on both lab tests and numerical simulation results, it is discovered that the ultimate bearing capacity of a single screw pile was approximately 50% higher than that of a cylindrical pile with the same outer diameter and length. For pile groups, the group effect coefficient of a triple-pile group composed of screw piles was 0.64, while that of cylindrical piles was 0.55. This phenomenon was caused by the unique thread-soil interaction of screw piles. The threads generated greater side resistance and reduced stress concentration at the pile tip compared with cylindrical piles. Moreover, the effects of pile type, pile number, embedment length, pile spacing, and thread pitch on pile resistance and soil displacement were also investigated. The findings in this study revealed the micro–macro correspondence of screw pile performance and can serve as references for pile construction in practice. Full article
(This article belongs to the Special Issue Structural Engineering in Building)
Show Figures

Figure 1

27 pages, 10093 KB  
Article
Estimating Gully Erosion Induced by Heavy Rainfall Events Using Stereoscopic Imagery and UAV LiDAR
by Lu Wang, Yuan Qi, Wenwei Xie, Rui Yang, Xijun Wang, Shengming Zhou, Yanqing Dong and Xihong Lian
Remote Sens. 2025, 17(19), 3363; https://doi.org/10.3390/rs17193363 (registering DOI) - 4 Oct 2025
Abstract
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface [...] Read more.
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface models (DSM) for the years 2014 and 2024 using Ziyuan-3 and GaoFen-7 satellite stereo imagery, respectively. Subsequently, the DSM was calibrated using high-resolution unmanned aerial vehicle photogrammetry data to enhance elevation accuracy. Based on the corrected DSMs, gully erosion depths from 2014 to 2024 were quantified. Erosion patches were identified through a deep learning framework applied to GaoFen-1 and GaoFen-2 imagery. The analysis further explored the influences of natural processes and anthropogenic activities on elevation changes within the gully erosion watershed. Topographic monitoring in the Sandu River watershed revealed a net elevation loss of 2.6 m over 2014–2024, with erosion depths up to 8 m in some sub-watersheds. Elevation changes are primarily driven by extreme precipitation-induced erosion alongside human activities, resulting in substantial spatial variability in surface lowering across the watershed. This approach provides a refined assessment of the spatial and temporal evolution of gully erosion, offering valuable insights for soil conservation and sustainable land management strategies in the Loess Plateau region. Full article
Show Figures

Figure 1

18 pages, 552 KB  
Article
A Novel Convolutional Vision Transformer Network for Effective Level-of-Detail Awareness in Digital Twins
by Min-Seo Yang, Ji-Wan Kim and Hyun-Suk Lee
Electronics 2025, 14(19), 3942; https://doi.org/10.3390/electronics14193942 (registering DOI) - 4 Oct 2025
Abstract
In this paper, we propose a novel integrated model architecture, called a level-of-detail (LoD)-aware convolutional vision transformer network (LCvT). It is designed to enhance digital twin (DT) synchronization by effectively integrating LoD awareness in DTs through hierarchical image classification. LCvT employs a vision [...] Read more.
In this paper, we propose a novel integrated model architecture, called a level-of-detail (LoD)-aware convolutional vision transformer network (LCvT). It is designed to enhance digital twin (DT) synchronization by effectively integrating LoD awareness in DTs through hierarchical image classification. LCvT employs a vision transformer (ViT)-based backbone coupled with dedicated branch networks for each LoD. This integration of ViT and branch networks ensures that key features are accurately detected and tailored to the specific objectives of each detail level while also efficiently extracting common features across all levels. Furthermore, LCvT leverages a coarse-to-fine inference strategy and incorporates an early exit mechanism for each LoD, which significantly reduces computational overhead without compromising accuracy. This design enables a single model to dynamically adapt to varying LoD requirements in real-time, offering substantial improvements in inference time and resource efficiency compared to deploying separate models for each level. Through extensive experiments on benchmark datasets, we demonstrate that LCvT outperforms existing methods in accuracy and efficiency across all LoDs, especially in DT synchronization scenarios where LoD requirements fluctuate dynamically. Full article
(This article belongs to the Special Issue Data-Centric Artificial Intelligence: New Methods for Data Processing)
Show Figures

Figure 1

20 pages, 2812 KB  
Article
Seven Decades of River Change: Sediment Dynamics in the Diable River, Quebec
by Ali Faghfouri, Daniel Germain and Guillaume Fortin
Geosciences 2025, 15(10), 388; https://doi.org/10.3390/geosciences15100388 (registering DOI) - 4 Oct 2025
Abstract
This study reconstructs seven decades (1949–2019) of morphodynamic changes and sediment dynamics in the Diable River (Québec, Canada) using nine series of aerial photographs, a high-resolution LiDAR Digital Elevation Model (2021), and grain-size analysis. The objectives were to document long-term river evolution, quantify [...] Read more.
This study reconstructs seven decades (1949–2019) of morphodynamic changes and sediment dynamics in the Diable River (Québec, Canada) using nine series of aerial photographs, a high-resolution LiDAR Digital Elevation Model (2021), and grain-size analysis. The objectives were to document long-term river evolution, quantify erosion and deposition, and evaluate sediment connectivity between eroding sandy bluffs and depositional zones. Planform analysis and sediment budgets derived from DEMs of Difference (DoD) reveal an oscillatory trajectory characterized by alternating phases of sediment export and temporary stabilization, rather than a simple trend of degradation or aggradation. The most dynamic interval (1980–2001) was marked by widespread meander migration and the largest net export (−142.5 m3/km/year), whereas the 2001–2007 interval showed net storage (+70.8 m3/km/year) and short-term geomorphic recovery. More recent floods (2017, 2019; 20–50-year return periods) induced localized but persistent sediment loss, underlining the structuring role of extreme events. Grain-size results indicate partial connectivity: coarse fractions tend to remain in local depositional features, while finer sediments are preferentially exported downstream. These findings emphasize the geomorphic value of temporary sediment sinks (bars, beaches) and highlight the need for adaptive river management strategies that integrate sediment budgets and local knowledge into floodplain governance. Full article
22 pages, 48967 KB  
Article
Parametric Blending with Geodesic Curves on Triangular Meshes
by Seong-Hyeon Kweon, Seung-Yong Lee and Seung-Hyun Yoon
Mathematics 2025, 13(19), 3184; https://doi.org/10.3390/math13193184 (registering DOI) - 4 Oct 2025
Abstract
This paper presents an effective method for generating blending meshes by leveraging geodesic curves on triangular meshes. Depending on whether the input meshes intersect, the blending regions are automatically initialized using either minimum-distance points or intersection curves, while allowing users to intuitively adjust [...] Read more.
This paper presents an effective method for generating blending meshes by leveraging geodesic curves on triangular meshes. Depending on whether the input meshes intersect, the blending regions are automatically initialized using either minimum-distance points or intersection curves, while allowing users to intuitively adjust boundary curves directly on the mesh. Each blending region is parameterized via geodesic linear interpolation, and a reparameterization strategy is employed to establish optimal correspondences between boundary curves, ensuring smooth, twist-free connections. The resulting blending mesh is merged with the input meshes through subdivision, trimming, and co-refinement along the boundaries. The proposed method is applicable to both intersecting and non-intersecting meshes and offers flexible control over the shape and curvature of the blending region through various user-defined parameters, such as boundary radius, scaling factor, and blending function parameters. Experimental results demonstrate that the method produces stable and smooth transitions even for complex geometries, highlighting its robustness and practical applicability in diverse domains including digital fabrication, mechanical design, and 3D object modeling. Full article
(This article belongs to the Special Issue Mathematical Applications in Computer Graphics)
35 pages, 2867 KB  
Review
Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches
by Thierry Garlan, Rafael Almar and Erwin W. J. Bergsma
Remote Sens. 2025, 17(19), 3360; https://doi.org/10.3390/rs17193360 (registering DOI) - 4 Oct 2025
Abstract
This review synthesizes the current knowledge of the various natural and human-caused processes that influence the evolution of sandy beaches and explores ways to improve predictions. Short-term storm-driven dynamics have been extensively studied, but long-term changes remain poorly understood due to a limited [...] Read more.
This review synthesizes the current knowledge of the various natural and human-caused processes that influence the evolution of sandy beaches and explores ways to improve predictions. Short-term storm-driven dynamics have been extensively studied, but long-term changes remain poorly understood due to a limited grasp of non-wave drivers, outdated topo-bathymetric (land–sea continuum digital elevation model) data, and an absence of systematic uncertainty assessments. In this study, we classify and analyze the various drivers of beach change, including meteorological, oceanographic, geological, biological, and human influences, and we highlight their interactions across spatial and temporal scales. We place special emphasis on the role of remote sensing, detailing the capacities and limitations of optical, radar, lidar, unmanned aerial vehicle (UAV), video systems and satellite Earth observation for monitoring shoreline change, nearshore bathymetry (or seafloor), sediment dynamics, and ecosystem drivers. A case study from the Langue de Barbarie in Senegal, West Africa, illustrates the integration of in situ measurements, satellite observations, and modeling to identify local forcing factors. Based on this synthesis, we propose a structured framework for quantifying uncertainty that encompasses data, parameter, structural, and scenario uncertainties. We also outline ways to dynamically update nearshore bathymetry to improve predictive ability. Finally, we identify key challenges and opportunities for future coastal forecasting and emphasize the need for multi-sensor integration, hybrid modeling approaches, and holistic classifications that move beyond wave-only paradigms. Full article
20 pages, 620 KB  
Article
Discriminative Regions and Adversarial Sensitivity in CNN-Based Malware Image Classification
by Anish Roy and Fabio Di Troia
Electronics 2025, 14(19), 3937; https://doi.org/10.3390/electronics14193937 (registering DOI) - 4 Oct 2025
Abstract
The escalating prevalence of malware poses a significant threat to digital infrastructure, demanding robust yet efficient detection methods. In this study, we evaluate multiple Convolutional Neural Network (CNN) architectures, including basic CNN, LeNet, AlexNet, GoogLeNet, and DenseNet, on a dataset of 11,000 malware [...] Read more.
The escalating prevalence of malware poses a significant threat to digital infrastructure, demanding robust yet efficient detection methods. In this study, we evaluate multiple Convolutional Neural Network (CNN) architectures, including basic CNN, LeNet, AlexNet, GoogLeNet, and DenseNet, on a dataset of 11,000 malware images spanning 452 families. Our experiments demonstrate that CNN models can achieve reliable classification performance across both multiclass and binary tasks. However, we also uncover a critical weakness in that even minimal image perturbations, such as pixel modification lower than 1% of the total image pixels, drastically degrade accuracy and reveal CNNs’ fragility in adversarial settings. A key contribution of this work is spatial analysis of malware images, revealing that discriminative features concentrate disproportionately in the bottom-left quadrant. This spatial bias likely reflects semantic structure, as malware payload information often resides near the end of binary files when rasterized. Notably, models trained in this region outperform those trained in other sections, underscoring the importance of spatial awareness in malware classification. Taken together, our results reveal that CNN-based malware classifiers are simultaneously effective and vulnerable to learning strong representations but sensitive to both subtle perturbations and positional bias. These findings highlight the need for future detection systems that integrate robustness to noise with resilience against spatial distortions to ensure reliability in real-world adversarial environments. Full article
(This article belongs to the Special Issue AI and Cybersecurity: Emerging Trends and Key Challenges)
Show Figures

Figure 1

19 pages, 1011 KB  
Article
Uprooting Technostress: Digital Leadership Empowering Employee Well-Being in the Era of Industry 4.0
by Panteha Farmanesh, Asim Vehbi and Niloofar Solati Dehkordi
Sustainability 2025, 17(19), 8868; https://doi.org/10.3390/su17198868 (registering DOI) - 4 Oct 2025
Abstract
This study investigates the influence of technostress (Tech) on the well-being (WB) of employees in manufacturing sectors employing Industry 4.0 in Turkey, examining the effect of work exhaustion (WE) as a mediator in the association between technostress and well-being. How digital leadership (Dg) [...] Read more.
This study investigates the influence of technostress (Tech) on the well-being (WB) of employees in manufacturing sectors employing Industry 4.0 in Turkey, examining the effect of work exhaustion (WE) as a mediator in the association between technostress and well-being. How digital leadership (Dg) moderates these relationships is analyzed and discussed accordingly. This article also presents strategies for digital leaders to mitigate employees’ technostress in the digital transformation era and discusses their positive role. Using the Job Demands–Resources (JD-R) framework and Conservation of Resources (COR) theory, data were gathered from 329 workers employed at three manufacturing firms located in Istanbul. Structural equation modeling (SEM) was employed to test this study’s hypothesis. The results indicate that increased technostress notably reduces employee well-being, primarily because it heightens work exhaustion. Moreover, robust digital leadership effectively lessens these negative impacts, underscoring its value in managing technological stress. This research explains the importance of the Sustainable Development Goal (SDG 3) for better health and well-being practices in workplaces. It suggests practical implications for organizations, including developing digital leadership skills, routinely assessing technostress, and applying targeted actions to sustain employee health during digital shifts. Full article
(This article belongs to the Special Issue New Trends in Organizational Psychology—2nd Edition)
Show Figures

Figure 1

18 pages, 9463 KB  
Article
DIC-Based Crack Mode Identification and Constitutive Modeling of Magnesium-Based Wood-like Materials Under Uniaxial Compression
by Chunjie Li, Kaicong Kuang, Huaxiang Yang, Hongniao Chen, Jun Cai and Johnny F. I. Lam
Forests 2025, 16(10), 1542; https://doi.org/10.3390/f16101542 (registering DOI) - 4 Oct 2025
Abstract
This study investigates the uniaxial compression failure of magnesium-based wood-like material (MWM) prisms (100 × 100 × 300 mm3) using digital image correlation (DIC). The results revealed an average compressive strength of 8.76 MPa and a dominant failure mode with Y-shaped [...] Read more.
This study investigates the uniaxial compression failure of magnesium-based wood-like material (MWM) prisms (100 × 100 × 300 mm3) using digital image correlation (DIC). The results revealed an average compressive strength of 8.76 MPa and a dominant failure mode with Y-shaped or inclined penetrating cracks. A novel piecewise constitutive model was established, combining a quartic polynomial and a rational fraction, demonstrating high fitting accuracy. Critically, the proportional limit was identified to be very low (20–35% of peak stress), attributed to early-stage damage from fiber–matrix interfacial defects. DIC analysis quantitatively distinguished dual crack initiation modes, pure mode I (occurring at ≈100% peak load) and mixed mode I/II (initiating earlier at 90.02% peak load), demonstrating that tensile shear coupling accelerates failure. These findings provide critical mechanistic insights and a reliable model for optimizing MWM in sustainable construction. Future work will explore the material’s behavior under multiaxial loading. Full article
(This article belongs to the Special Issue Advanced Numerical and Experimental Methods for Timber Structures)
Show Figures

Figure 1

27 pages, 2297 KB  
Article
Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices
by Arokiaraj A. Amalan and I. Arul Aram
Sustainability 2025, 17(19), 8865; https://doi.org/10.3390/su17198865 (registering DOI) - 4 Oct 2025
Abstract
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates [...] Read more.
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates AI adoption among NCAM farmers using an Integrated Mechanism for Sustainable Practices (IMSP) conceptual framework which combines the Technology Acceptance Model (TAM) with a justice-centred approach. A mixed-methods design was employed, incorporating Fuzzy-Set Qualitative Comparative Analysis (fsQCA) of AI adoption pathways based on survey data, alongside critical discourse analysis of thematic farmers narrative through a justice-centred lens. The study was conducted in Tamil Nadu between 30 September and 25 October 2024. Using purposive sampling, 57 NCAM farmers were organised into three focus groups: marginal farmers, active NCAM practitioners, and farmers from 18 districts interested in agricultural technologies and AI. This enabled an in-depth exploration of practices, adoption, and perceptions. The findings indicates that while factors such as labour shortages, mobile technology use, and cost efficiencies are necessary for AI adoption, they are insufficient without supportive extension services and inclusive communication strategies. The study refines the TAM framework by embedding economic, cultural, and political justice considerations, thereby offering a more holistic understanding of technology acceptance in sustainable agriculture. By bridging discourse analysis and fsQCA, this research underscores the need for justice-centred AI solutions tailored to diverse farming contexts. The study contributes to advancing sustainable agriculture, digital inclusion, and resilience, thereby supporting the United Nations’ Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

Back to TopTop