Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,717)

Search Parameters:
Keywords = diffusive layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2665 KB  
Article
Enhanced Transdermal Delivery via Electrospun PMMA Fiber Mats Incorporating Ibuprofen-Intercalated Layered Double Hydroxides
by Van Thi Thanh Tran, Shusei Yamashita, Hideaki Sano, Osamu Nakagoe, Shuji Tanabe and Kai Kamada
Ceramics 2025, 8(4), 124; https://doi.org/10.3390/ceramics8040124 (registering DOI) - 4 Oct 2025
Abstract
This study reports the development of electrospun poly(methyl methacrylate) (PMMA) fiber mats incorporating ibuprofen (IBU)-intercalated layered double hydroxides (LDH) for enhanced transdermal drug delivery systems (TDDS). IBU, in its anionic form, was successfully intercalated into LDH, which possesses anion exchange capabilities, and subsequently [...] Read more.
This study reports the development of electrospun poly(methyl methacrylate) (PMMA) fiber mats incorporating ibuprofen (IBU)-intercalated layered double hydroxides (LDH) for enhanced transdermal drug delivery systems (TDDS). IBU, in its anionic form, was successfully intercalated into LDH, which possesses anion exchange capabilities, and subsequently embedded into PMMA fibers via electrospinning. In vitro drug release experiments demonstrated that UPMMA–LDH–IBU fibers exhibited significantly higher IBU release than PMMA–IBU controls. This enhancement was attributed to the improved hydrophilicity and water absorption imparted by the LDH, as confirmed by contact angle and water uptake measurements. Furthermore, artificial skin permeation tests revealed that the UPMMA–LDH–IBU fibers maintained comparable release rates to those observed during buffer immersion, indicating that the rate-limiting step was the diffusion of IBU within the fiber matrix rather than the interface with the skin or buffer. These findings highlight the critical role of LDH in modulating drug release behavior and suggest that UPMMA–LDH–IBU electrospun fiber mats offer a promising and efficient platform for advanced TDDS applications. Full article
(This article belongs to the Special Issue Ceramics Containing Active Molecules for Biomedical Applications)
Show Figures

Figure 1

23 pages, 2767 KB  
Article
Study on Chloride Diffusion Performance and Structural Durability Design of UHPC Under Chloride Salt Erosion
by Wenbo Kang, Kuihua Mei, Wei Liu and Shengjiang Sun
Buildings 2025, 15(19), 3569; https://doi.org/10.3390/buildings15193569 - 3 Oct 2025
Abstract
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) [...] Read more.
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) and rapid chloride migration (RCM) tests. Additionally, this study presents the first development of a time-dependent diffusion model for UHPC under chloride corrosion, as well as the proposal of a performance-based design method for calculating the protective layer thickness. Results show that the incorporation of steel fibers reduced the chloride diffusion coefficient (D) by 37.9%. The free chloride content (FCC) in UHPC increased by 92.0% at 2 mm after 300 d of the action of LTI. D decreased by up to 91.0%, whereas the surface chloride concentration (Cs) increased by up to 92.5% under the action of LTI. The time-dependent models of D and Cs followed power and logarithmic functions, respectively. An increase in UHPC surface temperature, relative humidity, and tensile stress ratio significantly diminishes the chloride resistance of UHPC. The minimum UHPC protective layer thicknesses required for UHPC-HPC composite beams with design service lives of 100 years, 150 years, and 200 years are 30 mm, 37 mm, and 43 mm, respectively. Full article
(This article belongs to the Section Building Structures)
18 pages, 5613 KB  
Article
The Impact of Selected ESD Parameters on the Properties of Tungsten Layers
by Piotr Młynarczyk, Damian Bańkowski and Wojciech Depczyński
Materials 2025, 18(19), 4581; https://doi.org/10.3390/ma18194581 - 2 Oct 2025
Abstract
This article presents studies of surface layers produced by electro-spark deposition (ESD) on cast iron using a W-Ni-Co sintered electrode. To minimize the number of required experiments, a two-factor, five-level Hartley experimental design was chosen. The assessment involved observing the effect of voltage [...] Read more.
This article presents studies of surface layers produced by electro-spark deposition (ESD) on cast iron using a W-Ni-Co sintered electrode. To minimize the number of required experiments, a two-factor, five-level Hartley experimental design was chosen. The assessment involved observing the effect of voltage and capacitor capacity during the ESD process (on layer thickness and wear of the sample and counter-sample under technically dry friction conditions). Microscopic and tomographic observations were performed to analyze the thickness and structure of the layers. Image analysis methods were employed to examine the cross-section of the layers. ESD diffusion analyses were performed on the produced layer. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were performed to characterize the microstructure and composition of the coating. In addition, in order to evaluate the performance properties of tungsten coatings, the tribological tests were also conducted on a TRB3 Ball-on-Disc testing device. Hardness tests confirm an increase in the hardness of cast iron with a tungsten layer by over 400 µHV. The tests showed that higher voltages during the ESD process result in thicker layers and reduced wear of the sample with a tungsten layer at the expense of increased wear of the counter-sample (ball). Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 3394 KB  
Article
Assessment and Discussion of the Steady-State Determination in Zeolite Composite Membranes for Multi-Component Diffusion
by Katarzyna Bizon, Dominika Boroń and Bolesław Tabiś
Membranes 2025, 15(10), 301; https://doi.org/10.3390/membranes15100301 - 2 Oct 2025
Abstract
A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In [...] Read more.
A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In the mathematical model of the membrane, it was assumed that mass transport in the zeolite layer occurs by surface diffusion in accordance with the generalized Maxwell–Stefan model. Diffusion in the macroporous support was described by the dusty gas model (DGM). An alternative model of diffusion in the zeolite was proposed to the universally accepted model, which uses a matrix of thermodynamic factors G. Thus, the difficulty of analytically determining this matrix for more complex adsorption equilibria was eliminated. This article is dedicated to methodological and cognitive aspects. The practical features of the method are illustrated using two gas mixtures as examples, namely {H2, CO2} and {H2, n-C4H10}. The roles of zeolite and support in the separation of these mixtures are discussed. It was demonstrated under what circumstances the presence of the support can be neglected in the steady-state analysis of the membrane. The effect of the alternative application of the dusty gas model or viscous flow only in the microporous support was discussed. Full article
(This article belongs to the Special Issue Composite Membranes for Gas and Vapor Separation)
11 pages, 3467 KB  
Article
High-Temperature Effects on TGO Growth and Al Depletion in TBCs of Ni-Based Superalloy GTD111
by Nomin-Erdene Battulga, Yinsheng He, Youngdae Kim, Yeonkwan Kang, Jinesung Jung, Keesam Shin and Je-Hyun Lee
Coatings 2025, 15(10), 1145; https://doi.org/10.3390/coatings15101145 - 2 Oct 2025
Abstract
Thermal barrier coatings (TBCs) extend gas-turbine blade lifetime by improving high-temperature oxidation resistance and mechanical performance. We investigated the microstructural evolution, TGO growth, and Al depletion in air-plasma-sprayed (APS) single-layer YSZ top coat over a NiCrCoAlY bond coat on Ni-based superalloy circular plates, [...] Read more.
Thermal barrier coatings (TBCs) extend gas-turbine blade lifetime by improving high-temperature oxidation resistance and mechanical performance. We investigated the microstructural evolution, TGO growth, and Al depletion in air-plasma-sprayed (APS) single-layer YSZ top coat over a NiCrCoAlY bond coat on Ni-based superalloy circular plates, heat treated isothermally at 850 °C and 1000 °C for 50–5000 h. Cross-sectional SEM/EDS analysis showed TGO quadratic thickening kinetics at both temperatures, reaching ~10 µm at 1000 °C/5000 h, the growth rate of which was ~5.8 times higher than at 850 °C. On top of the single-layer TGO of Al2O3 observed from the onset, a NiCrCo oxide layer appeared and grew from ≥500 h at 850 °C, with increasing growth rate and cracking. The layer configuration of the YSZ top coat, the TGO of Al2O3, and the bond coat (comprising β-NiAl and γ-NiCr) on top of GTD111, showed an Al concentration gradient in the bond coat starting at 850 °C for 250 h, which intensified with increased duration and temperature. The decrease in Al concentration in the bond coat and the growth of TGO are due to the dissolution of β-NiAl and subsequent Al diffusion to the Al2O3 TGO. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Figure 1

10 pages, 1560 KB  
Article
Unveiling the Role of Fluorination in Suppressing Dark Current and Enhancing Photocurrent to Enable Thick-Film Near-Infrared Organic Photodetectors
by Yongqi Bai, Seon Lee Kwak, Jong-Woon Ha and Do-Hoon Hwang
Polymers 2025, 17(19), 2663; https://doi.org/10.3390/polym17192663 - 1 Oct 2025
Abstract
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed [...] Read more.
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed and synthesized PFBDT-8ttTPD, a fluorinated polymer donor. The strategic incorporation of fluorine effectively enhanced the charge carrier mobility, enabling more efficient charge transport, even in thicker films. OPDs combining PFBDT−8ttTPD with IT−4F or Y6 non-fullerene acceptors showed a substantially lower dark current density (Jd) for active layer thicknesses of 250−450 nm. Notably, Jd in the IT-4F-based devices declined from 8.74 × 10−9 to 4.08 × 10−10 A cm−2 under a reverse bias of −2 V, resulting in a maximum specific detectivity of 3.78 × 1013 Jones. Meanwhile, Y6 integration provided near-infrared sensitivity, with the devices achieving responsivity above 0.48 A W−1 at 850 nm and detectivity over 1013 Jones up to 900 nm, supporting broadband imaging. Importantly, high-quality thick films (≥400 nm) free of pinholes or defects were fabricated, enabling scalable production without performance loss. This advancement ensures robust photodetection in thick uniform layers and marks a significant step toward the development of industrially viable OPDs. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 8195 KB  
Article
Phase Engineering of Cu2S via Ce2S3 Incorporation: Achieving Enhanced Thermal Stability and Mechanical Properties
by Boke Sun, Liang Li, Yitong Wang, Yuqi Chen, Zhaoshuai Song and Ming Han
Coatings 2025, 15(10), 1135; https://doi.org/10.3390/coatings15101135 - 1 Oct 2025
Abstract
Cu2S has wide-ranging applications in the energy field, particularly as electrode materials and components of energy storage devices. However, the migration of copper ions is prone to component segregation and copper precipitation, impairing long-term thermal stability and service performance. Ce2 [...] Read more.
Cu2S has wide-ranging applications in the energy field, particularly as electrode materials and components of energy storage devices. However, the migration of copper ions is prone to component segregation and copper precipitation, impairing long-term thermal stability and service performance. Ce2S3 not only possesses the unique 4f electron layer structure of Ce but also has high thermal stability and chemical inertness. Here, we report for the first time that the thermal stability and mechanical properties of Cu2S can be significantly enhanced by introducing the dispersed phase Ce2S3. Thermogravimetry—differential scanning calorimetry (TG-DSC) results show that the addition of 6 wt% Ce2S3 improves the thermal stability of Cu2S sintered at 400 °C. X-ray diffraction (XRD) results indicate that the crystal structure of Cu2S gradually transforms to tetragonal Cu1.96S and orthorhombic Cu1.8S phase at 400 °C with the increase of Ce2S3 addition. Scanning electron microscopy (SEM) results show that the particle size gradually decreased with the increase of Ce2S3 amount, indicating that the Ce2S3 addition increased the reactivity. The Ce content in Cu2S increased gradually with the increase of Ce2S3 amount at 400–600 °C. The 7 wt% Ce2S3-Cu2S exhibits paramagnetic behavior with a saturation magnetization of 1.2 µB/Ce. UV-Vis analysis indicates that the addition of Ce2S3 can reduce the optical energy gap and enrich the band structure of Cu2S. With increasing addition of Ce2S3 and rising sintering temperature, the density of Ce2S3-Cu2S gradually increases, and the hardness of Ce2S3-Cu2S increases by 52.5% at 400 °C and by 34.2% at 600 °C. The friction test results show that an appropriate addition amount of Ce2S3 can increase the friction coefficients of Cu2S. Ce2S3 modification offers a novel strategy to simultaneously enhance the structural and service stability of Cu2S by regulating Cu ion diffusion and suppressing compositional fluctuations. Full article
Show Figures

Figure 1

43 pages, 2854 KB  
Review
Strategies for Enhancing BiVO4 Photoanodes for PEC Water Splitting: A State-of-the-Art Review
by Binh Duc Nguyen, In-Hee Choi and Jae-Yup Kim
Nanomaterials 2025, 15(19), 1494; https://doi.org/10.3390/nano15191494 - 30 Sep 2025
Abstract
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic [...] Read more.
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic limitations, including poor charge carrier mobility, short diffusion length, and sluggish oxygen evolution reaction (OER) kinetics. This review critically summarizes recent advancements aimed at enhancing BiVO4 PEC performance, encompassing synthesis strategies, defect engineering, heterojunction formation, cocatalyst integration, light-harvesting optimization, and stability improvements. Key fabrication methods—such as solution-based, vapor-phase, and electrochemical approaches—along with targeted modifications, including metal/nonmetal doping, surface passivation, and incorporation of electron transport layers, are discussed. Emphasis is placed on strategies to improve light absorption, charge separation efficiency (ηsep), and charge transfer efficiency (ηtrans) through bandgap engineering, optical structure design, and catalytic interface optimization. Approaches to enhance stability via protective overlayers and electrolyte tuning are also reviewed, alongside emerging applications of BiVO4 in tandem PEC systems and selective solar-driven production of value-added chemicals, such as H2O2. Finally, critical challenges, including the scale-up of electrode fabrication and the elucidation of fundamental reaction mechanisms, are highlighted, providing perspectives for bridging the gap between laboratory performance and practical implementation. Full article
27 pages, 2749 KB  
Article
Biogenic TiO2–ZnO Nanocoatings: A Sustainable Strategy for Visible-Light Self-Sterilizing Surfaces in Healthcare
by Ali Jabbar Abd Al-Hussain Alkawaz, Maryam Sabah Naser and Ali Jalil Obaid
Micro 2025, 5(4), 45; https://doi.org/10.3390/micro5040045 - 30 Sep 2025
Abstract
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining [...] Read more.
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining TiO2 with ZnO and employing green synthesis methods may overcome these limitations. Methodology: Biogenic TiO2 and ZnO nanoparticles were synthesized using Bacillus subtilis under mild aqueous conditions. The nanoparticles were characterized by SEM, XRD, UV-Vis, and FTIR, confirming nanoscale size, crystalline phases, and organic capping. A multilayer TiO2/ZnO coating was fabricated on glass substrates through layer-by-layer deposition. Antibacterial activity was tested against S. aureus and E. coli using disk diffusion, direct contact assays, ROS quantification (FOX assay), and scavenger experiments. Statistical significance was evaluated using ANOVA. Results: The TiO2/ZnO multilayer exhibited superior antibacterial activity under visible light, with inhibition zones of ~15 mm (S. aureus) and ~12 mm (E. coli), significantly outperforming single-component coatings. Direct contact assays confirmed strong bactericidal effects, while scavenger tests verified ROS-mediated mechanisms. FOX assays detected elevated H2O2 generation, correlating with antibacterial performance. Discussion: Synergistic effects of band-gap narrowing, Zn2+ release, and ROS generation enhanced visible-light photocatalysis. The multilayer structure improved light absorption and charge separation, providing higher antimicrobial efficacy than individual oxides. Conclusion: Biogenic TiO2/ZnO multilayers represent a sustainable, visible-light-activated antimicrobial strategy with strong potential for reducing nosocomial infections on hospital surfaces and surgical instruments. Future studies should assess long-term durability and clinical safety. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

22 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 3297 KB  
Article
Effect of High-Temperature Isothermal Annealing on the Structure and Properties of Multicomponent Compact Ti-Al(Nb,Mo,B)-Based Materials Fabricated via Free SHS-Compression
by Pavel Bazhin, Ivan Nazarko, Arina Bazhina, Andrey Chizhikov, Alexander Konstantinov, Artem Ivanov, Mikhail Antipov, Pavel Stolin, Svetlana Agasieva and Varvara Avdeeva
Metals 2025, 15(10), 1088; https://doi.org/10.3390/met15101088 - 29 Sep 2025
Abstract
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken [...] Read more.
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken in the following ratio (wt%): 51.85Ti–43Al–4Nb–1Mo–0.15B, as well as to determine the effect of high-temperature isothermal annealing at 1000 °C on the structure and properties of the obtained materials. Using free SHS compression (self-propagating high-temperature synthesis), we synthesized compact materials from a 51.85Ti–43Al–4Nb–1Mo–0.15B (wt%) powder blend. Key combustion parameters were optimized to maximize the synthesis temperature, employing a chemical ignition system. The as-fabricated materials exhibit a layered macrostructure with wavy interfaces, aligned parallel to material flow during compression. Post-synthesis isothermal annealing at 1000 °C for 3 h promoted further phase transformations, enhancing mechanical properties including microhardness (up to 7.4 GPa), Young’s modulus (up to 200 GPa) and elastic recovery (up to 31.8%). X-ray powder diffraction, SEM, and EDS analyses confirmed solid-state diffusion as the primary mechanism for element interaction during synthesis and annealing. The developed materials show promise as PVD targets for depositing heat-resistant coatings. Full article
Show Figures

Figure 1

12 pages, 3170 KB  
Article
Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers
by Dongmyeong Lee, Byeongchan Go, Keiyu Komamura and Sarah Eunkyung Kim
Electronics 2025, 14(19), 3814; https://doi.org/10.3390/electronics14193814 - 26 Sep 2025
Abstract
As 3D stacking technologies advance, low-temperature hybrid Cu bonding has become essential for fine-pitch integration. This study focuses on evaluating Pd nanolayers deposited by electroless plating (ELP) on Cu surfaces and compares them to electroplated (EP) Pd to assess their suitability for hybrid [...] Read more.
As 3D stacking technologies advance, low-temperature hybrid Cu bonding has become essential for fine-pitch integration. This study focuses on evaluating Pd nanolayers deposited by electroless plating (ELP) on Cu surfaces and compares them to electroplated (EP) Pd to assess their suitability for hybrid bonding. Pd nanolayers (5~7 nm) were deposited on Cu films, and their surface morphology, crystallinity, and chemical composition were characterized using AFM, TEM, GIXRD, and XPS. EP-Pd layers exhibited lower roughness and larger grain size, acting as effective Cu diffusion barriers. In contrast, ELP-Pd layers showed small grains, higher surface roughness, and partial Cu diffusion and oxidation. At 200 °C, both Pd layers enabled bonding, but ELP-Pd samples achieved more uniform and continuous interfaces with thinner copper oxide layers. Shear testing revealed that ELP-Pd samples exhibited higher average bonding strength (20.58 MPa) and lower variability compared to EP-Pd (16.47 MPa). The improved bonding performance of ELP-Pd is attributed to its grain-boundary-driven diffusion and uniform interface formation. These findings highlight the potential of electroless Pd as a passivation layer for low-temperature hybrid Cu bonding and underscore the importance of optimizing pre-bonding surface treatments for improved bonding quality. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries
by Xiao Zhang, Ting Cheng, Chen Chen, Fuqiang Liu, Fei Wu, Li Song, Baoxuan Hou, Yuan Tian, Xin Zhao, Safi Ullah and Rui Li
Int. J. Mol. Sci. 2025, 26(19), 9399; https://doi.org/10.3390/ijms26199399 - 26 Sep 2025
Abstract
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive [...] Read more.
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive for AZIBs to address these challenges. When added into the electrolyte, theaflavins, with their strong de-solvation capability, facilitated the more uniform and stable diffusion of zinc ions, effectively suppressing dendrite formation and HER. This, in turn, significantly enhanced the coulombic efficiency (>95% in Zn/Cu system) and the stability of the zinc deposition/stripping process in Zn/Zn system. The Zn/Zn symmetric battery system stably cycled for approximately 3000 h at current densities of 1 mA/cm2. Compared with H2O molecules, theaflavins exhibited a narrower LUMO and HOMO gap and higher adsorption energy on zinc surfaces. These properties enabled theaflavins to be preferentially adsorbed onto zinc anode surfaces, forming a protective layer that minimized direct contact between water molecules and the zinc surface. This layer also promoted the electron transfer associated with zinc ions, thereby greatly enhancing interfacial stability and significantly mitigating HER. When 10 mmol/L of theaflavins was present in the electrolyte, the system exhibited lower impedance activation energy, a smoother zinc ion deposition process, reduced corrosion current, and higher HER overpotential. Furthermore, incorporating theaflavins into the electrolyte enhanced the vanadium redox reaction and accelerated zinc ion diffusion, thereby significantly improving battery performance. This work explores the design of a cost-effective electrolyte additive, providing essential insights for the progress of practical AZIBs. Full article
Show Figures

Graphical abstract

16 pages, 7413 KB  
Article
The Potential Role of Humic Substances in the Amelioration of Saline Soils and Its Affecting Factors
by Daniel Moro, Elisa Pellegrini, Marco Contin, Daniele Zuccaccia, Ali Khakbaz and Maria De Nobili
Sustainability 2025, 17(19), 8621; https://doi.org/10.3390/su17198621 - 25 Sep 2025
Abstract
The application of organic amendments and humic acids (HA) often ameliorates saline soils, but the mechanisms responsible for their positive action have never been fully clarified. HA from four different origins (Elliott soil—EHA, peat—PHA, leonardite—LHA and compost—CHA) and polyacrylic acid (PAA) were characterized [...] Read more.
The application of organic amendments and humic acids (HA) often ameliorates saline soils, but the mechanisms responsible for their positive action have never been fully clarified. HA from four different origins (Elliott soil—EHA, peat—PHA, leonardite—LHA and compost—CHA) and polyacrylic acid (PAA) were characterized by acid–base titrations and 1H-NMR spectroscopy and tested in laboratory experiments by measuring changes in electric conductivity (EC) and pH following micro-additions of Na2CO3 or NaCl. The effective salinity amelioration potential (SAPeff) of HA, which expresses the amount of Na2CO3 neutralized per unit weight of HA at a given pH, was calculated. PAA had the highest capacity of mitigation, corresponding to 49.9 mg Na2CO3 g−1, followed by LHA, EHA and PHA, whose SAPeff values were similar and only slightly lower, and with CHA having the lowest value (25.1 mg Na2CO3 g−1 HA). All substances failed to display any effect at constant pH when NaCl was the only salt present. The dissociation of acid groups, when HA become exposed to a more alkaline pH, produces an excess of negative charges that attracts more cations within the diffuse double layer. Because of the slower diffusion of HA and their tendency to aggregate at high ionic strengths, this action reduces the osmolarity of the soil solution and therefore mitigates salinity stress. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

Back to TopTop