Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = diffusive gradients in thin films (DGT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

26 pages, 3646 KiB  
Article
Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater
by Hanna Budasheva, Mohanachandran Nair Sindhu Swapna, Arne Bratkič and Dorota Korte
Sensors 2025, 25(12), 3643; https://doi.org/10.3390/s25123643 - 10 Jun 2025
Viewed by 435
Abstract
In this work, photothermal beam deflection spectrometry (BDS), combined with a passive sampling technique of diffusive gradients in thin film (DGT), is optimized to improve the method’s sensitivity. The limit of detection (LOD) is then reduced by a factor of 2 (to the [...] Read more.
In this work, photothermal beam deflection spectrometry (BDS), combined with a passive sampling technique of diffusive gradients in thin film (DGT), is optimized to improve the method’s sensitivity. The limit of detection (LOD) is then reduced by a factor of 2 (to the value of 20 nM). The functionality of the technique is compared for Chelex-100 (Ch-100) and suspended particulate reagent–iminodiacetate resin (SPR-IDA), used as binding resins in passive samplers. The absorption capacity of SPR-IDA resin is found to be less than 1 μM and far below that one of Chelex-100 resin (around 6 μM). The BDS technique is applied for determination of iron redox species concentration in sediment porewater. It is found that Fe in sediment porewater occurs both in Fe2+ (0.073 μM) and Fe3+ (0.095 μM) forms. The validation of the presented method reveals that the BDS technique ensures good repeatability, reproducibility, and reliability. Full article
Show Figures

Figure 1

15 pages, 4134 KiB  
Article
Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model
by Shujuan Cheng, Jing Liao, Fangyan Jia and Yubo Wen
Minerals 2025, 15(4), 386; https://doi.org/10.3390/min15040386 - 5 Apr 2025
Viewed by 356
Abstract
Elevated levels of cadmium (Cd) and lead (Pb) in the edible parts of rice (Oryza sativa L.) grown in agricultural soils may enter the human body through the food chain, posing significant health risks. In this study, rice and paired rhizosphere soil [...] Read more.
Elevated levels of cadmium (Cd) and lead (Pb) in the edible parts of rice (Oryza sativa L.) grown in agricultural soils may enter the human body through the food chain, posing significant health risks. In this study, rice and paired rhizosphere soil samples were collected from 194 locations in Jiangsu Province, China, with 60 samples selected for diffusive gradients in thin films (DGT) extraction analysis. The findings indicate that total soil concentrations of Cd and Pb are inadequate for assessing cadmium bioavailability, implying that current soil quality standards may not accurately reflect the bioaccessible fractions of these metals. Both DGT and soil solution measurements effectively predicted crop Cd levels, with the effective concentration (CE) derived from the DGT-induced soil flux (DIFS) model showing the strongest correlation with rice Cd content. Pearson correlation analysis and a random forest (RF) model further identified critical factors influencing rice uptake of Cd and Pb, including soil iron (Fe) content, cation exchange capacity (CEC), pH, and the levels of zinc (Zn) and selenium (Se), which antagonize Cd uptake. Full article
Show Figures

Figure 1

16 pages, 4393 KiB  
Article
Seasonal Distribution of Nutrient Salts and Microbial Communities in the Pearl River Delta
by Zhiwei Huang, Jie Wang, Weijie Li, Aixiu Yang, Yupeng Mao, Yangliang Gu, Luping Zeng, Hongwei Du, Lei Shi and Huaiyang Fang
Water 2025, 17(6), 798; https://doi.org/10.3390/w17060798 - 10 Mar 2025
Viewed by 734
Abstract
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious [...] Read more.
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious anthropogenic disturbance. The authors used the diffusive gradients in thin films (DGTs) technique and 16S rRNA gene sequencing to determine the spatial heterogeneity in the nutrient distribution and bacterial community structure in the overlying water and sediment in the Pearl River Delta (PRD). Sampling campaigns were conducted in summer and winter. The results show that the nutrient salts exhibited greater differences in time than in space and there were higher water pollution levels in winter than in summer. During summer, the abundant non-point source pollution from the rainfall input provided a rich substrate for the bacteria in the water, leading to a strong competitiveness of the PAOs and nitrifying bacteria. Meanwhile, a high temperature was favorable for the exchange of elements at the SWI, with a greater release of P, Fe, and N, while, with the low temperatures and high DO and nutrient salts seen in winter, the SOB and denitrifying bacteria were active, which correctly indicated the high concentration of SO42− and NH4+-N in the water. The microbial diversity and abundance were also affected by the season, with a higher richness and diversity of the microbial communities in summer than in winter, and the high salinity and nutrient salt concentration had a significant inhibitory effect on the microorganisms. A Mantel test revealed that the spatiotemporal distribution patterns of the dominant bacteria were closely related to the TOC and DO levels and played an important role in the P, Fe, S, and N cycle. These observations are important for understanding the nutrient salt transformation and diffusion in the Pearl River Delta. Full article
Show Figures

Figure 1

25 pages, 5384 KiB  
Article
Three Complementary Sampling Approaches Provide Comprehensive Characterization of Pesticide Contamination in Urban Stormwater
by Gab Izma, Melanie Raby, Justin B. Renaud, Mark Sumarah, Paul Helm, Daniel McIsaac, Ryan Prosser and Rebecca Rooney
Urban Sci. 2025, 9(2), 43; https://doi.org/10.3390/urbansci9020043 - 12 Feb 2025
Cited by 2 | Viewed by 947
Abstract
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types [...] Read more.
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types of sampling methods deployed concurrently: time-integrated water sampling, biofilms cultured on artificial substrates, and organic-diffusive gradients in thin films (o-DGT) passive samplers. Our objective was to compare pesticide occurrences and concentrations to inform monitoring in stormwater ponds, which reflect pesticide pollution in urban areas. We detected 82 pesticides across the three sampling matrices, with most detections occurring in o-DGT samplers. The in situ accumulation of pesticides in o-DGTs during deployment and the high analytical sensitivity achieved establishes o-DGTs as excellent tools for capturing the mixtures of pesticides present. Water and biofilm sampling demonstrated that pesticide concentrations available for uptake are relatively low, with most below toxicological thresholds. Yet our results demonstrate that urban areas are subject to a wide range of pesticides, including herbicides, insecticides, and fungicides, and underscores the urgency of research to quantify the risks of chronic exposure to this chemical mixture. Full article
Show Figures

Figure 1

23 pages, 8521 KiB  
Article
Bioassessment of Cd and Pb at Multiple Growth Stages of Wheat Grown in Texturally Different Soils Using Diffusive Gradients in Thin Films and Traditional Extractants: A Comparative Study
by Hiba Shaghaleh, Sana Rana, Muhammad Zia-ur-Rehman, Muhammad Usman, Mujahid Ali, Hesham F. Alharby, Ali Majrashi, Amnah M. Alamri, Isam M. Abu Zeid and Yousef Alhaj Hamoud
Plants 2024, 13(17), 2445; https://doi.org/10.3390/plants13172445 - 1 Sep 2024
Cited by 1 | Viewed by 1549
Abstract
The bioavailability of heavy metals in soil is a crucial factor in determining their potential uptake by plants and their subsequent entry into the food chain. Various methods, including traditional chemical extractants and the diffusive gradients in thin films (DGT) technique, are employed [...] Read more.
The bioavailability of heavy metals in soil is a crucial factor in determining their potential uptake by plants and their subsequent entry into the food chain. Various methods, including traditional chemical extractants and the diffusive gradients in thin films (DGT) technique, are employed to assess this bioavailability. The bioavailability of heavy metals, particularly cadmium (Cd) and lead (Pb), is also influenced by soil texture and their concentrations in the soil solution. The primary objectives of this experiment were to compare and correlate the assessment of the Cd and Pb bioavailability using the DGT technique and traditional extractants across two soil textural classes: sandy clay loam (SCL) and clay loam (CL) at two contamination levels: aged contaminated (NC) and artificially contaminated (AC). The specific objectives included assessing the bioavailability of Cd and Pb at different growth stages of the wheat plant and correlating the DGT-based bioassessments of Cd and Pb with their concentrations in various plant parts at different growth stages. This study also compared the effectiveness of the DGT method and traditional extraction techniques in assessing the bioavailable fractions of Cd and Pb in soil. The regression analysis demonstrated strong positive correlations between the DGT method and various extraction methods. The results showed that the wheat plants grown in the AC soils exhibited lower root, shoot, and grain weights compared to those grown in the NC soils, indicating that metal contamination negatively impacts plant performance. The concentrations of Cd and Pb in the wheat tissues varied across different growth stages, with the highest levels observed during the grain filling (S3) and maturity (S4) stages. It is concluded that the in situ assessment of Cd and Pb though DGT was strongly and positively correlated with the Cd and Pb concentration in wheat plant parts at the maturity stage. A correlation and regression analysis of the DGT assessment and traditional extractants showed that the DGT method provides a reliable tool for assessing the bioavailability of Cd and Pb in soils and helped in developing sustainable soil management strategies to ensure the safety of agricultural products for human consumption. Full article
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
Validation and Application of the Diffusive Gradients in Thin-Films Technique for In Situ Measurement of β-Blocker Drugs in Waters and Sediments
by Yanying Li, Mingzhe Wu, Mengnan Fu, Dongqin Tan, Peng Zhang, Zhimin Zhou and Xiaoyan Li
Water 2024, 16(11), 1478; https://doi.org/10.3390/w16111478 - 22 May 2024
Cited by 1 | Viewed by 1326
Abstract
The occurrence of β-blocker drugs in aquatic environments worldwide has caused increasing attention to their threat to human health in recent years. It is essential to monitor these widely prescribed pharmaceuticals in natural waters and sediments, helping us investigate their potential risk to [...] Read more.
The occurrence of β-blocker drugs in aquatic environments worldwide has caused increasing attention to their threat to human health in recent years. It is essential to monitor these widely prescribed pharmaceuticals in natural waters and sediments, helping us investigate their potential risk to humans and ecosystems. In this study, a passive sampling technique, diffusive gradients in thin-films (DGT), was systematically developed for eight frequently detected β-blockers. The effective capacities of target compounds were large enough for the devices to deploy for several weeks. The uptake of all compounds was linearly correlated with deployment times during the 7-day laboratory experiment and agreed well with the theoretical line, except for several compounds (e.g., ATL) due to their relatively slow uptake rate. The performance of most compounds was independent of varying pH values and organic matter contents; only a few compounds were affected, while the application in high-salinity environments needs to be conducted with caution. Field deployments of DGT to detect β-blockers in situ in rivers and sediments proved that DGT is an effective tool to monitor β-blocker drugs and their fate in the natural aquatic environment, while DGT probes can provide information for us to investigate the biogeochemical processes occurred in sediment, especially at the sediment–water interface. This novel approach will help us understand the behaviour of β-blocker drugs in the aquatic environment, assess their risks, finally protect human health and maintain the sustainable development of the ecosystem. Full article
Show Figures

Figure 1

17 pages, 7429 KiB  
Article
Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles
by Lijuan Li, Xinyi Chen, Yan Wang, Fubin Zhang, Xinyi Zhou and Tuo Zhang
Agriculture 2024, 14(3), 450; https://doi.org/10.3390/agriculture14030450 - 11 Mar 2024
Viewed by 1847
Abstract
Ferrihydrite is usually used as a remedy for arsenic (As)-contaminated soil due to its strong affinity and large specific surface area. However, its noncrystalline phase makes it unstable in long-term applications in the soil. In this study, a soil incubation experiment was designed [...] Read more.
Ferrihydrite is usually used as a remedy for arsenic (As)-contaminated soil due to its strong affinity and large specific surface area. However, its noncrystalline phase makes it unstable in long-term applications in the soil. In this study, a soil incubation experiment was designed using the diffusive gradient in thin film (DGT) technique and spectral techniques to investigate the fate of As-bearing ferrihydrite [As(V)-Fh] after long-term incubation at different soil water holding capacities (SWHCs). After As(V)-Fh (0.05 and 0.005 As/Fe molar ratio) was incubated in soil for 360 days, both DGT-derived labile As and Fe were released at 70% SWHC and 120% SWHC into the soil (at a vertical depth of 12 cm). The concentrations of DGT-As and DGT-Fe increased with incubation time and were greater at 120% SWHC. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that As(V)-Fh gradually transformed into hematite and goethite after 360 days of incubation. Goethite was mainly found in the 120% SWHC treatment after 180 days. Hematite and goethite formation rates were greater in the 120% SWHC treatment and in the bottom soil layer. Mechanistic analysis based on X-ray photoelectron spectroscopy (XPS) revealed that the variation in soil pH and the formation of Fe(II) (under flooded water conditions) are the two key factors promoting the formation of hematite (dehydrogenation and dehydration) and goethite (As(V)-Fh dissociation and reorganization). The As release mainly occurred due to the loss of adsorption sites. Thus, it is recommended that ferrihydrite be applied in paddy–dry rotations or dry-field patterns to effectively avoid the loss of As(V)-Fh in long-term-saturated soil. Full article
(This article belongs to the Special Issue Heavy Metals in Farmland Soils: Mechanisms and Remediation Strategies)
Show Figures

Figure 1

14 pages, 2415 KiB  
Article
Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia
by Ozren Grozdanić, Ana-Marija Cindrić, Iva Finderle and Dario Omanović
J. Mar. Sci. Eng. 2024, 12(3), 440; https://doi.org/10.3390/jmse12030440 - 1 Mar 2024
Viewed by 1604
Abstract
In this study, we examined for the first time the spatio-temporal distribution of trace metal (TM) contaminants (Zn, Cd, Pb, Cu, Ni and Co) in the seawater column of Pula Bay. The bay has been known for decades as one of the most [...] Read more.
In this study, we examined for the first time the spatio-temporal distribution of trace metal (TM) contaminants (Zn, Cd, Pb, Cu, Ni and Co) in the seawater column of Pula Bay. The bay has been known for decades as one of the most industrialized regions on the Croatian side of the Adriatic. Water samples were collected at 20 sites (at two depths) in four different seasons. The main physico-chemical parameters and DOC were measured along the TMs. The spatial distribution clearly showed that areas with industrial and nautical activities are sources of Zn, Pb and Cu, while no increase was observed for Cd, Ni and Co. Compared to the reference area outside the bay, the increase in dissolved concentrations ranged from a factor of 1.1 for Ni and Co to 8.5 for Pb. A clear difference in TM concentrations was observed between seasons, with concentrations being higher in warmer periods than in colder periods. The potential bioavailability/toxicity of TMs was examined using a passive sampling technique: diffusive gradients in thin films (DGT). In addition, a single-factor pollution index based on the available EQSs was used for both the dissolved TMs and DGT to assess the potential risk to the environment. Full article
(This article belongs to the Special Issue Chemical Contamination on Coastal Ecosystems)
Show Figures

Figure 1

13 pages, 2821 KiB  
Article
Development and Field Application of a Diffusive Gradients in Thin-Films Passive Sampler for Monitoring Three Polycyclic Aromatic Hydrocarbon Derivatives and One Polycyclic Aromatic Hydrocarbon in Waters
by Shiyu Ren, Liangshen Li, Yucheng Li, Juan Wu and Yueqin Dou
Water 2024, 16(5), 684; https://doi.org/10.3390/w16050684 - 26 Feb 2024
Cited by 1 | Viewed by 1524
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives are widely present in the environment, and some are more hazardous than their parent PAHs. However, compared to PAHs, PAH derivatives are less studied due to challenges in monitoring as a result of their low concentrations in environmental [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) derivatives are widely present in the environment, and some are more hazardous than their parent PAHs. However, compared to PAHs, PAH derivatives are less studied due to challenges in monitoring as a result of their low concentrations in environmental matrixes. Here, we developed a new passive sampler based on diffusive gradients in thin films (DGT) to monitor PAH derivatives and PAHs in waters. In the laboratory study, the XAD18-DGT device exhibited high adsorption rates and was demonstrated to be suitable for deployment in environmental waters on the timescale of months. The diffusion coefficients, D, were 5.30 × 10−6 cm2 s−1, 4.51 × 10−6 cm2 s−1, 4.03 × 10−6 cm2 s−1 and 3.34 × 10−6 cm2 s−1 for 9-fluorenone (9-FL), 1-chloroanthraquinone (1-CLAQ), 9-nitroanthracene (9-NA) and phenanthrene (Phe), respectively, at 25 °C. The DGT device’s performance was independent of pH, ionic strength, deployment time and storage time, indicating it can be widely used in natural waters. In the field study, the target pollutant concentrations measured by the DGT are in good accordance with those determined via grab sampling. Then, the DGT devices were utilized to quantify PAH derivatives and PAHs in several rivers in Hefei, China. This work demonstrates the feasibility of using the DGT technique to detect trace PAH derivatives and PAHs in waters. Full article
Show Figures

Figure 1

17 pages, 4344 KiB  
Article
Spatial Distribution, Ecological Risk Assessment, and Source Identification of Metals in Sediments of the Krka River Estuary (Croatia)
by Nuša Cukrov, Ana-Marija Cindrić, Dario Omanović and Neven Cukrov
Sustainability 2024, 16(5), 1800; https://doi.org/10.3390/su16051800 - 22 Feb 2024
Cited by 9 | Viewed by 1546
Abstract
To evaluate the level of contamination and predict the potential toxicity risk, selected metal concentrations (Cd, Pb, Cr, Mn, Co, Ni, Cu, Zn, and As) were determined in 40 surface sediment samples from the stratified karstic Krka River estuary (Croatia). In addition, diffusive [...] Read more.
To evaluate the level of contamination and predict the potential toxicity risk, selected metal concentrations (Cd, Pb, Cr, Mn, Co, Ni, Cu, Zn, and As) were determined in 40 surface sediment samples from the stratified karstic Krka River estuary (Croatia). In addition, diffusive gradients in thin films (DGT) probes were deployed in situ to understand the mobilization mechanisms and bioavailability of metals in the sediment. The results show significant spatial differences between the upper and lower estuary, with the latter being more affected by anthropogenic pollution. The pollution assessment using the enrichment factor (EF), the geoaccumulation index (Igeo), and the pollution load index (PLI) showed a strong enrichment of metals in the lower part of the estuary, especially of Mn, Cu, Zn, Pb, and As. The statistical analysis (PCA) revealed the former ferromanganese factory and the port as major sources of pollution in the area. Nickel, Co, and Cr, although slightly elevated, may be attributed to the natural origin. The metal mobility in the estuarine sediment was primarily governed by early diagenetic processes (aerobic organic matter mineralization, Fe and Mn oxyhydroxide reduction), which caused the release of metals from the sediment into the pore water and subsequently into the overlying water column. Full article
Show Figures

Figure 1

17 pages, 3125 KiB  
Article
Algal Decomposition Accelerates Denitrification as Evidenced by the High-Resolution Distribution of Nitrogen Fractions in the Sediment–Water Interface of Eutrophic Lakes
by Yu Yao, Ying Chen, Ruiming Han, Desheng Chen, Huanxin Ma, Xiaoxiang Han, Yuqi Feng and Chenfei Shi
Water 2024, 16(2), 341; https://doi.org/10.3390/w16020341 - 19 Jan 2024
Cited by 6 | Viewed by 2428
Abstract
This study investigates the decomposition process of algal blooms (ABs) in eutrophic lakes and its impact on the labile endogenous nitrogen (N) cycle. In situ techniques such as diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper) were employed to decipher the [...] Read more.
This study investigates the decomposition process of algal blooms (ABs) in eutrophic lakes and its impact on the labile endogenous nitrogen (N) cycle. In situ techniques such as diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper) were employed to decipher the vertical distribution of N fractions within the sediment–water interface (SWI) in Taihu, China. Additionally, an annular flume was used to simulate regional differences in lake conditions and understand labile nitrogen transformation during AB decomposition. This study reveals that the NH4+-N fraction exuded from algae is subsequently converted into NO3-N and NO2-N through nitrification, resulting in a significant increase in the concentrations of NO3-N and NO2-N at the SWI. The decomposition of algae also induces a significant increase in dissolved organic matter (DOM) concentration, referring to humic acid and humus-like components; a seven-millimeter decrease in dissolved oxygen (DO) penetration depth; as well as a significant decrease in the pH value near the SWI, which consequently promotes denitrification processes in the sediment. Moreover, the decomposition process influences nitrogen distribution patterns and the role conversion of sediments between a “source” and a “sink” of nitrogen. This investigation provides evidence on the migration and/or transformation of N fractions and offers insights into the dynamic processes across the SWI in eutrophic lakes. Full article
Show Figures

Figure 1

12 pages, 5595 KiB  
Article
Bioavailability of Cd in Agricultural Soils Evaluated by DGT Measurements and the DIFS Model in Relation to Uptake by Rice and Tea Plants
by Yubo Wen, Yuanyuan Wang, Chunjun Tao, Wenbing Ji, Shunsheng Huang, Mo Zhou and Xianqiang Meng
Agronomy 2023, 13(9), 2378; https://doi.org/10.3390/agronomy13092378 - 13 Sep 2023
Cited by 5 | Viewed by 1876
Abstract
The elevated accumulation of cadmium (Cd) in rice (Oryza sativa L.) and tea (Camellia sinensis L.) grown in agricultural soils may lead to a variety of adverse health effects. This study collected and analyzed crop samples along with paired rhizosphere soil [...] Read more.
The elevated accumulation of cadmium (Cd) in rice (Oryza sativa L.) and tea (Camellia sinensis L.) grown in agricultural soils may lead to a variety of adverse health effects. This study collected and analyzed crop samples along with paired rhizosphere soil samples from 61 sites in Cd-contaminated regions in Anhui Province, China. The findings revealed that both the diffusive gradients in thin-films (DGT) and soil solution were capable of effectively predicting Cd contents in crops. Conventional chemical extraction methods were inappropriate to evaluate the bioavailability of Cd. However, the effective concentrations (CE) corrected by the DGT-induced fluxes in soils (DIFS) model exhibited the strongest correlation with crop Cd contents. Except for CE, various measurement methods yielded better results for predicting Cd bioavailability in tea compared to rice. Pearson’s correlation analysis and the random forest (RF) model identified the key influencing factors controlling Cd uptake by rice and tea, including pH, soil texture, and contents of zinc (Zn) and selenium (Se) in soils, which antagonize Cd. To reduce the potential health risk from rice and tea, the application of soil liming and/or Se-oxidizing bacteria was expected to be an effective management strategy. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 1322 KiB  
Review
Bioavailability Assessment of Heavy Metals and Organic Pollutants in Water and Soil Using DGT: A Review
by Qing Zhu, Jing Ji, Xuejiao Tang, Cuiping Wang and Hongwen Sun
Appl. Sci. 2023, 13(17), 9760; https://doi.org/10.3390/app13179760 - 29 Aug 2023
Cited by 18 | Viewed by 6535
Abstract
In recent years, the diffusive gradients in the thin films (DGT) technique has also been increasingly applied to assess the bioavailability of heavy metals and organic pollutants in the soil. The combination of binding and diffusion phases made from different materials allows for [...] Read more.
In recent years, the diffusive gradients in the thin films (DGT) technique has also been increasingly applied to assess the bioavailability of heavy metals and organic pollutants in the soil. The combination of binding and diffusion phases made from different materials allows for the targeted determination of different target substances. This review briefly introduces the compositions and development of the DGT technique and analyzes the composition structure of DGT and the impact of environmental factors, such as pH, ion strength (IS), and dissolved organic matter (DOM), on the bioavailability evaluation of heavy metals and organic pollutants in soil. Finally, the application potential and broad application prospects of the DGT technique were expected. In addition, standardized DGT technique methods and calibration procedures are conducive to the establishment of a more stable and reliable measurement system to enhance the robustness of the DGT technique application in the soil. Full article
(This article belongs to the Special Issue Current Status of Agricultural Soil Pollution)
Show Figures

Figure 1

18 pages, 2067 KiB  
Article
Copper Contamination Affects the Biogeochemical Cycling of Nitrogen in Freshwater Sediment Mesocosms
by Tomson Tomoiye, Jianyin Huang and Niklas J. Lehto
Sustainability 2023, 15(13), 9958; https://doi.org/10.3390/su15139958 - 22 Jun 2023
Cited by 1 | Viewed by 2959
Abstract
Trace elements can have a wide variety of effects on microbial populations and their function in the aquatic environment. However, specific impacts on chemical and biological processes are often difficult to unravel, due to the wide variety of chemical species involved and interactions [...] Read more.
Trace elements can have a wide variety of effects on microbial populations and their function in the aquatic environment. However, specific impacts on chemical and biological processes are often difficult to unravel, due to the wide variety of chemical species involved and interactions between different elemental cycles. A replicated mesocosm experiment was used to test the effect of increasing copper concentrations, i.e., from 6 mg kg−1 to 30 and 120 mg kg−1, on nitrogen cycling in a freshwater sediment under laboratory conditions. Nitrous oxide emissions from the treated sediments were measured over three consecutive 24 h periods. This was followed by measurements of iron, manganese, copper and mineral nitrogen species (nitrate and ammonium) mobilisation in the sediments using the diffusive gradients in thin films (DGT) and diffusive equilibria in thin films (DET) techniques and sequential extractions. Increasing copper concentrations are shown to have resulted in significantly reduced nitrate formation near the sediment–water interface and increased nitrous oxide emissions from the sediment overall. The concomitant mobilisation and sequestration of iron with ammonium in the sediment with the highest Cu treatment strongly imply links between the biogeochemical cycles of the two elements. Modest Cu contamination was shown to affect the nitrogen cycle in the tested freshwater sediment, which suggests that even relatively small loads of the metal in fresh watercourses can exert an influence on nutrient loads and greenhouse gas emissions from these environments. Full article
Show Figures

Figure 1

Back to TopTop