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Abstract: Polycyclic aromatic hydrocarbon (PAH) derivatives are widely present in the environment,
and some are more hazardous than their parent PAHs. However, compared to PAHs, PAH derivatives
are less studied due to challenges in monitoring as a result of their low concentrations in environmental
matrixes. Here, we developed a new passive sampler based on diffusive gradients in thin films (DGT) to
monitor PAH derivatives and PAHs in waters. In the laboratory study, the XAD18-DGT device exhibited
high adsorption rates and was demonstrated to be suitable for deployment in environmental waters on
the timescale of months. The diffusion coefficients, D, were 5.30 × 10−6 cm2 s−1, 4.51 × 10−6 cm2 s−1,
4.03 × 10−6 cm2 s−1 and 3.34 × 10−6 cm2 s−1 for 9-fluorenone (9-FL), 1-chloroanthraquinone (1-CLAQ),
9-nitroanthracene (9-NA) and phenanthrene (Phe), respectively, at 25 ◦C. The DGT device’s performance
was independent of pH, ionic strength, deployment time and storage time, indicating it can be widely
used in natural waters. In the field study, the target pollutant concentrations measured by the DGT are
in good accordance with those determined via grab sampling. Then, the DGT devices were utilized
to quantify PAH derivatives and PAHs in several rivers in Hefei, China. This work demonstrates the
feasibility of using the DGT technique to detect trace PAH derivatives and PAHs in waters.

Keywords: PAH derivatives; XAD18-DGT; adsorption; field application

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic compounds
that are widely found in various types of environmental matrixes and have teratogenic,
carcinogenic and mutagenic properties [1]. PAHs can be chemically and microbially trans-
formed into PAH derivatives, including nitro polycyclic aromatic hydrocarbons (NPAHs),
oxygenated polycyclic aromatic hydrocarbons (OPAHs), chlorinated polycyclic aromatic
hydrocarbons (ClPAHs), etc. [2,3]. Certain PAH derivatives are more biotoxic than their
parent PAHs [4,5]. NPAHs and OPAHs have a higher water solubility, and they are the-
oretically more mobile in water than their parent PAHs [6]. Compared to pyrene, the
NPAH 1-nitropyrene exhibits a higher carcinogenicity and mutagenicity/genotoxicity in
in vitro and in vivo tests [7,8]. A study in Brazil showed the mutagenicity of OPAHs in
particulate matter samples increased approximately fourfold compared to their correspond-
ing PAHs [9,10]. ClPAHs, which are structurally similar to dioxins and polychlorinated
biphenyls (PCBs), are a type of highly toxic organochlorine compound [11–13].

Accurate and stable determination of compounds in an aqueous environment can
help us better understand their transport and transformation processes to assess their
biological toxicity and impact on the ecosystem and human health [14]. At present, in
water, PAH derivatives and PAHs are mainly detected via spot grab sampling, demanding
a significant amount of resources and expertise. Moreover, some trace-level pollutants
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are often undetectable, or their measurements are susceptible to detection errors, which
is not conducive to understanding the current pollution status and pollution trends in
water [15,16]. Spot grab sampling provides instantaneous concentrations [17], which may
not be representative of the pollution over a period of time or describe the temporal
variations in the water quality [18,19].

Passive sampling techniques, requiring no collection of water samples or their trans-
port and preservation, can save considerable human, material and financial resources
compared with grab sampling. Furthermore, the time-weighted average (TWA) concen-
tration measured by passive sampling is more meaningful, determining the overall water
pollution during the assessed period [20]. Some studies have utilized passive samplers,
such as semipermeable membrane devices (SPMDs) and polyethylene (PE) passive sam-
plers, to quantify PAHs in water [21,22]. The SPMD procedure is well established and
widely used. However, the presence of glyceryl trioleate in the SPMD makes the postana-
lytical purification process cumbersome [23]. The small capacity of PE passive samplers
makes them unsuitable for long-term water monitoring [24,25]. The diffusive gradients
in thin films (DGT) technique was first proposed by Davison and Zhang and was orig-
inally used to detect trace metals in freshwater systems [26,27]. Compared with other
passive samplers, DGT passive sampling is less affected by environmental conditions, and
laboratory-measured diffusion coefficients could be used to accurately predict in situ sam-
pling rates, which would be highly convenient for field sampling. DGT techniques have
also been widely used for trace organic contaminant detection in water [16,28]. However,
to date, there have been limited studies on DGT or other passive sampling techniques
specifically designed for sampling PAH derivatives in water.

In this study, we developed a new DGT passive sampler for monitoring PAH deriva-
tives and PAHs in waters. Binding gels based on the XAD18 resin can rapidly adsorb a
variety of organic pollutants in water and are simple and inexpensive to produce [29]. Thus,
we used XAD18 binding gels as the adsorption phase and agarose gels as the diffusion
layer material, which are resistant to temperature, pH and ionic strength changes [17]. The
aims of this study are (i) to develop a DGT passive sampler for sampling PAH derivatives
and PAHs in waters and study their adsorption kinetics, adsorption capacity, diffusion co-
efficients D and environmental effects in laboratory tests; (ii) to evaluate the DGT technique
in field tests; and (iii) to apply the DGT technique for in situ monitoring of PAH derivatives
and PAHs in rivers and lakes.

2. Materials and Methods
2.1. Chemicals and Analysis

In this test, we selected three PAH derivatives—9-fluorenone (9-FL), 9-nitroanthracene
(9-NA) and 1-chloroanthraquinone (1-ClAQ)—which are representative OPAHs, NPAHs
and ClPAHs, respectively, and one typical PAH, phenanthrene (Phe), as the target com-
pounds. Their physical and chemical properties are shown in Table S1 in the Supporting
Information (SI). The composition and sources of the other reagents and materials are
shown in SI Table S2.

2.2. DGT Preparation

A standard DGT device consists of a filter membrane, an agarose-based diffusive gel
and a binding gel. A detailed description of DGT device construction and its principles
is presented in the SI. In this experiment, 0.8 mm diffusion agarose diffusion gels were
prepared according to reference [30]. In order to select DGT-appropriate materials that have
a low influence on the adsorption of the target compounds, agarose diffusive gel discs and
four types of filter membrane (polyethersulfone (PES, 0.14 mm thick), polytetrafluoroethy-
lene (PTFE, 0.18 mm thick), polyvinylidene fluoride (PVDF, 0.11 mm thick) and nylon
(0.11 mm thick) (all with 2.5 cm diameter)) were separately immersed in a 100 mL solution
containing the four target compounds (9-FL; 1-CLAQ; Phe: 100 µg L−1; 9-NA: 20 µg L−1).
At the same time, DGT moldings were immersed in 200 mL of a solution of the same
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composition. All of the above solutions were shaken for 12 h, and the adsorption of the four
compounds on each material was calculated based on the concentration difference from the
beginning to the end of the experiment [30]. The reason for the different concentrations of
the target compounds is the low solubility of 9-NA and the fact that the 9-NA concentration
is usually lower than that of the other three compounds in ambient water. The selected
concentrations of each compound in the following experiments are the same as in this
section due to the same reason.

The binding gel preparation procedure was as follows: The XAD18 resin was dried and
ground into powder form, fully activated with methanol and then rinsed with ultrapure
water. Then, 6 g (wet weight after pretreatment) of resin was added to 30 mL of 2% agarose
solution, and then the solution was heated to boiling. This agarose solution was pipetted
between two preheated glass plates (>80 ◦C) separated by a 0.5 mm thick PVC plastic
sheet and cooled to room temperature. Then, the gel was cut into discs 25 mm in diameter.
Diffusive gels and binding gels were placed in ultrapure water, sealed and stored at 4 ◦C.

2.3. Characteristics of the Binding Gel
2.3.1. Adsorption Kinetics

The ability of the XAD18 binding gel to rapidly adsorb compounds is key to its ability
as a binding layer in DGT devices, and thus its adsorption kinetics need to be examined.
The XAD18 binding gel was immersed in 100 mL of a solution containing the four target
compounds (9-FL; 1-CLAQ; Phe, 100 µg L−1; 9-NA, 20 µg L−1), and shaken for 30 h.
Samples were taken from the solution at different time intervals ranging from 5 min to 30 h
for analysis. The mass of the target compounds adsorbed by the binding gel at different
time intervals was calculated.

2.3.2. Elution Efficiency

The binding gels were immersed separately in 50 mL solutions containing the four
target compounds at concentrations of 10 µg L−1, 20 µg L−1 and 100 µg L−1 and then
shaken for 4 h. After the adsorption was complete, the binding gels were placed into
10 mL of methanol and sonicated for 90 min; these solutions were then filtered through an
organic filter membrane and analyzed via HPLC. The elution efficiency was the ratio of the
measured mass of the target compound in the eluate to the adsorbed mass calculated by
the difference in concentrations of the solution before and after adsorption.

2.3.3. Adsorption Isotherm

Adsorption isotherm tests were conducted to assess the uptake capacity of the binding
gels. Different concentration solutions were prepared; the initial concentrations of 9-FL,
1-CLAQ and Phe were 100 µg L−1, 500 µg L−1, 1 mg L−1 and 2 mg L−1, and the initial
9-NA concentrations were 50 µg L−1, 100 µg L−1, 200 µg L−1 and 300 µg L−1. Next, the ¼
XAD18 binding gels were immersed into the solution of each component separately. The
resulting concentrations of the solutions and the mass of the four target compounds loaded
on the binding gels were measured after shaking the solutions for 24 h.

2.4. Diffusion Coefficient Determination

The concentrations determined via the DGT technique were calculated using
Equation (1) [31].

CDGT =
M∆g
DAt

, (1)

where M is the mass accumulated on the XAD18 binding gels, ∆g is the thickness of the
diffusive layer (diffusive gel and filter membrane), D is the diffusion coefficient of the target
analyte in the diffusive layer, t is the exposure time, and A is the window area of the DGT
device (3.14 cm2).

In the present study, the diffusion coefficients of the target compounds were exper-
imentally determined, and DGT-based compound concentrations in the laboratory and
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field tests were determined using Equation (1). DGT devices containing XAD18 binding
gel, 0.80 mm thick agarose diffusive gel and PTFE filter membranes were placed into
2.5 L of well-stirred solutions containing the four target compounds (9-FL; 1-CLAQ; Phe,
100 µg L−1; 9-NA, 20 µg L−1) and 0.01 M NaCl at 25 ◦C for 12 h. After adsorption was
complete, the binding gel was removed from the DGT device and eluted; then, the mass of
the compound adsorbed on the binding gel was calculated.

The diffusion coefficients of the four target compounds were also investigated at a
lower concentration due to the low levels of PAHs and their derivatives in ambient water.
The DGT devices were deployed in 2.5 L of solution containing the target compounds at
3 µg L−1, along with 0.01 M NaCl, at a temperature of 25 ◦C. After deployment for 12 h,
the compounds’ diffusion coefficients were measured.

The diffusion coefficients of the four target compounds were also investigated at lower
concentrations due to the low levels of PAHs and their derivatives in ambient waters. The
DGT devices were deployed in 2.5 L of solution containing the target compounds at 3 µg
L−1, along with 0.01 M NaCl, at a temperature of 25 ◦C. After deployment for 12 h, the
diffusion coefficients of the compounds were measured.

2.5. DGT Performance Tests under Different Conditions
2.5.1. Effects of pH and IS

To test the effects of IS and pH on DGT performance, the DGT devices were placed
for 12 h in two different well-stirred solutions: (a) a 2.5 L solution containing 100 µg L−1

9-FL, 1-CLAQ and Phe and 20 µg L−1 9-NA (IS = 0.01 M NaCl) at different pH values (5–8,
adjusted with 0.1 M HCl or 0.1 M NaOH); (b) a 2.5 L solution containing 100 µg L−1 9-FL,
1-CLAQ and Phe and 20 µg L−1 9-NA (pH = 6) with NaCl concentrations ranging from
0.005 to 0.5 M.

2.5.2. Influences of Diffusion Film Thickness and Deployment Time

To explore how the mass taken up by the DGT device was affected by the diffu-
sive gel thickness, DGT devices containing agarose diffusive gels of various thicknesses
(0.68 mm–2.18 mm) were immersed in 2.5 L of solution containing 100 µg L−1 of 9-FL,
1-CLAQ and Phe, 20 µg L−1 of 9-NA and 0.01 M NaCl for 12 h.

To investigate the impact of the deployment time, the DGT devices were immersed
in well-stirred solutions (4 L) containing 3 µg L−1 of the target compound and 0.01 M
NaCl for a period of 7 days (168 h), with three devices being recovered every other day. To
ensure accurate results and minimize any potential effects from compound evaporation,
the solutions were replaced once daily.

2.5.3. Competition Effects and Aging Effects

In order to investigate the adsorption competition among the compounds, the DGT
devices were deployed for 12 h in four groups of solutions (2.5 L). The compound con-
centrations in each group were as follows: (a) 9-FL, 1-CLAQ, Phe: 100 µg L−1, 9-NA: 20
µg L−1, IS: 0.01 M NaCl; (b) 9-NA, 1-CLAQ, Phe: 100 µg L−1, 9-FL: 20 µg L−1, IS: 0.01 M
NaCl; (c) 9-NA, 9-FL, Phe: 100 µg L−1, 1-CLAQ: 20 µg L−1, IS: 0.01 M NaCl; (d) 9-FL, 9-NA,
1-CLAQ: 100 µg L−1, Phe: 20 µg L−1, IS: 0.01 M NaCl.

The XAD18 binding gels were immediately stored in ultrapure water after preparation;
the overall storage duration is called the aging time. The aging times of XAD18 binding
gels were set to 25, 45 and 90 days. The DGT devices assembled with binding gels with
different aging times were placed into 4 L solutions containing 100 µg L−1 9-FL, 1-CLAQ
and Phe, 20 µg L−1 9-NA and 0.01 M NaCl for 12 h.

In each performance test described above, the mass of compounds present in the
DGT binding gel was measured after device retrieval. Subsequently, the CDGT was cal-
culated using Equation (1) and compared to the compound concentrations in the actual
water samples.
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2.6. Field Trials

The field deployments included two phases, one for evaluation and the other for
water quality monitoring. First, we deployed the DGT devices in Goose Pond, a landscape
water body at Anhui University campus (117◦27′12.46′′. 31◦37′53.82′′) in Heifei City, China,
and recorded the water temperature every 15 min utilizing a temperature recorder. Three
DGT devices were removed after 3, 6, 10 and 15 d, and the concentrations (CDGT) of 9-FL,
1-CLAQ, 9-NA, and Phe were calculated according to Equation (1). Meanwhile, active
sampling, i.e., traditional grab sampling, was also conducted at the pond on Day 3, 10 and
15 of DGT deployment to measure the concentrations (Cactive) of the same compounds.
Then, the two results were compared. After validating the feasibility of using the XAD18-
DGT technique to assess the quantity of four target compounds in the campus pond, we
deployed the DGT devices in several rivers flowing into Chaohu Lake, the fifth largest
freshwater lake in China, located in Hefei City, during June to September 2023. A map of
the sampling sites is shown in Figure 1. The DGT units were retrieved after 7 days at every
site. The pretreatment of water samples is presented in the SI.
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Figure 1. DGT device deployment locations: (1) a pond connected to Chibi River, (2) ChaoHu Lake,
(3) Chibi River, (4) Lower Yudai River, (5) Heishi River, (6) Changlin River, (7) Changlin River, (8) a
pond connected to Yudai River, (9) Yudai River.

3. Results and Discussion
3.1. DGT Device Preparation

The concentrations of the compounds in ambient water were calculated using the mass
of the adsorbed compounds on the binding gel; therefore, the adsorption of compounds
on filter membranes and diffusion gels should be avoided as much as possible when the
compounds pass them. The test results in Figure 2 demonstrate the low adsorption of the
four target compounds onto the diffusion gel (<5%). The DGT molding exhibited a very low
adsorption rate for the four target compounds (<10%). Of the four filter membranes, the
PTFE membrane exhibited the lowest adsorption rate (5%) for the four compounds, while
the other three filter membranes showed much higher adsorption rates (>30%). Therefore,
DGT moldings, agarose diffusive gels and PTFE filter membranes were used to construct
the DGT devices used in the present study.
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3.2. Characteristics of the Binding Gel
3.2.1. Adsorption Kinetics

The adsorption of compounds on the XAD18 binding gel increased linearly with time
during the first 60 min (Figure 3). The adsorbed mass reached 80% of the total in the
solution after 240 min, and the adsorption reached dynamic equilibrium after 720 min.
According to Fick’s law of diffusion, the amount of compound adsorbed by the binding gel
should not be less than the theoretical diffusion amount through the diffusion gel in the first
5 min, ensuring the rapid adsorption of the target compounds; thus, the concentration at
the interface between the diffusion gel and binding gel is effectively zero [32]. The average
adsorption rates of 9-FL, 9-NA, 1-CLAQ and Phe in the first five minutes were 0.49 ng cm−2

s−1, 0.13 ng cm−2 s−1, 0.59 ng cm−2 s−1 and 0.37 ng cm−2 s−1, respectively. The compound
adsorption rates far exceeded the flux through the DGT diffusion layer (0.80 mm diffusion
gel + 0.18 mm filter membrane) (0.00044–0.0048 ng cm−2 s−1). These results indicate that
the XAD18 binding gels could rapidly adsorb the four compounds, effectively maintaining
a zero concentration at the interface between the binding and diffusion gels, which is a key
criterion for high-accuracy DGT measurements.Water 2024, 16, x FOR PEER REVIEW 7 of 15 
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Figure 3. The mass of the target compounds accumulated on XAD18 binding gels was measured
over time. The solution initially contained 0.01 M NaCl and the target compounds (9-FL; 1-CLAQ;
Phe: 100 µg L−1; 9-NA: 20 µg L−1). Error bars were calculated from the standard deviation of the
replicates (n = 3).
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3.2.2. Elution Efficiencies

Ensuring a stable elution efficiency for a specific analyte is crucial for accurately
assessing the masses adsorbed by the binding gels. This, in turn, guarantees proper
calculation of DGT-based concentrations [14]. XAD18 binding gels, which had adsorbed
a known mass of the target compound, were sonicated in 10 mL of methanol for 90 min.
The compound elution efficiencies were measured to be within the range of 87.07% to
98.14% (Table 1). This test was also conducted using dichloromethane, but the elution
efficiency exceeded 120%, possibly due to the high volatility of this solvent. To ensure
accurate measurements, 10 mL of methanol was used for elution in this study.

Table 1. Elution efficiencies of target compounds for XAD18 binding gels loaded with 450, 900 and
4500 ng of 9-FL, 1-CLAQ, 9-NA and Phe (%).

Compound
Mass of the Compound Loaded on the Binding Gels

450 ng 900 ng 4500 ng Mean S.D.

9-FL 94.88 ± 3.08 103.21 ± 7.66 96.32 ± 1.60 98.14 4.45

1-CLAQ 92.81 ± 4.59 90.54 ± 3.31 86.16 ± 1.67 89.84 3.38

9-NA 93.08 ± 1.35 84.33 ± 4.12 83.81 ± 1.29 87.07 5.21

Phe 95.18 ± 6.85 99.04 ± 0.19 96.99 ± 1.35 97.07 1.93

3.2.3. Adsorption Isotherm

The results of isotherm tests were fitted to the Langmuir and Freundlich equations
(SI Table S3). The correlation coefficients obtained from the Langmuir fit (R2) were smaller
than those obtained from the Freundlich fit, meaning that the adsorption process was
not single molecule adsorption. The Freundlich model better-described the adsorption
behavior of XAD18 for the four target compounds (SI Figure S2). According to a previous
study, the concentrations of 9-FL, 1-CLAQ, 9-NA and Phe in environmental waters do
not exceed 1 µg L−1 [5,33,34]. When the concentration of each type of target substance in
the waters was 1 µg L−1, the adsorption capacities of 9-FL, 1-CLAQ, 9-NA and Phe were
calculated according to the Freundlich equation as 1.233 µg cm−2, 1.660 µg cm−2, 0.622 µg
cm−2 and 0.489 µg cm−2, respectively. Based on these results, the XAD18-DGT devices
could be deployed in an aquatic environment for a minimum of 5–6 months before reaching
saturation, allowing the DGT samplers to be used in the field for days to months.

3.3. Diffusion Coefficient

The diffusion coefficients (D) calculated using Equation (1) were 5.30 × 10−6 cm2 s−1,
4.51 × 10−6 cm2 s−1, 4.03 × 10−6 cm2 s−1 and 3.34 × 10−6 cm2 s−1 for 9-FL, 1-CLAQ, 9-NA
and Phe at 25 ◦C (Table 2). The diffusion coefficient is affected by temperature, and the D
values at other temperatures can be estimated using Equation (2). The diffusion coefficients
of various compounds calculated in experiments at 20 ◦C and 28 ◦C differed by less than
10% from the values calculated by Equation (2). These results demonstrate the accuracy of
applying Equation (2) to deduce the diffusion coefficients at different temperatures [26].

log DT =
1.37023(T − 25) + 8.36 × 10−4(T − 25)2

109 + T
+ log

D25(273 + T)
298

(2)

where DT (cm2 s−1) is the analyte diffusion coefficient at temperature T (◦C), and D25 (cm2

s−1) is the analyte diffusion coefficient at 25 ◦C.
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Table 2. Diffusion coefficient values. Experimentally measured D values (DDGT) and D values
estimated via Equation (2) (Deq) and the ratios (DDGT/Deq) of four target compounds at 20 ◦C, 25 ◦C
and 28 ◦C.

T (◦C)
Compound

9-FL 1-CLAQ 9-NA Phe

25 ◦C DDGT (cm2 s−1) 5.30 × 10−6 4.51 × 10−6 4.03 × 10 3.34 × 10−6

20 ◦C
DDGT (cm2 s−1) 4.47 × 10−6 3.72 × 10−6 3.36 × 10−6 2.67 × 10−6

Deq (cm2 s−1) 4.61 × 10−6 3.93 × 10−6 3.51 × 10−6 2.91 × 10−6

DDGT/Deq 0.97 0.95 0.96 0.92

28 ◦C
DDGT (cm2 s−1) 5.68 × 10−6 4.98 × 10−6 4.13 × 10−6 3.74 × 10−6

Deq (cm2 s−1) 5.74 × 10−6 4.88 × 10−6 4.36 × 10−6 3.62 × 10−6

DDGT/Deq 0.99 1.02 0.95 1.03

The diffusion coefficients of 9-FL, 1-CLAQ, 9-NA and Phe determined at a solu-
tion concentration of 3 µg L−1 at 25 ◦C were 5.07 × 10−6 cm2 s−1, 4.50 × 10−6 cm2 s−1,
3.79 × 10−6 cm2 s−1 and 3.68 × 10−6 cm2 s−1, respectively. The difference between the
diffusion coefficient values measured under the two levels of solution concentrations does
not exceed 10%. The test results demonstrate that variations in the concentration of target
compounds in ambient water have little impact on the diffusion coefficient. This finding
confirms the stability and reliability of utilizing DGT devices to evaluate PAH derivatives
and PAH pollution in diverse water bodies.

3.4. Factors Affecting DGT Performance
3.4.1. Effects of pH and IS

At pH 5–8, the concentrations of the four compounds measured using the DGT (CDGT)
were very close to the actual concentrations (Csoln), with CDGT/Csoln ranging from 0.9 to
1.1 (Figure 4a), which indicates that the XAD18-DGT device can adapt well to the changes
in acidity and alkalinity in water.
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Figure 4b shows that the DGT device results for the four compounds were not signifi-
cantly influenced by the IS of the solutions (0.001–0.5 M of NaCl). The ratios of CDGT/Csoln
ranged from 0.9 to 1.1, indicating that the XAD18-DGT device may be applied not only
fresh in water but also in seawater.
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3.4.2. Effects of Diffusion Film Thickness and Deployment Time

Based on Equation (1), in a well-stirred solution with the same analyte concentration
and temperature, the adsorbed mass of the target analyte in the DGT devices should exhibit
a linear relationship with the reciprocal of the diffusion layer thickness (diffusion gel + filter
membrane). As shown in SI Figure S3, the mass of the target compound adsorbed on the
binding gel increased linearly (r2 = 0.978–0.995, p < 0.05) with the inverse of the diffusion
layer thickness (0.68–2.18 mm). The experimental results for different diffusion layer
thicknesses were in good accordance with the values calculated via Equation (1), certifying
that the mass transfer in the DGT device obeyed Equation (1) and that the diffusive
boundary layer thickness does not influence the DGT device’s measurement accuracy. The
results also verify the accuracy of the diffusion coefficients determined in the present study.

In the aquatic environment, PAH derivative and PAH concentrations are usually
at ng L−1 levels [5,9]; thus, DGT devices need to be deployed for long periods in order
to accumulate the measured compounds at detectable levels. The masses of the four
compounds measured by the XAD18-DGT device increased linearly with deployment time
(12–168 h) (SI Figure S4) and were in good agreement with the theoretical values predicted
by Equation (1). The results show the deployment time (within a certain range) does not
influence the DGT device’s performance when deployed in ambient water.

3.4.3. Competition of Compounds and Aging Effect of XAD18 Binding Gels

The CDGT/Csoln values of the solutions containing the four target compounds with
different concentration ratios were in the range of 0.9 to 1.1 (SI Table S4), quite close to the
values measured in the single compound solution test, indicating that the DGT devices
could be used for simultaneous monitoring of the four target compounds in water. The
results show that the DGT measurement was likely not affected by the analyte concentration
levels or the presence of other trace organic compounds in environmental waters.

When DGT devices are deployed in ambient water, the DGT plastic molding and filter
membrane can protect the binding gel from the effects of the external environment, so
membrane aging is an important factor that might affect the performance of the binding
gel. The binding gels were prepared and placed in ultrapure water for 25 to 90 days, and
then their adsorption properties were measured. The CDGT/Csoln values ranged from 0.9
to 1.1 (SI Figure S5), indicating that the binding gel performance was not affected by the
aging time set in this study.

3.5. Field Evaluation and Application

The XAD18-DGT device was deployed in Goose Pond for evaluation. The concen-
trations of compounds measured using DGT and active (grab) sampling are shown in
Figure 5. The temperature in the pond varied in the range of 28 ± 4 ◦C, recorded by a
temperature recorder at 15 min intervals (SI Table S5). The time-integrated concentrations of
9-FL, 1-CLAQ, 9-NA and Phe measured by DGT sampling were 45.37 ng L−1, 22.38 ng L−1,
14.68 ng L−1 and 87.71 ng L−1, respectively, and the compound concentrations determined
via grab sampling were 53.13 ng L−1, 7.65 ng L−1, 4.55 ng L−1 and 84.06 ng L−1, respec-
tively, as shown in Figure 5. The concentrations of 9-FL and Phe determined by the DGT
technique were close to the values determined by active sampling, while the concentrations
of 1-CLAQ and 9-NA were very different between DGT and active sampling. The sources of
PAH derivatives and PAHs in the campus pond are mainly atmospheric dust fall, rainwater
and surface runoff. Therefore, the 9-NA and 1-CLAQ concentrations in the pond are low,
and it is thus difficult to extract and concentrate 9-NA and 1-CLAQ from the collected
ambient water samples, which may result in large experimental errors in the measurement
results. This tedious extraction and concentration process could be avoided by using DGT
sampling. The experimental results further verify the advantages and accuracy of using
the DGT device for the determination of PAH derivatives and PAHs in waters.
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In the 15-day deployment experiments, the results show that retrieval of the DGT de-
vices after 3 days of deployment might result in low accumulation of the target compounds
on the binding gel, making the assay difficult. However, retrieval of the DGT devices after
15 days might result in biofilm growth on the DGT filtration membrane layer, which would
affect the diffusion rate and lead to inaccurate assay results. Thus, the optimal deployment
period for DGT is likely 6–10 days in natural waters.

After evaluating the feasibility of environmental application and the optimal deploy-
ment time, 14 groups of XAD18 DGT devices were deployed in the rivers around the
Chaohu Lake Basin. However, only nine groups were recovered. The specific deployment
sites are shown in Figure 1, and the target compound concentrations at each site are shown
in Figure 6. The mean concentrations of Phe, 9-FL, 1-CLAQ and 9-NA at the sampling sites
were 147.8–208.2 ng L−1, 17.7–48.5 ng L−1, 14.9–33.5 ng L−1 and 6.6–24.9 ng L−1, respec-
tively. According to previous studies of surface waters, the concentrations of 9-FL and
1-CLAQ are about 16–33 ng L−1 and 13–20 ng L−1, respectively [5,34], the concentration of
9-NA is about 4–14 ng L−1 [35], and the concentration of Phe is about 22–103 ng L−1 [33,34].
In this study, the concentrations of the four target compounds in rivers, determined via the
DGT technique, were slightly higher than those measured in natural waters in the above
studies. This might be due to the fact that the monitored sites selected in this study were
located in the Chaohu Lake watershed, which has a dense population. The rivers in this
watershed are affected by lots of industry and agriculture pollutant input and are relatively
seriously polluted.
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measured using the DGT technique at nine sites. The deployment site details are illustrated in
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4. Conclusions

In this work, a feasibility study for using the XAD18-DGT technique for the detection
of PAH derivatives and PAHs in waters was conducted, proving that it is a reliable and cost-
effective method for PAH derivative and PAH detection. Although only four typical target
compounds were studied, this class of organic compounds have similar physicochemical
properties, so the DGT technique could be applied to monitor other PAH derivatives and
PAHs. The approach was stable and reliable for measuring PAH derivatives and PAHs,
and it was not limited by the pH, ionic strength or deployment time within a certain range
in natural waters. Thus, DGT devices could be used in a variety of aqueous environments,
such as highly polluted fresh water and seawater. The resulting concentrations measured
using the DGT technique are time-weighted concentrations, which better reflect the true
levels of organic pollutants in water bodies. By employing the DGT technique, the potential
risks associated with sampling in adverse weather conditions are mitigated. Compared
with other passive samplers, the DGT method’s flux independence and ease of use without
field calibration could make it a suitable technique for in situ monitoring of PAH derivatives
and PAHs in a variety of aquatic systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16050684/s1, Table S1. Physicochemical properties of 9-FL,
1-CLAQ, 9-NA and Phe; Table S2. Reagents and materials used in the test; Table S3. Parameters
of Langmuir and Freundlich isotherms for 9-FL, 1-CLAQ, 9-NA and Phe; Table S4. The ratio
of concentrations measured by DGT (CDGT) to concentrations in solutions (Csoln) with different
concentration ratios of the four target compounds. Values were expressed as mean ± standard
deviation of at least three replicates; Table S5. Water temperature of Goose Pound, located in Anhui
University campus, recorded by temperature loggers with different deployment periods; Table S6.
Optimal instrumental parameters of HPLC used in this study; Figure S1. DGT Device Structure
Schematic; Figure S2. Adsorption isotherm of 9-FL, 1-CLAQ, 9-NA and Phe for XAD18 binding gels.
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Error bars were calculated from at least three replicates; Figure S3. Measured masses of 9-FL, 1-CLAQ,
9-NA and Phe accumulated by DGT devices with different diffusive layer thickness (0.68−2.18mm)
deployed in well-stirred solutions at particular concentration. The solid line represents the theoretical
values predicted from the known solution concentrations using Equation (1). Error bars were
calculated from at least three replicates; Figure S4. Measured masses of 9-FL, 1-CLAQ, 9-NA and
Phe accumulated by DGT over a period of 168 h. The DGT devices were deployed in 4 L well-stirred
solutions containing 0.01 M NaCl and the four target compounds at 3 µg L−1. The solid line represents
the theoretical values predicted from the known solution concentrations using Equation (1). Error
bars were calculated from three replicates; Figure S5. The ratios of concentrations measured by
the XAD18-DGT (CDGT) with different aging time, to the known solution concentrations (Csoln) of
the four target analytes. The solid horizontal line represents the target value of 1, and the dotted
horizontal lines represent target values at 0.9 and 1.1. Values are means ± SD of three replicate
analyses; Figure S6. Some pictures of the entire DGT field deployment process. References [26,27] are
cited in Supplementary Materials.
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