Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (567)

Search Parameters:
Keywords = diffusion saturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4358 KiB  
Article
Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation
by Marin Ugrina, Ivona Nuić and Jelena Milojković
Processes 2025, 13(9), 2672; https://doi.org/10.3390/pr13092672 - 22 Aug 2025
Abstract
This study evaluates and compares the sorption performance of natural zeolite (NZ) and Fe(III)-modified zeolite (FeZ) in removing Cu(II) ions from aqueous solutions, with the goal of assessing their potential for environmental remediation. NZ was modified with Fe(NO3)3, NaOH [...] Read more.
This study evaluates and compares the sorption performance of natural zeolite (NZ) and Fe(III)-modified zeolite (FeZ) in removing Cu(II) ions from aqueous solutions, with the goal of assessing their potential for environmental remediation. NZ was modified with Fe(NO3)3, NaOH and NaNO3 solutions to improve its sorption properties. The modification led to a slight decrease in crystallinity (XRD), increase in pore volume (BET), functional groups (FTIR) and negative surface charge (zeta potential), thereby improving the affinity of FeZ towards Cu(II). Batch sorption experiments were conducted to optimize key parameters including pH, solid/liquid ratio (S/L), contact time, and initial Cu(II) concentration. The pHo and S/L ratio were identified as key factors significantly influencing Cu(II) sorption on both zeolites, with a particularly pronounced effect observed for FeZ. The optimal conditions determined were pHo = 3–5 for NZ, pHo = 3 for FeZ, S/L = 10 g/L and a contact time of 600 min. Experimental results confirmed that FeZ has almost twice the sorption capacity for Cu(II) compared to NZ (0.271 mmol/g vs. 0.156 mmol/g), as further supported by elemental analysis, SEM-EDS and mapping analysis of saturated samples. The sorption of Cu(II) followed a mechanism of physical nature driven by ion exchange, dominated by intraparticle diffusion as the rate-controlling step. Leaching of copper-saturated zeolites according to the standard leaching method, DIN 38414 S4, demonstrated the ability of both zeolites to fully retain Cu(II) within their structure over a wide pH range, 4.01 ≤ pHo ≤ 10.06. These findings highlight the superior performance of FeZ and its potential as an effective material for the remediation of copper-contaminated environments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 2592 KiB  
Article
Characterization of Rapeseed Oil Oleogels Produced by the Emulsion Template Method Using Hydroxypropyl Methylcellulose and the Drying Kinetics of the Emulsions
by Mario Lama, Amaya Franco-Uría and Ramón Moreira
Foods 2025, 14(16), 2908; https://doi.org/10.3390/foods14162908 - 21 Aug 2025
Viewed by 204
Abstract
Given health concerns, oleogels are promising substitutes for saturated fats in food products. An emulsion-templated method was used, employing rapeseed oil and hydroxypropyl methylcellulose (HPMC) as the structuring agent, to produce oleogels. Oil-in-water emulsions (50:50 w/w) were prepared with three [...] Read more.
Given health concerns, oleogels are promising substitutes for saturated fats in food products. An emulsion-templated method was used, employing rapeseed oil and hydroxypropyl methylcellulose (HPMC) as the structuring agent, to produce oleogels. Oil-in-water emulsions (50:50 w/w) were prepared with three HPMC concentrations (1.5, 2.0, and 2.5% w/w) and dried convectively at 60, 70, 80, and 90 °C to obtain oleogels. The emulsions exhibited viscoelastic behaviour with a predominant viscous character, G″ > G′. Drying kinetics showed a constant rate period followed by a falling rate period; the latter was satisfactorily modelled using a diffusion-based approach. All oleogels displayed predominantly elastic behaviour but the characteristics depended on the temperature employed during the drying operation and the HPMC content. The mechanical moduli (G″ and G′) of the oleogels increased significantly with a drying temperature below 80 °C. Higher HPMC content enhanced structural development and thermal stability. Most oleogels exhibited high oil binding capacity (>85%), which increased with the drying temperature and the HPMC content. A correlation was established between the elastic moduli, oil retention, and the hardness of the oleogels. No significant influences of the drying temperature and the polymer concentration on lipid oxidation and colour samples were determined. These results highlight the importance of selecting appropriate drying conditions based on the desired final product properties. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 2717 KiB  
Article
EASD: Exposure Aware Single-Step Diffusion Framework for Monocular Depth Estimation in Autonomous Vehicles
by Chenyuan Zhang and Deokwoo Lee
Appl. Sci. 2025, 15(16), 9130; https://doi.org/10.3390/app15169130 - 19 Aug 2025
Viewed by 134
Abstract
Monocular depth estimation (MDE) is a cornerstone of computer vision and is applied to diverse practical areas such as autonomous vehicles, robotics, etc., yet even the latest methods suffer substantial errors in high-dynamic-range (HDR) scenes where over- or under-exposure erases critical texture. To [...] Read more.
Monocular depth estimation (MDE) is a cornerstone of computer vision and is applied to diverse practical areas such as autonomous vehicles, robotics, etc., yet even the latest methods suffer substantial errors in high-dynamic-range (HDR) scenes where over- or under-exposure erases critical texture. To address this challenge in real-world autonomous driving scenarios, we propose the Exposure-Aware Single-Step Diffusion Framework for Monocular Depth Estimation (EASD). EASD leverages a pre-trained Stable Diffusion variational auto-encoder, freezing its encoder to extract exposure-robust latent RGB and depth representations. A single-step diffusion process then predicts the clean depth latent vector, eliminating iterative error accumulation and enabling real-time inference suitable for autonomous vehicle perception pipelines. To further enhance robustness under extreme lighting conditions, EASD introduces an Exposure-Aware Feature Fusion (EAF) module—an attention-based pyramid that dynamically modulates multi-scale features according to global brightness statistics. This mechanism suppresses bias in saturated regions while restoring detail in under-exposed areas. Furthermore, an Exposure-Balanced Loss (EBL) jointly optimises global depth accuracy, local gradient coherence and reliability in exposure-extreme regions—key metrics for safety-critical perception tasks such as obstacle detection and path planning. Experimental results on NYU-v2, KITTI, and related benchmarks demonstrate that EASD reduces absolute relative error by an average of 20% under extreme illumination, using only 60,000 labelled images. The framework achieves real-time performance (<50 ms per frame) and strikes a superior balance between accuracy, computational efficiency, and data efficiency, offering a promising solution for robust monocular depth estimation in challenging automotive lighting conditions such as tunnel transitions, night driving and sun glare. Full article
Show Figures

Figure 1

23 pages, 9894 KiB  
Article
The Problem of Formation Destruction in Carbon Dioxide Storage: A Microscopic Model
by Natalia Levashova, Pavel Levashov, Dmitry Erofeev and Alla Sidorova
Algorithms 2025, 18(8), 503; https://doi.org/10.3390/a18080503 - 12 Aug 2025
Viewed by 262
Abstract
In the context of the current global transition toward low-carbon energy, the issue of CO2 utilization has become increasingly important. One of the most promising natural targets for CO2 sequestration is the terrigenous sedimentary formations found in oil, gas, [...] Read more.
In the context of the current global transition toward low-carbon energy, the issue of CO2 utilization has become increasingly important. One of the most promising natural targets for CO2 sequestration is the terrigenous sedimentary formations found in oil, gas, and coal basins. It is generally assumed that CO2 injected into such formations can be stored indefinitely in a stable form. However, the dissolution of CO2 into subsurface water leads to a reduction in pH, which may cause partial dissolution of the host formation, altering the structure of the subsurface in the injection zone. This process is relatively slow, potentially unfolding over decades or even centuries, and its long-term consequences require careful investigation through mathematical modeling. The geological formation is treated as a partially soluble porous medium, where the dissolution rate is governed by surface chemical reactions occurring at the pore boundaries. In this study, we present an applied mathematical model that captures the coupled processes of mass transport, surface chemical reactions, and the resulting microscopic changes in the pore structure of the formation. To ensure the model remains grounded in realistic geological conditions, we based it on exploration data characterizing the composition and microstructure of the pore space typical of the Cenomanian suite in northern Western Siberia. The model incorporates the dominant geochemical reactions involving calcium carbonate (calcite, CaCO3), characteristic of Cenomanian reservoir rocks. It describes the dissolution of CO2 in the pore fluid and the associated evolution of ion concentrations, specifically H+, Ca2+, and HCO3. The input parameters are derived from experimental data. While the model focuses on calcite-based formations, the algorithm can be adapted to other mineralogies with appropriate modifications to the reaction terms. The simulation domain is defined as a cubic region with a side length of 1 μm, representing a fragment of the geological formation with a porosity of 0.33. The pore space is initially filled with a mixture of liquid CO2 and water at known saturation levels. The mathematical framework consists of a system of diffusion–reaction equations describing the dissolution of CO2 in water and the subsequent mineral dissolution, coupled with a model for surface evolution of the solid phase. This model enables calculation of surface reaction rates within the porous medium and estimates the timescales over which significant changes in pore structure may occur, depending on the relative saturations of water and liquid CO2. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

24 pages, 4650 KiB  
Article
Microscopic Investigation of Coupled Mobilization and Blending Behaviors Between Virgin and Reclaimed Aged Asphalt Mastic
by Jiaying Zhang, Xin Qiu, Qinghong Fu, Zheyu Shen, Xuanqi Huang and Haoran Chen
Materials 2025, 18(16), 3739; https://doi.org/10.3390/ma18163739 - 10 Aug 2025
Viewed by 313
Abstract
To meet the demand for sustainable pavement infrastructure, reclaimed asphalt pavement (RAP) has become a key strategy to enhance material circularity. This study investigates the coupled mobilization and blending behaviors between virgin and aged asphalt mastic in RAP systems. Fourier-Transform Infrared Spectroscopy (FTIR) [...] Read more.
To meet the demand for sustainable pavement infrastructure, reclaimed asphalt pavement (RAP) has become a key strategy to enhance material circularity. This study investigates the coupled mobilization and blending behaviors between virgin and aged asphalt mastic in RAP systems. Fourier-Transform Infrared Spectroscopy (FTIR) was utilized to quantify the mobilization rate (MR) of aged mastic on RAP aggregate surfaces using the Composite Aging Index (CAI). Scanning Electron Microscopy (SEM) and Fluorescence Microscopy (FM), combined with digital image analysis, were employed to assess the blending interface and quantify the degree of blending (DoB). A 3D model was developed to describe the nonlinear relationship between MR and DoB. The results show that regeneration is dominated by physical diffusion, while mixing temperature has a stronger effect on MR than time. The binder interface displays a smooth transition, whereas the mastic interface exhibits a gear-like structure. DoB in the binder system is higher than that in the mastic system under the same condition, with early-stage temperature elevation playing a key role. Even near 100%, MR does not lead to full blending due to interfacial saturation. These insights are valuable for guiding the design of RAP and optimizing mixing conditions to enhance recycling efficiency in practical applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 5474 KiB  
Article
Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM
by Nan Xie, Hongyu Chang, Jie Li and Chenchong Zhou
Processes 2025, 13(8), 2515; https://doi.org/10.3390/pr13082515 - 9 Aug 2025
Viewed by 356
Abstract
This study proposes a MPL (microporous layer)–GDL (gas diffusion layer) microstructure reconstruction method based on a novel random reconstruction algorithm. Then the Shan–Chen multi-component and multi-phase lattice Boltzmann method (SC-LBM) is used to systematically describe the influence of different contact angle distributions on [...] Read more.
This study proposes a MPL (microporous layer)–GDL (gas diffusion layer) microstructure reconstruction method based on a novel random reconstruction algorithm. Then the Shan–Chen multi-component and multi-phase lattice Boltzmann method (SC-LBM) is used to systematically describe the influence of different contact angle distributions on the drainage characteristics of the GDL of proton exchange membrane fuel cells (PEMFCs). Meanwhile, the breakthrough time of liquid water, steady-state time, and liquid water saturation are compared. The results show that with the increase in contact angle, the time for the first droplet breakthrough and the steady-state time are significantly shortened, and the saturation of liquid water gradually decreases at the steady state, indicating that increasing hydrophobicity can effectively improve the drainage capacity of the GDL. Several double-gradient and three-gradient contact angle distribution schemes are studied, and it is found that the gradient structure with increasing contact angles along the direction of water flow will lead to prolonged steady-state time and elevated water saturation, which is not conducive to drainage. This study analyzes the drainage process under different wettability gradients considering aspects such as the droplet morphology evolution, flow path, and water distribution mechanism, clarifying the key role of gradient design in GDL water management. This work also provides a theoretical basis and design guidelines for wettability optimization in the GDL of PEMFCs. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

17 pages, 4105 KiB  
Article
Evaluation of the Effect of X-Ray Therapy on Glioma Rat Model Using Chemical Exchange Saturation Transfer and Diffusion-Weighted Imaging
by Kazuki Onishi, Koji Itagaki, Sachie Kusaka, Tensei Nakano, Junpei Ueda and Shigeyoshi Saito
Cancers 2025, 17(15), 2578; https://doi.org/10.3390/cancers17152578 - 5 Aug 2025
Viewed by 271
Abstract
Background/Objectives: This study aimed to examine the changes in brain metabolites and water molecule diffusion using chemical exchange saturation transfer (CEST) imaging and diffusion-weighted imaging (DWI) after 15 Gy of X-ray irradiation in a rat model of glioma. Methods: The glioma-derived [...] Read more.
Background/Objectives: This study aimed to examine the changes in brain metabolites and water molecule diffusion using chemical exchange saturation transfer (CEST) imaging and diffusion-weighted imaging (DWI) after 15 Gy of X-ray irradiation in a rat model of glioma. Methods: The glioma-derived cell line, C6, was implanted into the striatum of the right brain of 7-week-old male Wistar rats. CEST imaging and DWI were performed on days 8, 10, and 17 after implantation using a 7T-magnetic resonance imaging. X-ray irradiation (15 Gy) was performed on day 9. Magnetization transfer ratio (MTR) and apparent diffusion coefficient (ADC) values were calculated for CEST and DWI, respectively. Results: On day 17, the MTR values at 1.2 ppm, 1.5 ppm, 1.8 ppm, 2.1 ppm, and 2.4 ppm in the irradiated group decreased significantly compared with those of the control group. The standard deviation for the ADC values on a pixel-by-pixel basis increased from day 8 to day 17 (0.6 ± 0.06 → 0.8 ± 0.17 (×10−3 mm2/s)) in the control group, whereas it remained nearly unchanged (0.6 ± 0.06 → 0.8 ± 0.11 (×10−3 mm2/s)) in the irradiated group. Conclusions: This study revealed the effects of 15 Gy X-ray irradiation in a rat model of glioma using CEST imaging and DWI. Full article
Show Figures

Figure 1

19 pages, 4697 KiB  
Article
The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
by Mohamad Alsaadi, Tomas Flanagan, Daniel P. Fitzpatrick and Declan M. Devine
Sustainability 2025, 17(15), 6967; https://doi.org/10.3390/su17156967 - 31 Jul 2025
Viewed by 395
Abstract
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) [...] Read more.
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) of a semi-unidirectional non-crimp basalt fibre (BF)-reinforced acrylic matrix and epoxy matrix composites was investigated. Optical and scanning electron microscopes were used to describe the fracture and interfacial failure mechanisms. The results show that the BF/Elium composite exhibited higher fracture toughness properties compared to the BF/Epoxy composite. The results of the mode I and mode II interlaminar fracture toughness values for the BF/Elium composite were 1280 J/m2 and 2100 J/m2, which are 14% and 56% higher, respectively, than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. The saturated moisture content and diffusion coefficient values of seawater-aged samples at 45 °C and room temperature for the BF/Elium and BF/Epoxy composites were analysed. Both composites exhibited signs of polymer matrix decomposition and fibre surface degradation under the influence of seawater hydrothermal ageing, resulting in a reduction in the mode II interlaminar fracture toughness values. Enhancement was observed in mode I fracture toughness under hydrothermal ageing, particularly for the BF/Epoxy composite, due to matrix plasticisation and fibre bridging. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

14 pages, 2649 KiB  
Article
Study on the Liquid Transport on the Twisted Profile Filament/Spun Combination Yarn in Knitted Fabric
by Yi Cui, Ruiyun Zhang and Jianyong Yu
Polymers 2025, 17(15), 2065; https://doi.org/10.3390/polym17152065 - 29 Jul 2025
Viewed by 340
Abstract
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport [...] Read more.
The excellent moisture transport properties of yarns play a crucial role in improving the liquid moisture transfer behavior within textiles and maintaining their thermal-wet comfort. However, the current research on the moisture management performance of fabrics made from yarns with excellent liquid transport properties primarily compares the wicking results, without considering the varying requirements of testing conditions due to differences in human sweating rates during daily activities. Moreover, the understanding of moisture transport mechanisms in yarns within fabrics under different testing conditions remains insufficient. In this study, two types of twisted combination yarns, composed of hydrophobic profiled polyester filaments and hydrophilic spun yarns to form a hydrophobic-hydrophilic gradient along the axial direction of the yarn, were developed and compared with profiled polyester filaments to understand the liquid migration behaviors in the knitted fabrics formed by these yarns. Results showed that hydrophobic profiled polyester filament yarn demonstrated superior liquid transport performance with infinite saturated liquid supply (vertical wicking test). In contrast, the twisted combination yarns exhibited better moisture diffusion properties under limited liquid droplet supply conditions (droplet diffusion test and moisture management test). These contradictory findings indicated that the amount of liquid moisture supply in testing conditions significantly affected the moisture transport performance of yarns within fabrics. It was revealed that the liquid moisture in the twisted combination yarns migrated through capillary wicking for moisture transfer. Under an infinite saturated liquid supply condition, the higher the content of hydrophilic fibers in the spun yarns, the greater the amount of moisture transferred, demonstrating an excellent liquid transport performance. Under the limited liquid droplet supply conditions, both the volume of liquid water and the moisture absorption capacity of the yarn jointly influence internal moisture migration within the yarn. It provided a theoretical reference for testing the internal moisture wicking performance of fabrics under different states of human sweating. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 14199 KiB  
Article
A Nonlinear Cross-Diffusion Model for Disease Spread: Turing Instability and Pattern Formation
by Ravi P. Gupta, Arun Kumar and Shristi Tiwari
Mathematics 2025, 13(15), 2404; https://doi.org/10.3390/math13152404 - 25 Jul 2025
Viewed by 394
Abstract
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of [...] Read more.
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of parabolic partial differential equations, thereby validating the proposed spatio-temporal model. Through the implementation of the suggested cross-diffusion mechanism, the model reveals at least one non-constant positive equilibrium state within the susceptible–infected (SI) system. This work demonstrates the potential coexistence of susceptible and infected populations through cross-diffusion and unveils Turing instability within the system. By analyzing codimension-2 Turing–Hopf bifurcation, the study identifies the Turing space within the spatial context. In addition, we explore the results for Turing–Bogdanov–Takens bifurcation. To account for seasonal disease variations, novel perturbations are introduced. Comprehensive numerical simulations illustrate diverse emerging patterns in the Turing space, including holes, strips, and their mixtures. Additionally, the study identifies non-Turing and Turing–Bogdanov–Takens patterns for specific parameter selections. Spatial series and surfaces are graphed to enhance the clarity of the pattern results. This research provides theoretical insights into the implications of cross-diffusion in epidemic modeling, particularly in contexts characterized by localized mobility, clinically evident infections, and community-driven isolation behaviors. Full article
(This article belongs to the Special Issue Models in Population Dynamics, Ecology and Evolution)
Show Figures

Figure 1

12 pages, 1712 KiB  
Case Report
Severe Reproductive Disorders After Abdominal Fat Necrosis in Dairy Cattle
by Vasilică Gotu, Sorin Aurelian Pașca, Ștefan Gregore Ciornei, Dragoș Constantin Anița, Daniela Porea, Geta Pavel, Răzvan Nicolae Mălăncuș, Gheorghe Savuța, Mariana Ioniță, Gheorghe Solcan and Ioan Liviu Mitrea
Life 2025, 15(8), 1182; https://doi.org/10.3390/life15081182 - 25 Jul 2025
Viewed by 1101
Abstract
Abdominal fat necrosis is a dystrophic–necrotic process that is relatively common in dairy cows. It is determined by productive strain (excess fat in the diet), negative energy balance after calving, a lack of physical activity, vitamin E and selenium deficiency, etc. Lipomatous masses [...] Read more.
Abdominal fat necrosis is a dystrophic–necrotic process that is relatively common in dairy cows. It is determined by productive strain (excess fat in the diet), negative energy balance after calving, a lack of physical activity, vitamin E and selenium deficiency, etc. Lipomatous masses are predominantly located in the omentum and mesentery in cattle, potentially causing intestinal obstruction. We report on an outbreak of abdominal fat necrosis that affected 135 of 220 cows and heifers (61.36%); this involved massive fat accumulation in the uterine and salpingian ligaments and severe reproductive disorders (reducing fertility to 20% in cows and 10% in heifers) caused by a hyperenergetic diet (supplementation with saturated fats). A transrectal ultrasound examination of the genital apparatus—both in heifers and in cows in the puerperium—revealed a diffuse pathological hyperechogenicity of the cervical folds, suggesting lipid infiltration, proliferation of the endocervical folds and hyperechogenic lipogranulomas located paracervically or in the uterine ligaments. An ultrasound examination of the ovaries showed the presence of parasalpingial lipogranulomas on the mesovarium, with a uniformly pixelated greasy appearance, that altered the topography of the salpinx, leading to the impossibility of oocyte retrieval. At the histopathological examination, in addition to the necrosis of adipocytes and the subacute–chronic inflammation of the abdominal and retroperitoneal adipose tissue, lipid infiltration of the uterine walls was also observed in the uterine ligaments and lymph nodes. Additionally, lipid infiltration was observed in the wall of the uterine artery. All muscular-type branches of the ovarian artery exhibited subendothelial (subintimal) amyloid deposits, severely reducing their lumen and leading to ischaemia. Amyloidosis was secondary to the systemic inflammatory process triggered by lipid deposition and necrosis. Fertility returned to normal 45–60 days after the exclusion of fat supplements from the diet and their replacement with a vitamin–mineral supplement rich in antioxidants. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions
by Saisai Wu, Pengbo Cui, Chunshan Zheng, Krzysztof Skrzypkowski and Krzysztof Zagórski
Materials 2025, 18(15), 3460; https://doi.org/10.3390/ma18153460 - 23 Jul 2025
Viewed by 294
Abstract
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation [...] Read more.
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation of cable bolts in simulated underground bolt environments. Multi-stranded cable specimens were exposed to saturated clay, coal, mine water, and grout/cement environments. Water samples were collected weekly from critical packing sections and analyzed for pH, electrical conductivity, and dissolved oxygen. The mineralogy and atmospheric conditions were identified as principal corrosion factors, and clay-rich and coal matrices accelerated corrosion, linked to high ion mobility and oxygen diffusion. Secondary factors correlated context-dependently: pH was negatively associated with corrosion in mineral-packed environments, while conductivity was correlated with non-mineral matrices. Notably, multi-stranded cables exhibited higher localized galvanic corrosion in inter-strand zones, highlighting design vulnerabilities. This work provides pioneering evidence that geological conditions are primary drivers for corrosion-related failures, offering actionable guidance for corrosion mitigation strategies in mining infrastructure. Full article
Show Figures

Figure 1

16 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 288
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

18 pages, 1900 KiB  
Article
Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis
by Suraj Rajasekhar and Karthik Vishwanath
Photonics 2025, 12(7), 698; https://doi.org/10.3390/photonics12070698 - 10 Jul 2025
Viewed by 407
Abstract
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered [...] Read more.
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered media from TD reflectance generated via Monte Carlo (MC) simulations. Optical properties for 384 bilayered tissue models representing human head or limb tissues were obtained from the literature at three near-infrared wavelengths. MC data were fit using the layered DT model to simultaneously recover transport coefficients in both layers. Bottom-layer absorption was recovered with errors under 0.02 cm−1, and top-layer scattering was retrieved within 3 cm−1 of input values. In contrast, recovered bottom-layer scattering had mean errors exceeding 50%. Total hemoglobin concentration and oxygen saturation were reconstructed for the bottom layer to within 10 μM and 5%, respectively. Extracted transport coefficients were significantly more accurate when obtained using layered DT compared to the conventional, semi-infinite DT model. Our results suggest using improved theoretical modeling to analyze TD reflectance analysis significantly improves recovery of deep-layer absorption. Full article
(This article belongs to the Special Issue Optical Technologies for Biomedical Science)
Show Figures

Figure 1

28 pages, 1358 KiB  
Article
Mathematical Theory of Social Conformity II: Geometric Pinning, Curvature–Induced Quenching, and Curvature–Targeted Control in Anisotropic Logistic Diffusion
by Dimitri Volchenkov
Dynamics 2025, 5(3), 27; https://doi.org/10.3390/dynamics5030027 - 7 Jul 2025
Viewed by 705
Abstract
We advance a mathematical framework for collective conviction by deriving a continuum theory from the network-based model introduced by us recently. The resulting equation governs the evolution of belief through a degenerate anisotropic logistic–diffusion process, where diffusion slows as conviction saturates. In one [...] Read more.
We advance a mathematical framework for collective conviction by deriving a continuum theory from the network-based model introduced by us recently. The resulting equation governs the evolution of belief through a degenerate anisotropic logistic–diffusion process, where diffusion slows as conviction saturates. In one spatial dimension, we prove global well-posedness, demonstrate spectral front pinning that arrests the spread of influence at finite depth, and construct explicit traveling-wave solutions. In two dimensions, we uncover a geometric mechanism of curvature–induced quenching, where belief propagation halts along regions of low effective mobility and curvature. Building on this insight, we formulate a variational principle for optimal control under resource constraints. The derived feedback law prescribes how to spatially allocate repression effort to maximize inhibition of front motion, concentrating resources along high-curvature, low-mobility arcs. Numerical simulations validate the theory, illustrating how localized suppression dramatically reduces transverse spread without affecting fast axes. These results bridge analytical modeling with societal phenomena such as protest diffusion, misinformation spread, and institutional resistance, offering a principled foundation for selective intervention policies in structured populations. Full article
Show Figures

Figure 1

Back to TopTop