Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM
Abstract
1. Introduction
2. Numerical Model
2.1. Multi-Component and Multi-Phase LB Model
2.2. Computational Domain
2.3. Initial and Boundary Conditions
3. Model Validation
3.1. Surface Tension Verification
3.2. Contact Angle Verification
4. Results and Discussion
4.1. Simulation of GDL Drainage with Uniform Moisture Distribution
4.2. GDL Drainage Simulation Based on Gradient Wetting Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Mo, S.; Du, L.; Huang, Z.; Chen, J.; Zhou, Y.; Wu, P.; Meng, L.; Wang, N.; Xing, L.; Zhao, M.; et al. Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochem. Energy Rev. 2023, 6, 28. [Google Scholar] [CrossRef]
- Sankar, K.; Aguan, K.; Jana, A.K. A proton exchange membrane fuel cell with an airflow cooling system: Dynamics, validation and nonlinear control. Energy Convers. Manag. 2019, 183, 230–240. [Google Scholar] [CrossRef]
- Na, J.; Park, G.; Park, J.; Yang, S.; Oh, H.-M.; Baek, J.; Kim, D.; Youn, J.; Lim, J.; Park, T. Visualization of initial evolution of flooding in proton exchange membrane fuel cells with parallel flow channels. Int. J. Hydrogen Energy 2025, 114, 239–249. [Google Scholar] [CrossRef]
- Han, S.H.; Choi, N.H.; Choi, Y.D. Study on the flooding phenomena and performance enhancement of PEM fuel cell applying a Concus-Finn condition. Renew. Energy 2012, 44, 88–98. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, X.; Gong, F.; Liu, Z.; Zhang, Z.; Wang, C. Water flooding diagnosis of proton exchange membrane fuel cell based on current density scanning. J. Electroanal. Chem. 2024, 952, 117929. [Google Scholar] [CrossRef]
- Song, W.; Yu, H.; Shao, Z.; Yi, B.; Lin, J.; Liu, N. Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells. Chin. J. Catal. 2014, 35, 468–473. [Google Scholar] [CrossRef]
- Yang, D.; Garg, H.; Andersson, M. Numerical simulation of two-phase flow in gas diffusion layer and gas channel of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2023, 48, 15677–15694. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, S. Numerical study and prediction of water transfer in gas diffusion layer of proton exchange membrane fuel cells under vibrating conditions. Int. J. Energy Res. 2022, 46, 18781–18795. [Google Scholar] [CrossRef]
- Shangguan, X.; Li, Y.; Qin, Y.; Cao, S.; Zhang, J.; Yin, Y. Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC. Electrochim. Acta 2021, 371, 137814. [Google Scholar] [CrossRef]
- Chen, L.; Luan, H.-B.; He, Y.-L.; Tao, W.-Q. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 2012, 51, 132–144. [Google Scholar] [CrossRef]
- Jeon, D.H. Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. J. Power Sources 2020, 475, 228578. [Google Scholar] [CrossRef]
- Yang, D.; Andersson, M.; Garg, H. Effect of fiber curvature on gas diffusion layer two-phase dynamics of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2024, 85, 635–651. [Google Scholar] [CrossRef]
- Anyanwu, I.S.; Niu, Z.; Jiao, D.; Najmi, A.-U.-H.; Liu, Z.; Jiao, K. Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel. Energies 2020, 13, 2726. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Ira, Y.; Bakhshan, Y.; Khorshidimalahmadi, J. Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC. Int. J. Hydrogen Energy 2021, 46, 17397–17413. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Zhang, Z.; Li, H.; Wang, X. Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell. Appl. Energy 2022, 320, 119248. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. Role of wettability and water droplet size during water removal from a PEMFC GDL by lattice Boltzmann method. Int. J. Hydrogen Energy 2016, 41, 14872–14884. [Google Scholar] [CrossRef]
- Gao, W.; Li, Q.; Sun, K.; Chen, R.; Che, Z.; Wang, T. Effects of gas diffusion layer thickness on PEM fuel cells with composite foam-rib flow fields. Int. Commun. Heat Mass Transf. 2024, 153, 107394. [Google Scholar] [CrossRef]
- Xia, L.; Ni, M.; He, Q.; Xu, Q.; Cheng, C. Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Appl. Energy 2021, 300, 117357. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Cheng, C.-H.; Wang, X.-D.; Jang, J.-Y. Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells. Energy 2010, 35, 4786–4794. [Google Scholar] [CrossRef]
- Zhu, R.; Zhan, Z.; Zhang, H.; Du, Q.; Chen, X.; Xiang, X.; Wen, X.; Pan, M. Effects of Cathode GDL Gradient Porosity Distribution along the Flow Channel Direction on Gas-Liquid Transport and Performance of PEMFC. Polymers 2023, 15, 1629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, Y.; Lv, X.; Zhou, Z.; Wu, W.-T.; Wei, L.; Hu, C.; Lyu, J.; Li, Y.; Song, Y. Study of liquid water dynamics in Zoned PEMFC GDLs with different wettability. Fuel 2025, 394, 135171. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, L.; Niu, Z.; Bao, Z.; Sun, X.; Liu, Z.; Li, Y.; Jiao, K.; Liu, Z.; Du, Q. Effects of surface wettability on two-phase flow in the compressed gas diffusion layer microstructures. Int. J. Heat Mass Transf. 2020, 151, 119370. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef]
- Hao, L.; Cheng, P. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 2010, 195, 3870–3881. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- He, X.; Luo, L.-S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811–6817. [Google Scholar] [CrossRef]
- He, X.; Doolen, G.D. Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows. J. Stat. Phys. 2002, 107, 309–328. [Google Scholar] [CrossRef]
- Yoshimune, W.; Kato, A.; Yamaguchi, S.; Hibi, S.; Kato, S. Comprehensive Analysis of Wettability in Waterproofed Gas Diffusion Layers for Polymer Electrolyte Fuel Cells. ACS Appl. Mater. Interfaces 2024, 16, 36489–36497. [Google Scholar] [CrossRef]
- Kim, K.N.; Kang, J.H.; Lee, S.G.; Nam, J.H.; Kim, C.-J. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. J. Power Sources 2015, 278, 703–717. [Google Scholar] [CrossRef]
- Mukherjee, P.P.; Wang, C.-Y.; Kang, Q. Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim. Acta 2009, 54, 6861–6875. [Google Scholar] [CrossRef]
- Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, F. Impact of PTFE content and distribution on liquid–gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations. Int. J. Hydrogen Energy 2016, 41, 8550–8562. [Google Scholar] [CrossRef]
- Deng, H.; Hou, Y.; Jiao, K. Lattice Boltzmann simulation of liquid water transport inside and at interface of gas diffusion and micro-porous layers of PEM fuel cells. Int. J. Heat Mass Transf. 2019, 140, 1074–1090. [Google Scholar] [CrossRef]
- Shan, X. Simulation of Rayleigh-B\’enard convection using a lattice Boltzmann method. Phys. Rev. E 1997, 55, 2780–2788. [Google Scholar] [CrossRef]
- Huang, H.; Thorne, D.T., Jr.; Schaap, M.G.; Sukop, M.C. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2007, 76, 066701. [Google Scholar] [CrossRef]
- Chen, L.; Luan, H.-B.; Tao, W.-Q. Liquid water dynamic behaviors in the GDL and GC of PEMFCs using lattice Boltzmann method. Front. Heat Mass Transf. 2010, 1, 023002. [Google Scholar] [CrossRef]
- Huang, H.; Sukop, M.; Lu, X. Shan and Chen-Type Multi-Component Multiphase Models. In Multiphase Lattice Boltzmann Methods: Theory and Application; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 71–93. [Google Scholar]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Su, F.; Jiang, Z.; Liao, J.; Pan, X. Pore-Scale Modeling of Mass Transport in Partially Saturated Cathode Gas Diffusion Layers of Proton Exchange Membrane Fuel Cell. Energy Fuels 2022, 36, 8422–8431. [Google Scholar] [CrossRef]
- Liao, J.; Yang, G.; Shen, Q.; Li, S.; Jiang, Z.; Wang, H.; Sheng, Z.; Zhang, G.; Zhang, H. Effects of the Structure, Wettability, and Rib-Channel Width Ratio on Liquid Water Transport in Gas Diffusion Layer Using the Lattice Boltzmann Method. Energy Fuels 2021, 35, 16799–16813. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, Y.; Liu, J.; Xu, S.; Du, A. Lattice Boltzmann method modeling and experimental study on liquid water characteristics in the gas diffusion layer of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 10366–10380. [Google Scholar] [CrossRef]
- Guo, L.; Chen, L.; Zhang, R.; Peng, M.; Tao, W.-Q. Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity. Energy 2022, 253, 124101. [Google Scholar] [CrossRef]
- Yu, J.; Froning, D.; Reimer, U.; Lehnert, W. Polytetrafluorethylene effects on liquid water flowing through the gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2019, 438, 226975. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
GDL thickness | 100 |
MPL thickness | 20 |
GC thickness | 125 |
EA thickness | 5 |
Diameter of fibers in GDL | 7 |
Diameter of fibers in MPL | 2 |
GDL porosity | 0.74 |
MPL porosity | 0.64 |
Water density | 2 |
Air density | 2 |
Water inlet velocity | 1 × 10−4 |
Air inlet velocity | 0 |
Water viscosity | 0.1667 |
Air viscosity | 0.1667 |
Dual-Gradient GDL | Average Contact Angle (Y = 26 to Y = 125) | Anterior Contact Angle (Y = 26 to Y = 75) | Posterior Contact Angle (Y = 76 to Y = 125) | |
Case 5 | 110° | 100° | 120° | |
Case 6 | 110° | 120° | 100° | |
Three-gradient GDL | Average contact angle (Y = 26 to Y = 125) | Anterior contact angle (Y = 26 to Y = 58) | Mid-section contact angle (Y = 59 to Y = 91) | Posterior contact angle (Y = 72 to Y = 125) |
Case 7 | 110° | 100° | 110° | 120° |
Case 8 | 110° | 120° | 110° | 100° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, N.; Chang, H.; Li, J.; Zhou, C. Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM. Processes 2025, 13, 2515. https://doi.org/10.3390/pr13082515
Xie N, Chang H, Li J, Zhou C. Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM. Processes. 2025; 13(8):2515. https://doi.org/10.3390/pr13082515
Chicago/Turabian StyleXie, Nan, Hongyu Chang, Jie Li, and Chenchong Zhou. 2025. "Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM" Processes 13, no. 8: 2515. https://doi.org/10.3390/pr13082515
APA StyleXie, N., Chang, H., Li, J., & Zhou, C. (2025). Dynamics Study of Liquid Water Transport in GDL with Different Wettability Distributions: Pore-Scale Simulation Based on Multi-Component and Multi-Phase LBM. Processes, 13(8), 2515. https://doi.org/10.3390/pr13082515