Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (920)

Search Parameters:
Keywords = diffusion length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2934 KiB  
Article
Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects
by Xinfei Zhao, Kangning Kong, Run Wang, Jiachen Liu, Yongpeng Deng, Le Yin and Baolei Zhang
Sustainability 2025, 17(15), 7015; https://doi.org/10.3390/su17157015 (registering DOI) - 1 Aug 2025
Abstract
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, [...] Read more.
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, previous research has primarily focused on the maximum cooling impact, often overlooking the accumulative effects arising from spatial continuity. The present study fills this gap by investigating 74 urban parks located in the central area of Jinan and constructing a comprehensive cooling evaluation framework through two dimensions: maximum impact (Park Cooling Area, PCA; Park Cooling Efficiency, PCE) and cumulative impact (Park Cooling Intensity, PCI; Park Cooling Gradient, PCG). We further systematically examined the influence of park attributes and the surrounding urban structures on these metrics. The findings indicate that urban parks, as a whole, significantly contribute to lowering the ambient temperatures in their vicinity: 62.3% are located in surface temperature cold spots, reducing ambient temperatures by up to 7.77 °C. However, cooling intensity, range, and efficiency vary significantly across parks, with an average PCI of 0.0280, PCG of 0.99 °C, PCA of 46.00 ha, and PCE of 5.34. For maximum impact, PCA is jointly determined by park area, boundary length, and shape complexity, while smaller parks generally exhibit higher PCE—reflecting diminished cooling efficiency at excessive scales. For cumulative impact, building density and spatial enclosure degree surrounding parks critically regulate PCI and PCG by influencing cool-air aggregation and diffusion. Based on these findings, this study classified urban parks according to their cooling characteristics, clarified the functional differences among different park types, and proposed targeted recommendations. Full article
Show Figures

Figure 1

14 pages, 1483 KiB  
Article
Molecular Dynamics Simulation of PFAS Adsorption on Graphene for Enhanced Water Purification
by Bashar Awawdeh, Matteo D’Alessio, Sasan Nouranian, Ahmed Al-Ostaz, Mine Ucak-Astarlioglu and Hunain Alkhateb
ChemEngineering 2025, 9(4), 83; https://doi.org/10.3390/chemengineering9040083 (registering DOI) - 1 Aug 2025
Viewed by 40
Abstract
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key [...] Read more.
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key compounds regulated by the U.S. EPA: PFOA, PFNA, GenX, PFBS, PFOS, and PFHxS. Using molecular simulations, adsorption energy, diffusion coefficients, and PFAS-to-graphene distances were analyzed. The results showed that adsorption strength increased with molecular weight; PFOS (500 g/mol) exhibited the strongest adsorption (−171 kcal/mol). Compounds with sulfonic acid head groups (e.g., PFOS) had stronger interactions than those with carboxylate groups (e.g., PFNA), highlighting the importance of head group chemistry. Shorter graphene-to-PFAS distances also aligned with higher adsorption energies. PFOS, for example, had the shortest distance at 8.23 Å (head) and 6.15 Å (tail) from graphene. Diffusion coefficients decreased with increasing molecular weight and carbon chain length, with lower molecules like PFBS (four carbon atoms) diffusing more rapidly than heavier ones like PFOS and PFNA. Interestingly, graphene enhanced PFAS mobility in water, likely by disrupting the water structure and lowering intermolecular resistance. These results highlight graphene’s promise as a high-performance material for PFAS removal and future water purification technologies. Full article
Show Figures

Graphical abstract

15 pages, 6014 KiB  
Article
Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method
by Yun Peng, Shunchuan Wu, Yongjun Li, Lei He and Pengfei Wang
Processes 2025, 13(8), 2415; https://doi.org/10.3390/pr13082415 - 30 Jul 2025
Viewed by 222
Abstract
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field [...] Read more.
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field measurements. Numerical simulation was employed to investigate airflow movement and dust migration in the tunneling roadway, and the fundamental features of airflow field and dust diffusion laws after tunnel blasting operations in the fully mechanized excavation face were revealed. The effects of three main factors included airflow rate (Q), ventilation distance (S), and tunnel length (L) on the dust removal time after tunnel blasting operations were investigated based on the orthogonal design method. Results indicated that reducing the dust concentration in the roadway to 10 mg/m3 required 53 min. The primary factors influencing dust removal time, in order of significance, were determined to be L, Q, and S. The lowest dust concentration occurs when the ventilation distance was 25 m. A predictive model for dust removal time after tunnel blasting operations was developed, establishing the relationship between dust removal time and the three factors as T = 20.7Q−0.73S0.19L0.86. Subsequent on-site validation confirmed the high accuracy of the predictive model, demonstrating its efficacy for practical applications. This study contributes a novel integration of orthogonal experimental design and validated CFD modeling to predict ventilation dust removal time, offering a practical and theoretically grounded approach for tunnel ventilation optimization. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 252
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

12 pages, 4221 KiB  
Article
The Effects of Amino Acids on the Polymorphs and Magnesium Content of Calcium–Magnesium Carbonate Minerals
by Chonghong Zhang, Yuyang Jiang and Shuhao Qian
Minerals 2025, 15(7), 763; https://doi.org/10.3390/min15070763 - 21 Jul 2025
Viewed by 206
Abstract
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic [...] Read more.
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic acid, L-glycine, and L-lysine as nucleation templates for carbonate minerals to systematically investigate their regulatory effects on the mineralization of Ca–Mg carbonates. The results demonstrated that L-glycine, with the shortest length, was more conducive to forming aragonite, whereas acidic L-glutamic acid, which contains more carboxyl groups, was more beneficial for the structural stability of aragonite. The morphology of the Ca-Mg carbonate minerals became more diverse and promoted the formation of spherical and massive mineral aggregates under the action of amino acids. Moreover, the amino acids significantly increased the MgCO3 content in Mg calcite (L-glutamic acid: 10.86% > L-glycine: 7.91% > L-lysine: 6.63%). The acidic L-glutamic acid likely promotes the dehydration and incorporation of Mg2+ into the Mg calcite lattice through the preferential adsorption of Mg2+ via its side-chain carboxyl groups. This study shows how amino acid functional groups influence Ca–Mg carbonate mineralization and provides insights into biogenic Mg-rich mineral origins and advanced mineral material synthesis. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Graphical abstract

20 pages, 967 KiB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 339
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 323
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 442
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

32 pages, 735 KiB  
Article
Dynamic Balance: A Thermodynamic Principle for the Emergence of the Golden Ratio in Open Non-Equilibrium Steady States
by Alejandro Ruiz
Entropy 2025, 27(7), 745; https://doi.org/10.3390/e27070745 - 11 Jul 2025
Viewed by 491
Abstract
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of [...] Read more.
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of PGL(2,Q(5)). Requiring any smooth, strictly convex Lyapunov functional to be invariant under both maps enforces a single non-equilibrium fixed point: the golden mean. We confirm this result by (i) a gradient-flow partial-differential equation, (ii) a birth–death Markov chain whose continuum limit is Fokker–Planck, (iii) a Martin–Siggia–Rose field theory, and (iv) exact Ward identities that protect the fixed point against noise. Microscopic kinetics merely set the approach rate; three parameter-free invariants emerge: a 62%:38% split between entropy production and useful power, an RG-invariant diffusion coefficient linking relaxation time and correlation length Dα=ξz/τ, and a ϑ=45 eigen-angle that maps to the golden logarithmic spiral. The same dual symmetry underlies scaling laws in rotating turbulence, plant phyllotaxis, cortical avalanches, quantum critical metals, and even de-Sitter cosmology, providing a falsifiable, unifying principle for pattern formation far from equilibrium. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

21 pages, 4077 KiB  
Article
A Study on Ejector Structural and Operational Conditions Based on Numerical Simulation
by Gen Li, Yuan Liu, Dalin Wang, Xing Li, Daqian Liu, Zhongyu Hu, Bingyuan Hong, Xiaoping Li and Jing Gong
Processes 2025, 13(7), 2182; https://doi.org/10.3390/pr13072182 - 8 Jul 2025
Viewed by 274
Abstract
The Shenfu Gas Field faces challenges with uneven wellhead pressures, where low-pressure wells lose discharge capacity and high-pressure wells require throttling, leading to significant energy waste. Ejectors offer potential for energy recovery by utilizing high-pressure gas to boost low-pressure production. A computational fluid [...] Read more.
The Shenfu Gas Field faces challenges with uneven wellhead pressures, where low-pressure wells lose discharge capacity and high-pressure wells require throttling, leading to significant energy waste. Ejectors offer potential for energy recovery by utilizing high-pressure gas to boost low-pressure production. A computational fluid dynamics (CFD) model was developed using simulation software to simulate ejector performance. Parametric studies analyzed key structural parameters (mixing chamber length Lm, diameter Dm, nozzle spacing Lc, diffuser length Ld) and operational variables (compression ratio, working/entrained fluid pressures). Model validity was confirmed via grid independence tests and experimental comparisons (error < 10%). Network-level efficacy was verified using pipeline simulation software. Entrainment ratio (ε) and isentropic efficiency (η) exhibited non-linear relationships with structural parameters, with distinct optima depending on compression ratio. Dm had the strongest influence on ε. Higher compression ratios reduced ε, while increasing working fluid pressure or entrained fluid pressure improved ε. Optimal configurations were identified. Network simulations confirmed functional effectiveness, though efficiency diminished over production time. Ejector efficiency is highly sensitive to specific structural and operational parameters. Deployment in gas gathering networks is viable but most beneficial in early production stages. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 14432 KiB  
Article
Source Term-Based Synthetic Turbulence Generator Applied to Compressible DNS of the T106A Low-Pressure Turbine
by João Isler, Guglielmo Vivarelli, Chris Cantwell, Francesco Montomoli, Spencer Sherwin, Yuri Frey, Marcus Meyer and Raul Vazquez
Int. J. Turbomach. Propuls. Power 2025, 10(3), 13; https://doi.org/10.3390/ijtpp10030013 - 4 Jul 2025
Viewed by 358
Abstract
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp [...] Read more.
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp element framework to introduce anisotropic turbulence into the flow field. A single sponge layer was imposed, which covers the inflow and outflow regions just downstream and upstream of the inflow and outflow boundaries, respectively, to avoid acoustic wave reflections on the boundary conditions. Additionally, in the T106A model, mixed polynomial orders were utilized, as Nektar++ allows different polynomial orders for adjacent elements. A lower polynomial order was employed in the outflow region to further assist the sponge layer by coarsening the mesh and diffusing the turbulence near the outflow boundary. Thus, this study contributes to the development of a more robust and efficient model for high-fidelity simulations of turbine blades by enhancing stability and producing a more accurate flow field. The main findings are compared with experimental and DNS data, showing good agreement and providing new insights into the influence of turbulence length scales on flow separation, transition, wake behaviour, and loss profiles. Full article
Show Figures

Graphical abstract

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 327
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

11 pages, 3435 KiB  
Article
Influence of Cr- and Co-Doped CaO on Adsorption Properties: DFT Study
by Wei Shi, Renwei Li, Haifeng Yang, Dehao Kong and Qicheng Chen
Molecules 2025, 30(13), 2820; https://doi.org/10.3390/molecules30132820 - 30 Jun 2025
Viewed by 295
Abstract
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. [...] Read more.
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. In this study, the enhancement mechanism of Co and Cr doping in terms of the adsorption properties of CaO was investigated by Density Functional Theory (DFT) calculations. The results indicate that Co and Cr doping shortens the bond length between metal and oxygen atoms, enhances covalent bonding interactions, and reduces the oxygen vacancy formation energy. Meanwhile, the O2− diffusion energy barrier decreased from 4.606 eV for CaO to 3.648 eV for Co-CaO and 2.854 eV for Cr-CaO, which promoted CO2 adsorption kinetics. The CO2 adsorption energy was significantly increased in terms of the absolute value, and a partial density of states (PDOS) analysis indicated that doping enhanced the C-O orbital hybridization strength. In addition, Ca4O4 cluster adsorption calculations indicated that the formation of stronger metal–oxygen bonds on the doped surface effectively inhibited particle migration and sintering. This work reveals the mechanisms of transition metal doping in optimizing the electronic structure of CaO and enhancing CO2 adsorption performance and sintering resistance, which provides a theoretical basis for the design of efficient calcium-based sorbents. Full article
Show Figures

Figure 1

8 pages, 758 KiB  
Article
Role of Diffuser Autocorrelation and Spatial Translation in Computational Ghost Imaging
by Yishai Albeck, Shimon Sukholuski, Orit Herman, Talya Arusi-Parpar, Sharon Shwartz and Eliahu Cohen
Photonics 2025, 12(7), 650; https://doi.org/10.3390/photonics12070650 - 26 Jun 2025
Viewed by 268
Abstract
Ghost imaging (GI) is an imaging modality typically based on correlations between a single-pixel (bucket) detector collecting the electromagnetic field which was transmitted through or reflected from an object and a high-resolution detector which measures the field that did not interact with the [...] Read more.
Ghost imaging (GI) is an imaging modality typically based on correlations between a single-pixel (bucket) detector collecting the electromagnetic field which was transmitted through or reflected from an object and a high-resolution detector which measures the field that did not interact with the object. When using partially coherent sources, fluctuations can be introduced into a beam by rotating or translating a diffuser, and then the beam is split into two beams with identical intensity fluctuations. In computational GI, the diffuser with an unknown scatter distribution is replaced by a diffuser with a known scatter distribution so that the reference beam and high-resolution detector can be discarded. In this work, we wish to examine how the relation between the diffuser’s autocorrelation length and its spatial displacement affects the quality of image reconstruction obtained with these methods. We first analyze this general question theoretically and simulatively, and we then present some specific, proof-of-principle results we obtained in an optical setup. Finally, we discuss the relation between theory and experiment, suggesting some general conclusions regarding the preferred working points. Full article
Show Figures

Figure 1

14 pages, 3364 KiB  
Article
Selection of an Optimum Anchoring Method of Composite Rock Stratum Based on Anchor Bolt Support Prestress Field
by Yiqun Zhou, Jianwei Yang, Chenyang Zhang, Dingyi Li and Bin Hu
Appl. Sci. 2025, 15(13), 6990; https://doi.org/10.3390/app15136990 - 20 Jun 2025
Viewed by 316
Abstract
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite [...] Read more.
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite rock stratum similarity simulation test bed was used to compare and analyze the distribution of the anchor bolt support prestress field using different anchoring surrounding rock lithology and anchorage lengths, and the principle for optimum selection of anchoring parameters of composite rock stratum was proposed based on the test results. Considered from the point of view of stress diffusion, the effect of prestress diffusion of end anchorage bolts is better than that of lengthening anchorage; at the same time, the anchorage section should be preferentially arranged in hard rock, and the area of anchorage section near the free section should avoid the structural plane of surrounding rock. In conclusion, an industrial test was carried out under the conditions of a deep composite roof of the 2# coal seam in Qinyuan Mining Area, which determined a reasonable anchoring method and position of the composite roof under different conditions and achieved good results. Full article
Show Figures

Figure 1

Back to TopTop