Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = diffraction efficiency holographic volume grating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 935 KiB  
Article
Numerical Estimation of Bending in Holographic Volume Gratings by Means of RCWA and Deep Learning
by Jaume Colomina-Martínez, Juan Carlos Bravo, Joan Josep Sirvent-Verdú, Adrián Moya-Aliaga, Jorge Francés, Cristian Neipp and Augusto Beléndez
Appl. Sci. 2024, 14(22), 10356; https://doi.org/10.3390/app142210356 - 11 Nov 2024
Cited by 1 | Viewed by 896
Abstract
In this paper, we introduce a novel approach to model bending phenomena on holographic volume gratings based on Rigorous Coupled Wave Analysis (RCWA), in which the bending as a phase in the dielectric permittivity expansion is introduced, and the Shooting Method (SM) is [...] Read more.
In this paper, we introduce a novel approach to model bending phenomena on holographic volume gratings based on Rigorous Coupled Wave Analysis (RCWA), in which the bending as a phase in the dielectric permittivity expansion is introduced, and the Shooting Method (SM) is employed to solve the resulting system of equations. Further validation of our model is conducted by comparing its predictions to those obtained from reference Finite-Difference Time-Domain (FDTD) simulations and Coupled Wave Theory (CWT, referring to Kubota’s model that includes the bending phenomenon). Furthermore, we propose a methodology for estimating the bending from the diffraction efficiency curves in transmission volume gratings based on deep learning models, with a subsequent study of their accuracy and applicability. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

19 pages, 17495 KiB  
Article
Study on the Design Method of High-Resolution Volume-Phase Holographic Gratings
by Shuo Wang, Lei Dai, Chao Lin, Long Wang, Zhenhua Ji, Yang Fu, Quyouyang Gao and Yuquan Zheng
Sensors 2024, 24(19), 6493; https://doi.org/10.3390/s24196493 - 9 Oct 2024
Viewed by 1634
Abstract
Volume-phase holographic gratings are suitable for use in greenhouse gas detection imaging spectrometers, enabling the detection instruments to achieve high spectral resolution, high signal-to-noise ratios, and high operational efficiency. However, when utilized in the infrared wavelength band with high dispersion requirements, gratings struggle [...] Read more.
Volume-phase holographic gratings are suitable for use in greenhouse gas detection imaging spectrometers, enabling the detection instruments to achieve high spectral resolution, high signal-to-noise ratios, and high operational efficiency. However, when utilized in the infrared wavelength band with high dispersion requirements, gratings struggle to meet the demands for low polarization sensitivity due to changes in diffraction performance caused by phase delays in the incidence of light waves with distinct polarization states, and current methods for designing bulk-phase holographic gratings require a large number of calculations that complicate the balance of diffraction properties. To overcome this problem, a design method for transmissive bulk-phase holographic gratings is proposed in this study. The proposed method combines two diffraction theories (namely, Kogelnik coupled-wave theory and rigorous coupled-wave theory) and establishes a parameter optimization sequence based on the influence of design parameters on diffraction characteristics. Kogelnik coupled-wave theory is employed to establish the initial Bragg angle range, ensuring that the diffraction efficiency and phase delay of the grating thickness curve meet the requirements for incident light waves in various polarization states. Utilizing rigorous coupled-wave theory, we optimize grating settings based on criteria such as a center wavelength diffraction efficiency greater than 95%, polarization sensitivity less than 10%, maximum bandwidth, and spectral diffraction efficiency exceeding 80%. The ideal grating parameters are ultimately determined, and the manufacturing tolerances for various grating parameters are analyzed. The design results show that the grating stripe frequency is 1067 lines per millimeter, and the diffraction efficiencies of TE and TM waves are 96% and 99.89%, respectively. The diffraction efficiency of unpolarized light is more than 88% over the whole spectral range with an average efficiency of 94.49%, an effective bandwidth of 32 nm, and a polarization sensitivity of less than 7%. These characteristics meet the performance requirements for dispersive elements based on greenhouse gas detection, the spectral resolution of the detection instrument is up to 0.1 nm, and the signal-to-noise ratio and working efficiency are improved by increasing the transmittance of the instrument. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3061 KiB  
Article
Holographic Grating Enhancement Induced by a Dual-Photo-Initiator System in PMMA Substrate Polymers
by Peiyao Wang, Xiudong Sun and Peng Liu
Polymers 2024, 16(1), 126; https://doi.org/10.3390/polym16010126 - 30 Dec 2023
Cited by 3 | Viewed by 1695
Abstract
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl [...] Read more.
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl methacrylate]) substrate system, with the aim of promoting the diffusion and polymerization processes in volume holographic storage. The two-wave interference system is adopted to record a permanent grating structure in our materials. The temporal diffraction variations of photopolymerization (during the interference exposure) and dark diffusion (after the interference exposure) processes have been investigated and analyzed. Aiming to analyze the influence of EY doping ratios on holographic performances, some key parameters were examined in the experiment. We first measured the temporal evolution of diffraction efficiency, then an exponential fitting was adopted to obtain the response time. Finally, the angular selectivity was evaluated by the Bragg condition after holographic recording. Also, the temporal evolution of each component is described by the nonlocal polymerization-driven diffusion model with a dual-photo-initiator composition, theoretically. Furthermore, we experimentally achieved the holographic grating enhancement in both the dark diffusion and photopolymerization processes by doping appropriate EY concentrations, respectively. This work provides a foundation for the acceptability of TI&EY/PMMA polymers in further holographic storage research. Full article
Show Figures

Figure 1

15 pages, 4087 KiB  
Article
Holographic Recording of Unslanted Volume Transmission Gratings in Acrylamide/Propargyl Acrylate Hydrogel Layers: Towards Nucleic Acids Biosensing
by Paola Zezza, María Isabel Lucío, Izabela Naydenova, María-José Bañuls and Ángel Maquieira
Gels 2023, 9(9), 710; https://doi.org/10.3390/gels9090710 - 1 Sep 2023
Viewed by 1905
Abstract
The role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the [...] Read more.
The role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the holographic recording process. The optimization aims at achieving gratings with reproducible diffraction efficiency, which remains stable after reiterative washings, typically required when working with analytes of a biological nature or several step tests. The recording process of volume phase transmission gratings within Acrylamide/Propargyl Acrylate hydrogel layers reported in this work was successfully performed, and the obtained diffraction gratings were optically characterized. Unslanted volume transmission gratings were recorded in the hydrogel layers diffraction efficiencies; up to 80% were achieved. Additionally, the recorded gratings demonstrated stability in water after multiple washing steps. The hydrogels, after functionalization with oligonucleotide probes, yields a specific hybridization response, recognizing the complementary strand as demonstrated by fluorescence. Analyte-sensitive hydrogel layers with holographic structures are a promising candidate for the next generation of in vitro diagnostic tests. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

21 pages, 2906 KiB  
Article
Optical Design of a Slitless Astronomical Spectrograph with a Composite Holographic Grism
by Eduard Muslimov, Damir Akhmetov, Danila Kharitonov, Erik Ibatullin, Nadezhda Pavlycheva, Vyacheslav Sasyuk and Sergey Golovkin
Photonics 2023, 10(4), 385; https://doi.org/10.3390/photonics10040385 - 31 Mar 2023
Cited by 1 | Viewed by 2618
Abstract
In the present work, we consider an optical design of a slitless spectrograph for an existing 0.5 m-class telescope. This design concept has a number of advantages such as compact size, simplicity, and simultaneous coverage of a large field of view. A challenge [...] Read more.
In the present work, we consider an optical design of a slitless spectrograph for an existing 0.5 m-class telescope. This design concept has a number of advantages such as compact size, simplicity, and simultaneous coverage of a large field of view. A challenge with this design is correcting aberrations caused by placing a dispersing element in a converging beam. To overcome this issue, we propose to use a composite grism, which represents a combination of a prism and a volume-phase holographic grating, the latter which is split into zones with independently optimized parameters. We demonstrate two designs of such a grism. In both designs, the spectrograph operates in the range of 450–950 nm in an F/6.8 beam and covers a field of view of 35.6 × 7.2. Through advanced modeling, it is shown that a composite grism having four rectangular zones with different thickness and index modulation depth of the hologram and recorded with an auxiliary deformable mirror decreases the astigmatic elongation by a factor of 85, increases the spectral resolving power by 4.4 times, and reaches R1389 while increasing the average diffraction efficiency by a factor of 1.31. If we reduce the number of zones to only two, replace the deformable mirror with two static corrector plates, and fix the hologram thickness, the corresponding performance gains still remain high: the astigmatism is reduced by a factor of 61, the spectral resolving power is up to 1.7 times higher, reaching R1067, and the efficiency is increased by a factor of 1.27. This shows that the proposed design allows the construction of a simple and compact instrument, providing high performance over the entire field of view and spectral range. Full article
(This article belongs to the Special Issue Optical Systems for Astronomy)
Show Figures

Figure 1

10 pages, 5233 KiB  
Communication
On the Use of Haloalkane/Acrylate-Based Holographic Gratings as Compression and Rotation Sensors
by Riccardo Castagna, Cristiano Riminesi, Andrea Di Donato, Oriano Francescangeli and Daniele Eugenio Lucchetta
Sensors 2023, 23(1), 183; https://doi.org/10.3390/s23010183 - 24 Dec 2022
Cited by 1 | Viewed by 1592
Abstract
In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To [...] Read more.
In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G. The mixture is a simplified version of the mixture used in previous works and shows some interesting features mainly in connection with the different roles played by the rhodamine 6G dye at different writing wavelengths λ = 532 nm and λ = 460 nm. Regarding reflection gratings, the maximum achieved diffraction efficiency is ≈50% and their use as linear compression sensors produces a shift in the reflection peak of 2 nm. Following the removal of compression, the grating slowly returns to the initial state. Regarding transmission gratings, the maximum achieved diffraction efficiency is ≈45% and they demonstrate very high sensitivity to even small rotations in a free-standing configuration. Full article
(This article belongs to the Special Issue Optical Sensors Based on Micro/Nanostructured Materials)
Show Figures

Figure 1

8 pages, 2564 KiB  
Article
Top-Performance Transmission Gratings with Haloalkanes-Based Polymeric Composite Materials
by Riccardo Castagna, Cristiano Riminesi, Andrea Di Donato, Oriano Francescangeli and Daniele Eugenio Lucchetta
Materials 2022, 15(23), 8638; https://doi.org/10.3390/ma15238638 - 3 Dec 2022
Cited by 2 | Viewed by 1851
Abstract
We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation [...] Read more.
We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation Δn ≈ 0.018. To obtain these results, we used a holographic mixture based on multi-reticulated acrylate and haloalkanes (1-bromo-butane and 1-bromo-hexane) and a synergic combination of camphore-quinone, which has a maximum absorbance at c.a. 470 nm, and R6G, here used as co-initiator, to efficiently initiate the photo-polymerization process. High transparent and high efficient holographic structures based on polymers can find applications in many research fields including integrated optics, sensors, high density data storage and security. Full article
(This article belongs to the Special Issue Optical Properties of Holographic Polymer-Based Composites)
Show Figures

Figure 1

18 pages, 4110 KiB  
Article
Modelling and Design of Holographic Optical Elements for Beam-Coupling Applications for a Range of Incident Beam Angles
by Dipanjan Chakraborty, Rosen Georgiev, Sinead Aspell, Vincent Toal, Izabela Naydenova, Dervil Cody and Suzanne Martin
Photonics 2022, 9(12), 936; https://doi.org/10.3390/photonics9120936 - 3 Dec 2022
Cited by 13 | Viewed by 3958
Abstract
Theoretical modelling has been used to calculate the holographic recording beam angles required in air (at any recording wavelength) to produce a Volume Holographic Optical Element (VHOE) for any defined input and output beam angles. The approach is used to facilitate the design [...] Read more.
Theoretical modelling has been used to calculate the holographic recording beam angles required in air (at any recording wavelength) to produce a Volume Holographic Optical Element (VHOE) for any defined input and output beam angles. The approach is used to facilitate the design and fabrication of diffractive coupling elements through a holographic process that avoids the use of coupling prisms during recording and will help in the design of recording arrangements that better suit the mass production of low-cost elements, especially those designed for non-normal incidence. In this study, the recording angles needed for a range of recording wavelengths were explored for VHOE couplers designed for input angles (in air) ranging from 0° to −55°. Then, in order to validate the model, holographic recording in Bayfol HX 200 photopolymer at 532 nm was used to fabricate photopolymer VHOE couplers for 633 nm light (−45° input angle in air). Bragg curves obtained experimentally for different probe wavelengths (403 nm, 532 nm and 633 nm) confirm the recording of the desired grating structures to a precision of ±1°, and coupling is demonstrated at 633 nm with a diffraction efficiency of up to 72%. Furthermore, the model is used to identify the origins of some weaker spurious gratings observed alongside the expected ones. Full article
(This article belongs to the Special Issue Materials, Methods and Models for Holographic Optical Elements)
Show Figures

Figure 1

8 pages, 2636 KiB  
Communication
Optically Tunable Diffraction Efficiency in Reflection Grating Written in Photomobile Polymers
by Riccardo Castagna, Andrea Di Donato, Oriano Francescangeli and Daniele Eugenio Lucchetta
Photonics 2022, 9(10), 751; https://doi.org/10.3390/photonics9100751 - 11 Oct 2022
Cited by 2 | Viewed by 2093
Abstract
In this work, we report the fabrication and optical characterization of a one-dimensional reflection holographic volume phase grating recorded in a recently developed holographic photomobile composite polymer mixture. The reflection grating recorded on the photomobile material was a periodic one-dimensional arrangement of hard [...] Read more.
In this work, we report the fabrication and optical characterization of a one-dimensional reflection holographic volume phase grating recorded in a recently developed holographic photomobile composite polymer mixture. The reflection grating recorded on the photomobile material was a periodic one-dimensional arrangement of hard polymeric walls and viscous regions. The reflection notch was located in the near-infrared region of the electromagnetic spectrum. The transmission efficiency of the grating was modulated by an external CW laser light source operating at λ = 532 nm. The transmission efficiency increased with the increase in the power of the external laser source, and in the range of the used power values, the phenomenon was completely reversible. At the highest power levels, a 48% increase in the diffraction efficiency was achieved. The increase in the diffraction efficiency was related to the growth of the refractive-index contrast of the grating. In particular, under illumination, the viscous material escaped from the irradiated area. This feature explains the experimentally observed changes in the values of the grating’s refractive index. Full article
(This article belongs to the Topic Advance and Applications of Fiber Optic Measurement)
Show Figures

Figure 1

16 pages, 4190 KiB  
Article
Improving the Holographic Recording Characteristics of a Water-Resistant Photosensitive Sol–Gel for Use in Volume Holographic Optical Elements
by Brian Rogers, Tatsiana Mikulchyk, Mohamed Oubaha, Dervil Cody, Suzanne Martin and Izabela Naydenova
Photonics 2022, 9(9), 636; https://doi.org/10.3390/photonics9090636 - 4 Sep 2022
Cited by 10 | Viewed by 3052
Abstract
Continual improvements to holographic recording materials make the development of volume holographic optical elements increasingly more attainable for applications where highly efficient, lightweight diffractive optical elements can replace conventional optics. A fast-curing, water resistant photosensitive sol–gel capable of volume holographic recording has recently [...] Read more.
Continual improvements to holographic recording materials make the development of volume holographic optical elements increasingly more attainable for applications where highly efficient, lightweight diffractive optical elements can replace conventional optics. A fast-curing, water resistant photosensitive sol–gel capable of volume holographic recording has recently drawn attention for its extreme environmental and physical robustness, in particular its water/moisture and scratch resistance. However, to date, the refractive index modulation has been limited. While water-resistant properties are invaluable in the face of the weathering which many practical systems for outdoor applications will endure, high refractive index modulation is also important in order to facilitate high diffraction efficiency holograms recorded in relatively thin layers. Lower grating thickness ensures a large angular and wavelength range of operation-properties that are critical for many applications of holographic optical elements such as solar light harvesting, optical displays and illumination management. For any application where low-cost mass production is envisaged, sensitivity/writing speed is also a crucial factor. In this research, we studied the recording properties of these water-resistant photosensitive sol–gel layers at two different recording wavelengths (532 and 476 nm) and investigated methods for improving these properties. We report more than two-fold improvement of the refractive index modulation from 1.4×103 to 3.3×103 in layers of thickness ranging from 40–100 μm and more than an order of magnitude increase in photosensitivity/recording speed through better matching between recording wavelength and layer absorption, chemical alterations and thermal post-processing techniques. Full article
(This article belongs to the Special Issue Materials, Methods and Models for Holographic Optical Elements)
Show Figures

Figure 1

9 pages, 1631 KiB  
Communication
Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings
by Riccardo Castagna, Andrea Di Donato, Oriano Francescangeli and Daniele Eugenio Lucchetta
Chemosensors 2022, 10(9), 356; https://doi.org/10.3390/chemosensors10090356 - 1 Sep 2022
Cited by 1 | Viewed by 2486
Abstract
We report on the optical characterization of very high-efficiency and high-resolution holographic volume phase transmission gratings. The gratings are recorded in a new photo-polymerizable mixture made by epoxy-resin and multi-acrylate. The epoxy-resin used is known to make tenacious acrylate-based films. The holographic mixture [...] Read more.
We report on the optical characterization of very high-efficiency and high-resolution holographic volume phase transmission gratings. The gratings are recorded in a new photo-polymerizable mixture made by epoxy-resin and multi-acrylate. The epoxy-resin used is known to make tenacious acrylate-based films. The holographic mixture contains two photo-initiators, the synergic effect of which enables a reliable photo-polymerization process in the visible region of the electromagnetic spectrum. The recorded holograms are mechanically stable, show long-term temporal stability and very high values of diffraction efficiency, coupled with good angular selectivity due to a relatively narrow band of wavelengths. We measured the intensity of the transmitted beam and calculated the intensity of the diffracted beam at different wavelengths, deriving the refractive index modulation and the grating pitch by fitting the experimental data with a slightly modified theoretical approach. These kind of mixtures can be used in several fields of application, such as chemical or bio-sensors, high resolution optical sensors, high-density optical data storage, encryption and security. Full article
(This article belongs to the Special Issue Nanomaterials Based on Bio/Chemical Sensors)
Show Figures

Figure 1

15 pages, 20304 KiB  
Article
Multiplexed Holographic Combiner with Extended Eye Box Fabricated by Wave Front Printing
by Tobias Wilm, Jens Kibgies, Reinhold Fiess and Wilhelm Stork
Photonics 2022, 9(6), 419; https://doi.org/10.3390/photonics9060419 - 15 Jun 2022
Cited by 7 | Viewed by 3835
Abstract
We present an array-based volume holographic optical element (vHOE) recorded as an optical combiner for novel display applications such as smart glasses. The vHOE performs multiple, complex optical functions in the form of large off-axis to on-axis wave front transformations and an extended [...] Read more.
We present an array-based volume holographic optical element (vHOE) recorded as an optical combiner for novel display applications such as smart glasses. The vHOE performs multiple, complex optical functions in the form of large off-axis to on-axis wave front transformations and an extended eye box implemented in the form of two distinct vertex points with red and green chromatic functions. The holographic combiner is fabricated by our extended immersion-based wave front printing setup, which provides extensive prototyping capabilities due to independent wave front modulation and large possible off-axis recording angles, enabling vHOEs in reflection with a wide range of different recording configurations. The presented vHOE is build up as an array of sub-holograms, where each element is recorded with individual optical functions. We introduce a design and fabrication method to combine two angular and two spectral functions in the volume grating of individual sub-holograms, demonstrating complex holographic elements with four multiplexed optical functions comprised in a single layer of photopolymer film. The introduced design and fabrication process allows the precise tuning of the vHOE’s diffractive properties to achieve well-balanced diffraction efficiencies and angular distributions between individual multiplexed functions. Full article
(This article belongs to the Special Issue Materials, Methods and Models for Holographic Optical Elements)
Show Figures

Figure 1

14 pages, 2889 KiB  
Article
Characterisation of Holographic Recording in Environmentally Stable Photopolymerisable Glass
by Tatsiana Mikulchyk, Pamela Stoeva, Alicja Kaworek, Mohamed Oubaha, Brian Rogers, Suzanne Martin, Dervil Cody and Izabela Naydenova
Appl. Sci. 2022, 12(12), 5969; https://doi.org/10.3390/app12125969 - 11 Jun 2022
Cited by 7 | Viewed by 2519
Abstract
Photopolymerisable glasses are holographic recording materials which provide good recording capability, improved dimensional stability, and negligible shrinkage. Recently, a novel photopolymerisable hybrid sol-gel (PHSG) for holographic recording of volume gratings has been reported. The PHSG has significantly improved gelation time and high water [...] Read more.
Photopolymerisable glasses are holographic recording materials which provide good recording capability, improved dimensional stability, and negligible shrinkage. Recently, a novel photopolymerisable hybrid sol-gel (PHSG) for holographic recording of volume gratings has been reported. The PHSG has significantly improved gelation time and high water resistance, both of which make it an attractive material for mass production of holographic optical elements (HOEs) with no sensitivity to ambient humidity. In order to achieve full control over the performance of the material and further improve its properties, a study of grating formation under holographic patterning is essential. This paper reports characterisation of the grating recording in PHSG. The approach is based on the analysis of grating parameters during exposure and post-recording dark processes. The obtained results suggest that photopolymerisation of the methacrylate groups is the main contributor to the creation of refractive index modulation during exposure. During the dark process, the enhancement of the refractive index modulation is observed, probably due to further polycondensation. The observations made facilitate controlled and predictable diffraction efficiency of gratings recorded on the PHSG, thereby furthering the prospect of the development of HOEs with customisable specification. Full article
(This article belongs to the Special Issue Photosensitive Materials and Their Applications)
Show Figures

Figure 1

16 pages, 7945 KiB  
Article
Processing of Holographic Hydrogels in Liquid Media: A Study by High-Performance Liquid Chromatography and Diffraction Efficiency
by Kheloud Berramdane, Manuel G. Ramírez, Paola Zezza, María Isabel Lucío, María-José Bañuls, Ángel Maquieira, Marta Morales-Vidal, Augusto Beléndez and Inmaculada Pascual
Polymers 2022, 14(10), 2089; https://doi.org/10.3390/polym14102089 - 20 May 2022
Cited by 5 | Viewed by 2918
Abstract
The storage of time-stable holographic gratings in hydrogel matrices when the material is immersed in aqueous media is a real challenge at present. The optimization of the storage stages of the holograms must be properly investigated to identify the most suitable development processes. [...] Read more.
The storage of time-stable holographic gratings in hydrogel matrices when the material is immersed in aqueous media is a real challenge at present. The optimization of the storage stages of the holograms must be properly investigated to identify the most suitable development processes. For this reason, this work is focused on the study of the optimization of the washing stages of the hydrogels based on acrylamide and N,N’-methylenebis(acrylamide) once unslanted transmission holograms have been stored. High-performance liquid chromatography and UV-visible measurements have been employed in our system to analyze the composition of the washing solutions. PBST and DMSO:H2O are used as solvents in the washing stages. The diffraction efficiencies are measured during the washing stages and after the storing of the holograms during several days in PBST. Maximum diffraction efficiencies of 38 and 27.6% are reached when PBST and DMSO:H2O are employed, respectively, for the washing process. Holograms show temporal stability after being stored immersed in PBST at 4 °C for 4 days. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 4543 KiB  
Article
A Magnetic Nanoparticle-Doped Photopolymer for Holographic Recording
by Muhammad Irfan, Suzanne Martin, Muhannad Ahmed Obeidi, Scott Miller, Frank Kuster, Dermot Brabazon and Izabela Naydenova
Polymers 2022, 14(9), 1858; https://doi.org/10.3390/polym14091858 - 30 Apr 2022
Cited by 10 | Viewed by 3424
Abstract
Functionalised holograms are important for applications utilising smart diffractive optical elements for light redirection, shaping and in the development of sensors/indicators. This paper reports on holographic recording in novel magnetic nanocomposites and the observed temperature change in dry layers and liquid samples exposed [...] Read more.
Functionalised holograms are important for applications utilising smart diffractive optical elements for light redirection, shaping and in the development of sensors/indicators. This paper reports on holographic recording in novel magnetic nanocomposites and the observed temperature change in dry layers and liquid samples exposed to alternating magnetic field (AMF). The nanocomposite consists of N-isopropylacrylamide (NIPA)-based polymer doped with magnetic nanoparticles (MNPs), and local heating is achieved through magnetic induction. Here, volume transmission holographic gratings (VTHGs) are recorded with up to 24% diffraction efficiency (DE) in the dry layers of magnetic nanocomposites. The dry layers and liquid samples are then exposed to AMF. Efficient heating was observed in the liquid samples doped with Fe3O4 MNPs of 20 nm average size where the temperature increased from 27 °C to 64 °C after 300 s exposure to 111 mT AMF. The temperature increase in the dry layers doped with the same nanoparticles after exposure to 4.4 mT AMF was observed to be 6 °C. No temperature change was observed in the undoped layers. Additionally, we have successfully recorded Denisyuk holograms in the magnetic nanocomposite materials. The results reveal that the magnetic nanocomposite layers are suitable for recording holograms and need further optimisation in developing holographic indicators for mapping AMFs. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Applications)
Show Figures

Figure 1

Back to TopTop