Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Holographic Set-Up
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.F.; Chang, Y.; Xia, N. Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. Biosensors 2021, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.; Hu, Y.; Jiang, N.; Blyth, J.; Kaminska, M.; Liu, Y.; Yetisen, A.K. Holographic Sensors in Biotechnology. Adv. Funct. Mater. 2021, 31, 2105645. [Google Scholar] [CrossRef]
- Lucío, M.I.; Cubells-Gómez, A.; Maquieira, Á.; Bañuls, M.J. Hydrogel-based holographic sensors and biosensors: Past, present, and future. Anal. Bioanal. Chem. 2021, 414, 993–1014. [Google Scholar] [CrossRef]
- Castagna, R.; Tombesi, A.; Riminesi, C.; Di Donato, A.; Francescangeli, O.; Lucchetta, D.E. HKUST-1-Doped High-Resolution Volume Holographic Gratings. Chemosensors 2022, 10, 310. [Google Scholar] [CrossRef]
- Yetisen, A.K. The Prospects for Holographic Sensors; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 149–162. [Google Scholar]
- El Joudi, E.M.; Franke, H. Holographic Gratings in Photopolymers as Optical Gas Monitors. In Applications of Photonic Technology 2: Communications, Sensing, Materials, and Signal Processing; Lampropoulos, G.A., Lessard, R.A., Eds.; Springer: Boston, MA, USA, 1997; pp. 915–921. [Google Scholar] [CrossRef]
- Vita, F.; Lucchetta, D.E.; Castagna, R.; Criante, L.; Simoni, F. Effects of resin addition on holographic polymer dispersed liquid crystals. J. Opt. Pure Appl. Opt. 2009, 11, 024021. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Eichler, H.J.; Orlic, S.; Schulz, R.; Rübner, J. Holographic reflection gratings in azobenzene polymers. Opt. Lett. 2001, 26, 581–583. [Google Scholar] [CrossRef]
- Tomlin, D.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Bunning, T. Morphology of Holographic Polymer Dispersed Liquid Crystal Reflection Gratings Written in Thiol-ene and Acrylate Polymer Hosts: Part I-Grating Formation. Microsc. Microanal. 2003, 9, 382–383. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Kowalski, B.A.; Mavila, S.; Podgórski, M.; Sinha, J.; Sullivan, A.C.; McLeod, R.R.; Bowman, C.N. Holographic Photopolymer Material with High Dynamic Range (Δn) via Thiol–Ene Click Chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44103–44109. [Google Scholar] [CrossRef] [PubMed]
- Castagna, R.; Lucchetta, D.E.; Rippa, M.; Xu, J.H.; Donato, A.D. Near-frequency photons Y-splitter. Appl. Mater. Today 2020, 19, 100636. [Google Scholar] [CrossRef]
- Shalit, A.; Lucchetta, D.; Piazza, V.; Simoni, F.; Bizzarri, R.; Castagna, R. Polarization-dependent laser-light structured directionality with polymer composite materials. Mater. Lett. 2012, 81, 232–234. [Google Scholar] [CrossRef]
- Castagna, R.; Lucchetta, D.E.; Vita, F.; Criante, L.; Simoni, F. At a glance determination of laser light polarization state. Appl. Phys. Lett. 2008, 92, 041115. [Google Scholar] [CrossRef]
- Bunning, T.J.; Natarajan, L.V.; Tondiglia, V.P.; Sutherland, R.L. Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs). Annu. Rev. Mater. Sci. 2000, 30, 83–115. [Google Scholar] [CrossRef]
- Castagna, R.; Vita, F.; Lucchetta, D.E.; Criante, L.; Simoni, F. Superior-Performance Polymeric Composite Materials for High-Density Optical Data Storage. Adv. Mater. 2009, 21, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, D.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R. Hybrid surface-relief/volume one dimensional holographic gratings. Opt. Mater. 2015, 42, 366–369. [Google Scholar] [CrossRef]
- Sutherland, R.L.; Natarajan, L.V.; Tondiglia, V.P.; Bunning, T.J. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chem. Mater. 1993, 5, 1533–1538. [Google Scholar] [CrossRef]
- Castagna, R.; Nucara, L.; Simoni, F.; Greci, L.; Rippa, M.; Petti, L.; Lucchetta, D.E. An Unconventional Approach to Photomobile Composite Polymer Films. Adv. Mater. 2017, 29, 1604800. [Google Scholar] [CrossRef]
- Castagna, R.; Donato, A.D.; Strangi, G.; Lucchetta, D.E. Light controlled bending of a holographic transmission phase grating. Smart Mater. Struct. 2022, 31, 03LT02. [Google Scholar] [CrossRef]
- Lucchetta, D.; Vita, F.; Francescangeli, D.; Francescangeli, O.; Simoni, F. Optical measurement of flow rate in a microfluidic channel. Microfluid. Nanofluidics 2016, 20, 1–5. [Google Scholar] [CrossRef]
- Lucchetta, D.; Simoni, F.; Hernandez, R.; Mazzulla, A.; Cipparrone, G. Lasing from chiral doped nematic liquid crystal droplets generated in a microfluidic device. Mol. Cryst. Liq. Cryst. 2017, 649, 11–19. [Google Scholar] [CrossRef]
- Orlic, S.; Dietz, E.; Frohmann, S.; Mueller, C.; Schoen, R.; Trefzer, M.; Eichler, H.J. High-density multilayer recording of microgratings for optical data storage. In Proceedings of the Organic Holographic Materials and Applications II. SPIE, Denver, CO, USA, 2–6 August 2004; Volume 5521, pp. 161–173. [Google Scholar]
- McLeod, R.R.; Daiber, A.J.; McDonald, M.E.; Robertson, T.L.; Slagle, T.; Sochava, S.L.; Hesselink, L. Microholographic multilayer optical disk data storage. Appl. Opt. 2005, 44, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Barachevskii, V.A. Photopolymerizable recording media for threedimensional holographic optical memory. High. Energy Chem. 2006, 40, 131–141. [Google Scholar] [CrossRef]
- Hesselink, L.; Orlov, S.S.; Bashaw, M.C. Holographic data storage systems. Proc. IEEE 2004, 92, 1231–1280. [Google Scholar] [CrossRef]
- Blanche, P.A.; Gailly, P.; Habraken, S.L.; Lemaire, P.C.; Jamar, C.A.J. Volume phase holographic gratings: Large size and high diffraction efficiency. Opt. Eng. 2004, 43, 2603–2612. [Google Scholar] [CrossRef]
- Gamboa, J.; Hamidfar, T.; Vonckx, J.; Fouda, M.; Shahriar, S.M. Thick PQ:PMMA transmission holograms for free-space optical communication via wavelength-division multiplexing. Appl. Opt. 2021, 60, 8851–8857. [Google Scholar] [CrossRef]
- Neipp, C.; Taleb, S.I.; Francés, J.; Fernández, R.; Puerto, D.; Calzado, E.M.; Gallego, S.; Beléndez, A. Analysis of the Imaging Characteristics of Holographic Waveguides Recorded in Photopolymers. Polymers 2020, 12, 1485. [Google Scholar] [CrossRef]
- Wang, Q.; Lian, M.; Zhu, X.; Chen, X. Excellent humidity sensor based on ultrathin HKUST-1 nanosheets. RSC Adv. 2021, 11, 192–197. [Google Scholar] [CrossRef]
- Lucchetta, D.E.; Donato, A.D.; Singh, G.; Castagna, R. Lasing in Haloalkanes-based polymeric mixtures. Opt. Mater. 2022, 131, 112614. [Google Scholar] [CrossRef]
- Lucchetta, D.E.; Castagna, R.; Singh, G.; Riminesi, C.; Di Donato, A. Spectral, Morphological and Dynamical Analysis of a Holographic Grating Recorded in a Photo-Mobile Composite Polymer Mixture. Nanomaterials 2021, 11, 2925. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled Wave Theory for Thick Hologram Gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. In Landmark Papers on Photorefractive Nonlinear Optics; World Scientific Publishing: Singapore, 1995; pp. 133–171. [Google Scholar]
- Liu, Y.; Fan, F.; Hong, Y.; Zang, J.; Kang, G.; Tan, X. Volume holographic recording in Irgacure 784-doped PMMA photopolymer. Opt. Express 2017, 25, 20654–20662. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Sun, J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 2012, 41, 5998–6009. [Google Scholar] [CrossRef]
- Ebner, C.; Mitterer, J.; Eigruber, P.; Stieger, S.; Riess, G.; Kern, W. Ultra-High Through-Cure of (Meth)Acrylate Copolymers via Photofrontal Polymerization. Polymers 2020, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Kolczak, U.; Rist, G.; Dietliker, K.; Wirz, J. Reaction Mechanism of Monoacyl- and Bisacylphosphine Oxide Photoinitiators Studied by 31P-, 13C-, and 1H-CIDNP and ESR. J. Am. Chem. Soc. 1996, 118, 6477–6489. [Google Scholar] [CrossRef]
- Lucchetta, D.; Criante, L.; Simoni, F. Optical characterization of polymer dispersed liquid crystals for holographic recording. J. Appl. Phys. 2003, 93, 9669–9674. [Google Scholar] [CrossRef]
- Lucchetta, D.; Criante, L.; Simoni, F. Determination of small anisotropy of holographic phase gratings. Opt. Lett. 2003, 28, 725–727. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, R.; Di Donato, A.; Francescangeli, O.; Lucchetta, D.E. Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings. Chemosensors 2022, 10, 356. https://doi.org/10.3390/chemosensors10090356
Castagna R, Di Donato A, Francescangeli O, Lucchetta DE. Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings. Chemosensors. 2022; 10(9):356. https://doi.org/10.3390/chemosensors10090356
Chicago/Turabian StyleCastagna, Riccardo, Andrea Di Donato, Oriano Francescangeli, and Daniele Eugenio Lucchetta. 2022. "Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings" Chemosensors 10, no. 9: 356. https://doi.org/10.3390/chemosensors10090356
APA StyleCastagna, R., Di Donato, A., Francescangeli, O., & Lucchetta, D. E. (2022). Polymer-Based High Diffraction Efficiency and High Resolution Volume Holographic Transmission Gratings. Chemosensors, 10(9), 356. https://doi.org/10.3390/chemosensors10090356