Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,931)

Search Parameters:
Keywords = diet—reducing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 549 KiB  
Article
Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats
by Raviye Ozen Koca, M. Berk Basaran, Hatice Solak and Z. Isik Solak Gormus
Curr. Issues Mol. Biol. 2025, 47(8), 607; https://doi.org/10.3390/cimb47080607 (registering DOI) - 1 Aug 2025
Abstract
Obesity remains a major global health challenge with limited therapeutic options. Bromelain, a proteolytic enzyme complex derived from pineapple, has been recognized for its natural anti-inflammatory, anti-edematous, and appetite-suppressing properties. This study aimed to investigate the effects of bromelain on hypothalamic neuropeptides and [...] Read more.
Obesity remains a major global health challenge with limited therapeutic options. Bromelain, a proteolytic enzyme complex derived from pineapple, has been recognized for its natural anti-inflammatory, anti-edematous, and appetite-suppressing properties. This study aimed to investigate the effects of bromelain on hypothalamic neuropeptides and metabolic markers in a high-fat diet (HFD)-induced obesity model in rats. Thirty-six male Wistar albino rats were randomly divided into four groups: standard diet (SD), standard diet with bromelain (SDBro), high-fat diet (HFD), and high-fat diet with bromelain (HFDBro). Obesity was induced by a 3-month HFD regimen, followed by bromelain supplementation (200 mg/kg/day, orally) for one month. Hypothalamic tissues were analyzed via ELISA for neuropeptide Y (NPY), pro-opiomelanocortin (POMC), glucose transporter 2 (GLUT2), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 receptor (IGF1R). While NPY levels showed no significant changes, POMC increased in the HFD and was normalized with bromelain. GLUT2 was downregulated in the HFD and significantly restored by bromelain. FGF2 levels remained unchanged. IGF1R was upregulated in the HFD but reduced by bromelain, with an unexpected increase in SDBro. Overall, bromelain partially reversed HFD-induced disruptions in hypothalamic energy-regulating pathways, particularly affecting GLUT2 and POMC. These findings highlight bromelain’s potential role in central metabolic regulation under dietary stress. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
16 pages, 3511 KiB  
Article
Phlogacanthus pulcherrimus Leaf Extract as a Functional Feed Additive: Influences on Growth Indices, Bacterial Challenge Survival, and Expression of Immune-, Growth-, and Antioxidant-Related Genes in Labeo chrysophekadion (Bleeker, 1849)
by Sontaya Sookying, Panitnart Auputinan, Dutrudi Panprommin and Paiboon Panase
Life 2025, 15(8), 1220; https://doi.org/10.3390/life15081220 (registering DOI) - 1 Aug 2025
Abstract
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 [...] Read more.
This research examined the impact of dietary supplementation with Phlogacanthus pulcherrimus extract (PPE) on the growth, disease resistance, and expression of immune-, growth-, and antioxidant-related genes in Labeo chrysophekadion. Over 150 days, 90 fish from each group were fed diets with 0 (control), 0.25, 0.50, or 0.75 g/kg of PPE. Phytochemical analysis revealed phenolics (96.00 mg GAE/g), flavonoids (17.55 mg QE/g), anthraquinones, and triterpenoids, along with moderate antioxidant activity (IC50 = 1314.08 μg/mL). One-way ANOVA of growth indices, including weight gain, specific growth rate, feed conversion ratio, and survival rate, revealed no significant differences (p > 0.05); however, PPE supplementation significantly enhanced immune and antioxidant gene expression. IL-1β was significantly (p < 0.05) upregulated at all doses, with the highest expression observed at 0.50 g/kg, showing a fivefold increase compared to the control. In addition, the highest relative expressions of IGF-1 and CAT were found at 0.75 g/kg, with 4.5-fold and 3.5-fold increases compared to the control, respectively. PPE at 0.75 g/kg decreased the cumulative mortality rate (CMR) by 20% compared to the control group, which had a CMR of 50% following exposure to Aeromonas hydrophila. PPE acted as an effective immunostimulant and antioxidant, supporting reduced antibiotic reliance in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 (registering DOI) - 1 Aug 2025
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

19 pages, 3251 KiB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 (registering DOI) - 1 Aug 2025
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

24 pages, 891 KiB  
Article
Optimizing Aspergillus oryzae Inoculation Dosage and Fermentation Duration for Enhanced Protein Content in Soybean Meal and Its Influence on Dog Food Extrusion
by Youhan Chen, Thomas Weiss, Donghai Wang, Sajid Alavi and Charles Gregory Aldrich
Processes 2025, 13(8), 2441; https://doi.org/10.3390/pr13082441 (registering DOI) - 1 Aug 2025
Abstract
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to [...] Read more.
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to determine the optimal fermentation conditions. These conditions were applied to ferment soybean meal in bulk for nutritional analysis. Finally, the impact of fermentation on extrusion processing was assessed by formulating and extruding four diets: SBM (30% soybean meal), AMF (30% soybean meal with 1% Amaferm®A. oryzae biomass), FSBM (30% fermented soybean meal), and SPI (18% soy protein isolate). Diets were extruded with a single-screw extruder, and physical characteristics of kibbles, particle size distribution, and viscosity of raw mixes were analyzed. The optimal fermentation conditions were 1 × 104 spore/g substrate for 36 h, which increased the crude protein content by 4.63% DM, methionine and cysteine total content by 0.15% DM, and eliminated sucrose, while significantly reducing stachyose, raffinose, and verbascose (95.22, 87.37, and 41.82%, respectively). The extrusion results showed that FSBM had intermediate specific mechanical energy (SME), in-barrel moisture requirements, and sectional expansion index (198.7 kJ/kg, 28.2%, and 1.80, respectively) compared with SBM (83.7 kJ/kg, 34.5%, and 1.30, respectively) and SPI (305.3 kJ/kg, 33.5%, and 2.55, respectively). The FSBM also exhibited intermediate particle size distribution and the least raw mix viscosity. These findings demonstrate that A. oryzae fermentation enhances the nutrient profile of soybean meal while improving extrusion efficiency and kibble quality, supporting its potential use as a sustainable pet food ingredient. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

20 pages, 998 KiB  
Article
Colony Nutrition Enhances Bee Resilience to Fungicides, While the Benefit of Propolis Supplementation Depends on Stress Conditions
by Yara Martins Molina Ferraz, Aline Yukari Kato, Tainá Angelica de Lima Freitas, Cássia Regina de Avelar Gomes, Thais Regina Ramos Alves, Matheus Franco Trivellato, Samir Moura Kadri, Ricardo de Oliveira Orsi, David De Jong, Jaqueline Dalbello Biller and Daniel Nicodemo
Agriculture 2025, 15(15), 1665; https://doi.org/10.3390/agriculture15151665 (registering DOI) - 1 Aug 2025
Abstract
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. [...] Read more.
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. Colonies were managed under food restriction or nutritional supplementation for 22 weeks. Newly emerged bees from each colony were then caged and fed protein diets consisting of honey-pollen patties contaminated or not with fungicide, and sucrose sugar syrup with or without aqueous green propolis extract. Bees from supplemented colonies showed greater body weight, higher hemolymph protein levels, and higher consumption of protein food after seven days in cages. Fungicide exposure reduced hemolymph protein levels, altered the expression of detoxification and immune-related genes, and significantly decreased bee survival. Interestingly, propolis supplementation alone changed gene expression patterns and slightly reduced longevity compared to bees not exposed to propolis or fungicide. However, under fungicide stress, bees that ingested propolis survived longer, indicating a protective effect. While colony nutritional supplementation clearly promotes honey bee resilience against fungicide exposure, feeding propolis also showed promising effects, though further studies are needed to determine an optimal dietary concentration. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Graphical abstract

18 pages, 1782 KiB  
Review
Nutrition and Micronutrient Interactions in Autoimmune Thyroid Disorders: Implications for Cardiovascular Health
by Michał Mazur, Magdalena Szymańska, Agnieszka Malik, Wojciech Szlasa and Joanna Popiołek-Kalisz
Pathophysiology 2025, 32(3), 37; https://doi.org/10.3390/pathophysiology32030037 (registering DOI) - 1 Aug 2025
Abstract
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role [...] Read more.
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role of these nutrients in reducing cardiovascular disease (CVD) risk in autoimmune thyroid disorders remains insufficiently understood. This review explores the influence of specific micronutrients—including selenium, iodine, and zinc—and dietary patterns, particularly the Mediterranean diet, on the pathophysiology of hypothyroidism and Hashimoto’s thyroiditis. We introduce a novel framework that integrates emerging data on sex-specific micronutrient interactions and nutritional immunomodulation. Unlike the existing literature, this review introduces original hypotheses related to sex-specific nutritional immunomodulation and proposes a novel framework for micronutrient-driven dietary intervention in Hashimoto’s thyroiditis. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

21 pages, 3469 KiB  
Article
The Effects of Dietary Supplementation with 25-Hydroxyvitamin D3 on the Antioxidant Capacity and Inflammatory Responses of Pelteobagrus fulvidraco
by Yi Liu, Jiang Xie, Qingchao Shi, Quan Gong and Chuanjie Qin
Biology 2025, 14(8), 967; https://doi.org/10.3390/biology14080967 (registering DOI) - 1 Aug 2025
Abstract
Based on the limited hepatic hydroxylation efficiency of dietary VD3 in teleosts and the superior bioavailability of its metabolite, 25(OH)D3, this study investigated the regulatory mechanisms of dietary 25(OH)D3 supplementation in yellow catfish—an economically significant species lacking prior nutritional data on this metabolite. [...] Read more.
Based on the limited hepatic hydroxylation efficiency of dietary VD3 in teleosts and the superior bioavailability of its metabolite, 25(OH)D3, this study investigated the regulatory mechanisms of dietary 25(OH)D3 supplementation in yellow catfish—an economically significant species lacking prior nutritional data on this metabolite. A total of 360 fish were divided into three groups—control (basal diet), VD3 (2500 IU/kg VD3), and 25(OH)D3 (2500 IU/kg 25(OH)D3)—and fed for 8 weeks. Compared to the control, both supplemented groups showed elevated superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), and transforming growth factor-β (TGF-β) activities, alongside reduced malondialdehyde (MDA), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels. The 25(OH)D3 group exhibited higher T-AOC and CAT activities and lower TNF-α than the VD3 group. Metabolomic and transcriptomic analyses identified 65 differentially expressed metabolites (DEMs) and 3515 differentially expressed genes (DEGs). Enrichment analysis indicated that the DEMs (e.g., indole compounds, organic acids, aldosterone, L-kynurenine) and DEGs (pgd, mthfr, nsdhl, nox5, prdx2, mpx, itih2, itih3, eprs1) that were highly and significantly expressed in the 25(OH)D3 group were primarily associated with antioxidant defense and inflammatory responses. Dietary 25(OH)D3 was more effective than VD3 in promoting antioxidant capacity and modulating inflammation in yellow catfish. Full article
Show Figures

Figure 1

8 pages, 222 KiB  
Perspective
Exploring the Potential of European Brown Shrimp (Crangon crangon) in Integrated Multi-Trophic Aquaculture: Towards Achieving Sustainable and Diversified Coastal Systems
by Ángel Urzúa and Marina Gebert
Oceans 2025, 6(3), 47; https://doi.org/10.3390/oceans6030047 (registering DOI) - 31 Jul 2025
Abstract
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native [...] Read more.
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native species, such as the European brown shrimp (Crangon crangon), presents an opportunity to develop a sustainable blue bioeconomy in Europe. C. crangon holds significant commercial value, yet overexploitation has led to population declines. Integrated Multi-Trophic Aquaculture (IMTA) offers a viable solution by utilizing fish farm wastewater as a nutrient source, reducing both costs and environmental impact. Research efforts in Germany and other European nations are exploring IMTA’s potential by co-culturing shrimp with species like sea bream, sea bass, and salmon. The physiological adaptability and omnivorous diet of C. crangon further support its viability in aquaculture. However, critical knowledge gaps remain regarding its lipid metabolism, early ontogeny, and reproductive biology—factors essential for optimizing captive breeding. Future interdisciplinary research should refine larval culture techniques and develop sustainable co-culture models. Expanding C. crangon aquaculture aligns with the UN’s Sustainable Development Goals by enhancing food security, ecosystem resilience, and economic stability while reducing Europe’s reliance on seafood imports. Full article
52 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 (registering DOI) - 31 Jul 2025
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

34 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 (registering DOI) - 31 Jul 2025
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

12 pages, 1734 KiB  
Article
Lipid-Modulating Effects of Sargassum fulvellum Fermented by Lactococcus lactis KCCM12759P and Leuconostoc mesenteroides KCCM12756P in Ovariectomized Mice
by Hyun-Sol Jo, Young-Eun Cho and Sun-Mee Hong
Nutrients 2025, 17(15), 2527; https://doi.org/10.3390/nu17152527 - 31 Jul 2025
Abstract
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate [...] Read more.
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate the effects of fermented S. fulvellum (SfLlLm), prepared using Lactococcus lactis and Leuconostoc mesenteroides, on lipid metabolism and adipose tissue remodeling in an ovariectomized (OVX) mouse model of estrogen deficiency. Methods: Female C57BL/6 mice underwent ovariectomy and were fed an AIN-76A diet supplemented with either unfermented Sf or SfLlLm for eight weeks. Sham-operated and 17β-estradiol-treated OVX groups served as controls. Serum lipid levels—total cholesterol, triglycerides, LDL-C, and HDL-C—were assessed, and histological analysis of visceral adipose tissue was conducted to evaluate adipocyte morphology. Results: OVX-induced estrogen deficiency led to increased total cholesterol, triglycerides, and LDL-C, along with hypertrophic changes in visceral adipocytes. Supplementation with fermented Sargassum fulvellum (SfLlLm) markedly improved these parameters, reducing total cholesterol by 6.7%, triglycerides by 9.3%, and LDL-C by 52.9%, while increasing HDL-C by 17.5% compared to the OVX controls. SfLlLm also normalized visceral adipocyte size and distribution. These effects were comparable to or exceeded those of 17β-estradiol treatment. Conclusions: Fermented SfLlLm ameliorated dyslipidemia and visceral adiposity under estrogen-deficient conditions. These findings support its potential as a functional dietary intervention for managing postmenopausal lipid disorders and associated metabolic complications. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Figure 1

14 pages, 635 KiB  
Article
Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study
by Inchirah Karmous, Rym Ben Othman, Ismail Dergaa, Halil İbrahim Ceylan, Cyrine Bey, Wissem Dhahbi, Amira Sayed Khan, Henda Jamoussi, Raul Ioan Muntean and Naim Akhtar Khan
Nutrients 2025, 17(15), 2515; https://doi.org/10.3390/nu17152515 - 31 Jul 2025
Abstract
Background: Taste changes are common during pregnancy and can have a significant impact on dietary habits. Objective: This study aimed to investigate the influence of the perception of sweet and fat taste on diet in pregnant diabetic women. Methods: This [...] Read more.
Background: Taste changes are common during pregnancy and can have a significant impact on dietary habits. Objective: This study aimed to investigate the influence of the perception of sweet and fat taste on diet in pregnant diabetic women. Methods: This cross-sectional observational study included 66 pregnant women, 33 with gestational diabetes and 33 with pre-gestational type 2 diabetes. Taste perception tests were conducted to evaluate thresholds for detecting sweet and fatty tastes. Dietary surveys were used to assess daily nutrient intake, and various biochemical parameters, such as glycemia, HbA1c, and cholesterol, were analyzed. Results: The low-fat taster group (threshold > 0.75 mmol/L) included more patients with diabetes compared to those with gestational diabetes. All diabetic patients had low sucrose perception. Although pregnant women with gestational diabetes detected sweetness at high concentrations, pregnant women with diabetes detected it at lower concentrations (0.012 ± 0.023 mmol/L vs. 0.006 ± 0.005 mmol/L; p = 0.3). High-fat tasters exhibited elevated glycemia compared to low-fat tasters (6.04 ± 1.88 mmol/L vs. 7.47 ± 3.4 mmol/L; p = 0.03). They also had higher cholesterol (p = 0.04) and lower HDL-C levels (4.96 ± 1.04 mmol/L vs. 1.36 ± 0.29 mmol/L; p = 0.03). High-fat tasters showed more frequent daily consumption of oil, butter, cheese, and chocolate. The highly sweet tasters had higher cholesterol levels and lower LDL levels. Individuals who reported being highly sensitive to sweet taste consumed more daily oil, sweetened yogurt, or cream desserts, as well as white sugar. Conclusions: These findings indicate that altered sensitivity to fat and sweet tastes is associated with different dietary habits and metabolic profiles in pregnant women with diabetes. Specifically, reduced sensitivity to the taste of fat is associated with higher consumption of high-fat foods and poorer lipid profiles. In contrast, sensitivity to sweet taste correlates with an increased intake of sugary and fatty foods. Understanding these taste-related behaviors can help develop personalized nutritional strategies to improve metabolic control and maternal–fetal outcomes in this high-risk group. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

17 pages, 2886 KiB  
Article
The Intersection Between Schistosoma mansoni Infection and Dyslipidemia Modulates Inflammation in the Visceral Adipose Tissue of Swiss Webster Mice
by Thainá de Melo, Isadora do Monte Silveira Bruno, Luciana Brandão-Bezerra, Silvia Amaral Gonçalves da Silva, Christiane Leal Corrêa, Luciana Silva Rodrigues, José Roberto Machado-Silva and Renata Heisler Neves
Trop. Med. Infect. Dis. 2025, 10(8), 217; https://doi.org/10.3390/tropicalmed10080217 - 31 Jul 2025
Abstract
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined [...] Read more.
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined with diet-induced dyslipidemia. Methodology: Female Swiss Webster mice were fed either a standard or high-fat diet (HFD) for 29 weeks and infected with S. mansoni at week 20. Nine weeks after infection, biochemical, morphometric, histopathological, and immunological analyses were performed. Results: The HFD promoted weight gain and dyslipidemia, while S. mansoni infection alone did not alter lipid profiles but partially mitigated the metabolic effects of the HFD. Morphometric analysis revealed adipocyte hypertrophy and reduced cell number in HFD-fed animals. In HFD-fed infected mice, infection partially reversed hypertrophy, suggesting a modulatory effect on AT remodeling. Histopathological examinations showed that while a HFD induced mild inflammation, infection led to intense leukocyte infiltration, hyperemia, and plasma cell degeneration. Peritoneal lavage confirmed a proinflammatory immune profile. Conclusions: These findings indicate that the interaction between a HFD and S. mansoni infection exacerbates adipose tissue inflammation and metabolic alterations, highlighting the complex interplay between parasitic infection, diet, and immune-metabolic regulation. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

Back to TopTop