Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Establishment of the Obesity Model and Bromelain Administration
2.2. Body Weight, Fasting Glucose, and Tissue Collection
2.3. Biochemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Body Weight Changes
3.2. Fasting Blood Glucose Levels
3.3. Biochemical Parameters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HFD | High-fat-diet |
IGF1R | Insulin-like growth factor 1 receptor |
GLUT2 | Glucose transporter 2 |
POMC | Pro-opiomelanocortin |
NPY | Neuropeptide Y |
FGF2 | Fibroblast growth factor 2 |
ELISA | Enzyme-linked immunosorbent assay |
FBM | Fruit bromelain |
SBM | Stem bromelain (SBM) |
References
- Hainer, V.; Aldhoon-Hainerová, I. Obesity Paradox Does Exist. Diabetes Care 2013, 36, S276–S281. [Google Scholar] [CrossRef]
- Samodien, E.; Chellan, N. Hypothalamic Neurogenesis and Its Implications for Obesity-Induced Anxiety Disorders. Front. Neuroendocrinol. 2021, 60, 100871. [Google Scholar] [CrossRef]
- Pankevich, D.E.; Teegarden, S.L.; Hedin, A.D.; Jensen, C.L.; Bale, T.L. Caloric Restriction Experience Reprograms Stress and Orexigenic Pathways and Promotes Binge Eating. J. Neurosci. 2010, 30, 16399–16407. [Google Scholar] [CrossRef]
- Klein, C.; Jonas, W.; Wiedmer, P.; Schreyer, S.; Akyüz, L.; Spranger, J.; Hellweg, R.; Steiner, B. High-Fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2019, 400, 146–156. [Google Scholar] [CrossRef]
- Kumar, V.; Mangla, B.; Javed, S.; Ahsan, W.; Kumar, P.; Garg, V.; Dureja, H. Bromelain: A Review of Its Mechanisms, Pharmacological Effects and Potential Applications. Food Funct. 2023, 14, 8101–8128. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; Kaur, N.J.; Nanduri, R.; Dkhar, H.K.; Kumar, A.; Gupta, P. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes. PLoS ONE 2012, 7, e30831. [Google Scholar] [CrossRef]
- Sulumer, A.N.; Palabıyık, E.; Avcı, B.; Uguz, H.; Demir, Y.; Serhat Özaslan, M.; Aşkın, H. Protective Effect of Bromelain on Some Metabolic Enzyme Activities in Tyloxapol-induced Hyperlipidemic Rats. Biotechnol. Appl. Biochem. 2024, 71, 17–27. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Manas, N.H.A.; Hamid, A.A.A.; Hamid, H.A.; Illias, R. Comparative Structural Analysis of Fruit and Stem Bromelain from Ananas Comosus. Food Chem. 2018, 266, 183–191. [Google Scholar] [CrossRef]
- Hikisz, P.; Bernasinska-Slomczewska, J. Beneficial Properties of Bromelain. Nutrients 2021, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Mameli, A. Bromelain: An Overview of Applications in Medicine and Dentistry. Biointerface Res. Appl. Chem 2020, 11, 8165–8170. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Crowther, J.R. The ELISA Guidebook; Humana Press: Totowa, NJ, USA, 2000; ISBN 978-1-59259-049-0. [Google Scholar]
- Bombassaro, B.; Araujo, E.P.; Velloso, L.A. The Hypothalamus as the Central Regulator of Energy Balance and Its Impact on Current and Future Obesity Treatments. Arch. Endocrinol. Metab. 2024, 68, e240082. [Google Scholar] [CrossRef]
- Blázquez Fernández, E. Contribution of metabolic sensors on feeding behaviour and the control of body weight. An. R. Acad. Nac. Med. 2012, 129, 541–563, discussion 563. [Google Scholar]
- De Andrade, I.S.; Zemdegs, J.C.S.; De Souza, A.P.; Watanabe, R.L.H.; Telles, M.M.; Nascimento, C.M.O.; Oyama, L.M.; Ribeiro, E.B. Diet-Induced Obesity Impairs Hypothalamic Glucose Sensing but Not Glucose Hypothalamic Extracellular Levels, as Measured by Microdialysis. Nutr. Diabetes 2015, 5, e162. [Google Scholar] [CrossRef] [PubMed]
- Mercer, R.E.; Chee, M.J.S.; Colmers, W.F. The Role of NPY in Hypothalamic Mediated Food Intake. Front. Neuroendocrinol. 2011, 32, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Bogacka, I.; Roane, D.S.; Xi, X.; Zhou, J.; Li, B.; Ryan, D.H.; Martin, R.J. Expression Levels of Genes Likely Involved in Glucose-Sensing in the Obese Zucker Rat Brain. Nutr. Neurosci. 2004, 7, 67–74. [Google Scholar] [CrossRef]
- Lee, A.K.; Mojtahed-Jaberi, M.; Kyriakou, T.; Aldecoa-Otalora Astarloa, E.; Arno, M.; Marshall, N.J.; Brain, S.D.; O’Dell, S.D. Effect of High-Fat Feeding on Expression of Genes Controlling Availability of Dopamine in Mouse Hypothalamus. Nutrition 2010, 26, 411–422. [Google Scholar] [CrossRef]
- Cifani, C.; Micioni Di Bonaventura, M.V.; Pucci, M.; Giusepponi, M.E.; Romano, A.; Di Francesco, A.; Maccarrone, M.; D’Addario, C. Regulation of Hypothalamic Neuropeptides Gene Expression in Diet Induced Obesity Resistant Rats: Possible Targets for Obesity Prediction? Front. Neurosci. 2015, 9, 187. [Google Scholar] [CrossRef]
- Srour, N.; Caron, A.; Michael, N.J. Do POMC Neurons Have a Sweet Tooth for Leptin? Special Issue: Role of Nutrients in Nervous Control of Energy Balance. Biochimie 2024, 223, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Waterson, M.J.; Horvath, T.L. Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metab. 2015, 22, 962–970. [Google Scholar] [CrossRef]
- Chhabra, K.H.; Adams, J.M.; Fagel, B.; Lam, D.D.; Qi, N.; Rubinstein, M.; Low, M.J. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria. Diabetes 2016, 65, 660–672. [Google Scholar] [CrossRef]
- Başer, Ö.; Yavuz, Y.; Özen, D.Ö.; Özgün, H.B.; Ağuş, S.; Civaş, C.C.; Atasoy, D.; Yılmaz, B. Effects of Chronic High Fat Diet on Mediobasal Hypothalamic Satiety Neuron Function in POMC-Cre Mice. Mol. Metab. 2024, 82, 101904. [Google Scholar] [CrossRef]
- Barahona, M.J.; Llanos, P.; Recabal, A.; Escobar-Acuña, K.; Elizondo-Vega, R.; Salgado, M.; Ordenes, P.; Uribe, E.; Sepúlveda, F.J.; Araneda, R.C.; et al. Glial Hypothalamic Inhibition of GLUT2 Expression Alters Satiety, Impacting Eating Behavior. Glia 2018, 66, 592–605. [Google Scholar] [CrossRef] [PubMed]
- El-Shazly, S.A.; Ahmed, M.M.; Al-Harbi, M.S.; Alkafafy, M.E.; El-Sawy, H.B.; Amer, S.A.M. Physiological and Molecular Study on the Anti-Obesity Effects of Pineapple (Ananas comosus) Juice in Male Wistar Rat. Food Sci. Biotechnol. 2018, 27, 1429–1438. [Google Scholar] [CrossRef]
- Recabal, A.; Fernández, P.; López, S.; Barahona, M.J.; Ordenes, P.; Palma, A.; Elizondo-Vega, R.; Farkas, C.; Uribe, A.; Caprile, T.; et al. The FGF2-induced Tanycyte Proliferation Involves a Connexin 43 Hemichannel/Purinergic-dependent Pathway. J. Neurochem. 2021, 156, 182–199. [Google Scholar] [CrossRef]
- Samms, R.J.; Lewis, J.E.; Lory, A.; Fowler, M.J.; Cooper, S.; Warner, A.; Emmerson, P.; Adams, A.C.; Luckett, J.C.; Perkins, A.C.; et al. Antibody-Mediated Inhibition of the FGFR1c Isoform Induces a Catabolic Lean State in Siberian Hamsters. Curr. Biol. 2015, 25, 2997–3003. [Google Scholar] [CrossRef]
- Esteve, N.A.; Rogers, D.J.; Stagray, J.A.; Mayeux, H.; Nora, G.; Huval, L.; Smith, K.M. Tanycyte Radial Morphology and Proliferation Are Influenced by Fibroblast Growth Factor Receptor 1 and High-fat Diet. Eur. J. Neurosci. 2024, 60, 5000–5018. [Google Scholar] [CrossRef]
- Al-Samerria, S.; Radovick, S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells 2021, 10, 2664. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, L.; Waters, M.J.; Chen, C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol. Metab. 2020, 31, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, L.; De Magalhaes Filho, C.; Leneuve, P.; Xu, J.; Brunel, N.; Chatziantoniou, C.; Le Bouc, Y.; Holzenberger, M. Early Postnatal Nutrition Determines Somatotropic Function in Mice. Endocrinology 2009, 150, 314–323. [Google Scholar] [CrossRef]
- Decourtye, L.; Mire, E.; Clemessy, M.; Heurtier, V.; Ledent, T.; Robinson, I.C.; Mollard, P.; Epelbaum, J.; Meaney, M.J.; Garel, S.; et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE 2017, 12, e0170083. [Google Scholar] [CrossRef]
- Jung, U.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Scavo, L.M.; Karas, M.; Murray, M.; Leroith, D. Insulin-Like Growth Factor-I Stimulates Both Cell Growth and Lipogenesis during Differentiation of Human Mesenchymal Stem Cells into Adipocytes. J. Clin. Endocrinol. Metab. 2004, 89, 3543–3553. [Google Scholar] [CrossRef] [PubMed]
- Klöting, N.; Koch, L.; Wunderlich, T.; Kern, M.; Ruschke, K.; Krone, W.; Brüning, J.C.; Blüher, M. Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth. Diabetes 2008, 57, 2074–2082. [Google Scholar] [CrossRef] [PubMed]
- Kineman, R.D.; Del Rio-Moreno, M.; Waxman, D.J. Liver-Specific Actions of GH and IGF1 That Protect against MASLD. Nat. Rev. Endocrinol. 2025, 21, 105–117. [Google Scholar] [CrossRef]
- Kausar, M.A.; Shahid, S.; Anwar, S.; Kuddus, M.; Khan, M.K.A.; Khalifa, A.M.; Khatoon, F.; Alotaibi, A.D.; Alkhodairy, S.F.; Snoussi, M.; et al. Identifying the Alpha-Glucosidase Inhibitory Potential of Dietary Phytochemicals against Diabetes Mellitus Type 2 via Molecular Interactions and Dynamics Simulation. Cell. Mol. Biol. 2022, 67, 16–26. [Google Scholar] [CrossRef]
- Cheng, C.M.; Kelley, B.; Wang, J.; Strauss, D.; Eagles, D.A.; Bondy, C.A. A Ketogenic Diet Increases Brain Insulin-Like Growth Factor Receptor and Glucose Transporter Gene Expression. Endocrinology 2003, 144, 2676–2682. [Google Scholar] [CrossRef]
- Pérez-Matute, P.; López, I.P.; Íñiguez, M.; Recio-Fernández, E.; Torrens, R.; Piñeiro-Hermida, S.; Alfaro-Arnedo, E.; Chau, L.; Walz, C.; Hoeflich, A.; et al. IGF1R Is a Mediator of Sex-Specific Metabolism in Mice: Effects of Age and High-Fat Diet. Front. Endocrinol. 2022, 13, 1033208. [Google Scholar] [CrossRef]
Time (Days) | SD | HFD | SDBro | HFDBro | p-Value |
---|---|---|---|---|---|
0 | 154.30 ± 34.95 | 162.40 ± 46.18 | 153.87 ± 23.35 | 165.38 ± 34.88 | 0.8828 |
10 | 194.40 ± 39.55 * | 212.40 ± 42.47 * | 197.50 ± 26.27 * | 230.25 ± 37.71 a * | 0.2021 |
20 | 222.40 ± 48.04 * | 273.50 ± 49.64 * | 226.00 ± 27.35 * | 281.63 ± 39.67 a * | 0.0084 |
30 | 239.90 ± 52.62 | 294.30 ± 50.68 | 249.13 ± 31.92 * | 303.13 ± 39.68 a | 0.0108 |
40 | 258.30 ± 54.77 | 318.10 ± 48.80 a * | 273.62 ± 36.35 * | 318.75 ± 36.64 a | 0.0126 |
50 | 270.50 ± 57.23 | 335.20 ± 47.56 a | 282.63 ± 37.58 | 339.13 ± 39.64 a | 0.0051 |
60 | 276.10 ± 55.20 | 357.70 ± 47.48 a | 293.75 ± 36.77 b | 360.38 ± 39.88 a,b,c | 0.0004 |
70 | 281.80 ± 57.08 | 378.20 ± 47.46 a | 300.88 ± 33.18 b | 377.88 ± 42.26 a,c | <0.0001 |
80 | 303.30 ± 61.30 * | 383.80 ± 47.33 a | 303.75 ± 34.82 b | 377.50 ± 44.21 a,b,c | 0.0004 |
90 | 310.50 ± 65.87 | 413.20 ± 59.46 a * | 319.38 ± 29.82 b * | 386.88 ± 31.59 a | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozen Koca, R.; Basaran, M.B.; Solak, H.; Solak Gormus, Z.I. Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats. Curr. Issues Mol. Biol. 2025, 47, 607. https://doi.org/10.3390/cimb47080607
Ozen Koca R, Basaran MB, Solak H, Solak Gormus ZI. Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats. Current Issues in Molecular Biology. 2025; 47(8):607. https://doi.org/10.3390/cimb47080607
Chicago/Turabian StyleOzen Koca, Raviye, Mustafa Berk Basaran, Hatice Solak, and Zulfikare Isik Solak Gormus. 2025. "Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats" Current Issues in Molecular Biology 47, no. 8: 607. https://doi.org/10.3390/cimb47080607
APA StyleOzen Koca, R., Basaran, M. B., Solak, H., & Solak Gormus, Z. I. (2025). Bromelain Improves Hypothalamic Control of Energy Homeostasis in High-Fat Diet-Induced Obese Rats. Current Issues in Molecular Biology, 47(8), 607. https://doi.org/10.3390/cimb47080607