Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (617)

Search Parameters:
Keywords = dielectric nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3520 KiB  
Article
Cellulose Ether/Citric Acid Systems Loaded with SrTiO3 Nanoparticles with Solvent-Tailored Features for Energy-Related Technologies
by Raluca Marinica Albu, Mihaela Iuliana Avadanei, Lavinia Petronela Curecheriu, Gabriela Turcanu, Iuliana Stoica, Marius Soroceanu, Daniela Rusu, Cristian-Dragos Varganici, Victor Cojocaru and Andreea Irina Barzic
Molecules 2025, 30(15), 3271; https://doi.org/10.3390/molecules30153271 - 5 Aug 2025
Abstract
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles [...] Read more.
This work aimed to advance the knowledge in the field of eco-friendly dielectrics with applicative relevance for future energy-related technologies. New multicomponent composites were prepared by using a cellulose ether/citric acid mixture as the matrix, which was gradually filled with strontium titanate nanoparticles (5–20 wt%). In this case, citric acid can act as a crosslinking agent for the polymer but also can react differently with the other counterparts from the composite as a function of the solvent used (H2O and H2O2). This led to considerable differences in the morphological, thermal, optical, and electrical characteristics due to distinct solvent-driven interactions, as revealed by the infrared spectroscopy investigation. Hence, in contrast to H2O, the oxidizing activity of H2O2 led to changes in the surface morphology, a greater transparency, a greater yellowness, an enhanced refractive index, and higher permittivity. These data provide new pathways to advance the optical and dielectric behavior of eco-compatible materials for energy devices by the careful selection of the composite’s components and the modulation of the molecular interactions via solvent features. Full article
Show Figures

Figure 1

17 pages, 3311 KiB  
Article
A Holistic Integration of Machine Learning for Selecting Optimum Ratio of Nanoparticles in Epoxy-Based Nanocomposite Insulators
by Abubakar Siddique, Muhammad Usama Shahid, Laraib Akram, Waseem Aslam and Kholod D. Alsufiani
Processes 2025, 13(8), 2330; https://doi.org/10.3390/pr13082330 - 22 Jul 2025
Viewed by 821
Abstract
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has [...] Read more.
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has employed iterative experimental methodologies, often characterized by the hit-and-trial method, in attempts to find the optimal nanoparticle concentration. However, these efforts have yielded suboptimal or inconsistent results. Moreover, experimental procedures for optimizing the nanoparticle concentration require significant time and cost. This research study proposed the predictive capabilities of machine learning (ML) for the selection of the nanoparticle concentration in epoxy-based nanocomposite insulators. The authors employed a novel systematic approach in this research work, comprising dataset preparation, ML model implementation, and experimental validation. A real-time dataset with varying concentrations of NPs (TiO2, SiO2, Al2O3) was developed in the High Voltage Lab, KFUEIT, Pakistan. Several advanced machine learning models are trained on this dataset. Support Vector Regression (SVR) exhibits the highest prediction accuracy, with an R2 score of 0.97. SVR predicted a breakdown voltage (BDV) of 46.26 kV, with a (w/w %) concentration of 5% TiO2, 1.17631% SiO2, and 3.95755% Al2O3. To validate the SVR prediction, a hardware prototype with predicted NP concentration is developed and tested. The experimentally measured BDV of the predicted nanocomposite sample, registering 44.72 kV, authenticates the predictive accuracy of machine learning. This work demonstrates the efficacy of machine learning as a viable and efficient alternative to traditional experimental methods for optimizing nanoparticle concentrations using a predictive approach in epoxy-based nanocomposites for high-voltage insulation applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 387
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4720 KiB  
Article
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
by David Oswaldo Romero-Quitl, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo and Miller Toledo-Solano
Nanomaterials 2025, 15(14), 1125; https://doi.org/10.3390/nano15141125 - 19 Jul 2025
Viewed by 337
Abstract
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the [...] Read more.
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the Ag shell and the particle shape, transitioning from spherical nanoparticles to distinctly defined nanocubes. Bright field and high-angle annular dark-field scanning transmission electron microscopy (BF-STEM and HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were employed to validate the structural and compositional changes. To link morphology with optical behavior, we utilized the Mie and Maxwell–Garnett theoretical models to simulate the dielectric response of the core–shell nanostructures, showing trends that align with experimental UV-visible absorption spectra. This research presents an easy and adjustable method for modifying the plasmonic properties of Ag@Au nanoparticles by varying their shape and shell, offering opportunities for advanced applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 1039 KiB  
Article
Enhanced Magnetic and Dielectric Performance in Fe3O4@Li0.5Cr0.5Fe2O4 Core/Shell Nanoparticles
by Mohammed K. Al Turkestani
Nanomaterials 2025, 15(14), 1123; https://doi.org/10.3390/nano15141123 - 19 Jul 2025
Viewed by 324
Abstract
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design [...] Read more.
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design effectively suppresses the magnetic dead layer and promotes exchange coupling at the interface, leading to enhanced saturation magnetization, superior magnetic heating (specific absorption rate; SAR), and improved dielectric properties. Our research introduces a novel interfacial engineering strategy that simultaneously optimizes both magnetic and dielectric performance, offering a multifunctional platform for applications in magnetic hyperthermia, electromagnetic interference (EMI) shielding, and microwave devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

30 pages, 4213 KiB  
Review
The Effect of Adsorption Phenomena on the Transport in Complex Electrolytes
by Ioulia Chikina, Michel Beaughon, Pierre Burckel, Emmanuelle Dubois, Ivan T. Lucas, Sawako Nakamae, Ozlem Sel, Hubert Perrot, Régine Perzynski, Thomas J. Salez, Blanca E. Torres-Bautista and Andrey Varlamov
Colloids Interfaces 2025, 9(4), 44; https://doi.org/10.3390/colloids9040044 - 7 Jul 2025
Viewed by 255
Abstract
Over the last decade, numerous impedance studies of the conductivity of suspensions containing colloidal (dielectric, semiconducting or metallic) particles have often led to the conclusion that the well-known Maxwell theory is insufficient to quantitatively explain the properties of these systems. We review some [...] Read more.
Over the last decade, numerous impedance studies of the conductivity of suspensions containing colloidal (dielectric, semiconducting or metallic) particles have often led to the conclusion that the well-known Maxwell theory is insufficient to quantitatively explain the properties of these systems. We review some of the most characteristic results and show how the applicability of the Maxwell’s theory can be restored taking into account the adsorption phenomena occurring during AC impedance measurements in nanoparticle suspensions. The latter can drastically change the capacitance of the metal-electrolyte cell boundaries from the standard value, making it strongly dependent on the nanoparticle concentration. This factor significantly affects conductivity measurements through RC circuit characteristics. We present an analysis of available impedance measurement data of the dependence of conductivity on the nanoparticle concentration in this new paradigm. In order to emphasize the novelty and the acute sensitivity of ac-diagnosis to the presence of adsorption phenomena at the metal-electrolyte interface, direct adsorption determinations at such interfaces by using two modern experimental techniques are also presented. The main result of this work is the restoration of Maxwell’s theory, attributing the observed discrepancies to variations in cell conductance. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Figure 1

20 pages, 9762 KiB  
Article
Wet Chemical-Synthesized Low-Loss Dielectric Composite Material Based on CuCl-Cu7S4 Nanoparticles and PVDF Copolymer
by Alexander A. Maltsev, Andrey A. Vodyashkin, Evgenia L. Buryanskaya, Olga Yu. Koval, Alexander V. Syuy, Sergei B. Bibikov, Irina E. Maltseva, Bogdan A. Parshin, Anastasia M. Stoynova, Pavel A. Mikhalev and Mstislav O. Makeev
Polymers 2025, 17(13), 1845; https://doi.org/10.3390/polym17131845 - 30 Jun 2025
Viewed by 300
Abstract
Polymer composites with high dielectric permittivity (>10) and low dielectric loss are critical for energy storage and microelectronic applications. This study reports on a semi-transparent composite of a PVDF copolymer filled with Cu7S4 nanoparticles synthesized via a wet chemical route. [...] Read more.
Polymer composites with high dielectric permittivity (>10) and low dielectric loss are critical for energy storage and microelectronic applications. This study reports on a semi-transparent composite of a PVDF copolymer filled with Cu7S4 nanoparticles synthesized via a wet chemical route. Only a small content (6%) of copper sulfide increases the dielectric permittivity of the material from 10.4 to 15.9 (1 kHz), maintaining a low dielectric loss coefficient (less than 0.1). The incorporated nanoparticles affect the morphology of the composite film surface and crystalline phases in the whole volume, which was studied with FTIR spectroscopy, differential scanning calorimetry and scanning probe microscopy. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

25 pages, 3930 KiB  
Article
Influence of Titanium Dioxide (TiO2) Nanocrystallinity on the Optoelectrical Properties of Chitosan Biocomposite Films Prepared via Sol–Gel Casting
by Nuchnapa Tangboriboon, Nitchakarn Malichai and Guytawan Wantaha
J. Compos. Sci. 2025, 9(7), 334; https://doi.org/10.3390/jcs9070334 - 27 Jun 2025
Viewed by 735
Abstract
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet [...] Read more.
Bio-nanocomposite films were prepared using chitosan, gelatin, and varying concentrations (0, 0.5, 1.0, 2.0, and 5.0 wt%) of titanium dioxide (TiO2) nanoparticles in acetic acid via a casting method. The incorporation of TiO2 nanoparticles into the bio-chitosan matrix enhanced ultraviolet (UV) absorption and improved the films’ physical, mechanical, and electrical properties. Additionally, the TiO2-loaded films exhibited antimicrobial activity, contributing to the extended preservation of packaged products by inhibiting microbial growth. Notably, the bio-nanocomposite films containing 1.0 wt% TiO2 exhibited an electroactive response, bending under relatively low electric field strength (250 V/mm), whereas the control film without TiO2 required higher field strength (550 V/mm) to achieve bending. This indicates potential applications in electroactive actuators requiring precise movement control. Among the tested concentrations, films containing 0.5 wt% and 1.0 wt% TiO2 (Formulas 7 and 8) demonstrated optimal performance. These films presented a visually appealing appearance with no tear marks, low bulk density (0.91 ± 0.04 and 0.85 ± 0.18 g/cm3), a satisfactory electromechanical response at 250 V/m (17.85 ± 2.58 and 61.48 ± 6.97), low shrinkage percentages (59.95 ± 3.59 and 54.17 ± 9.28), high dielectric constant (1.80 ± 0.07 and 8.10 ± 0.73), and superior UV absorption compared with pure bio-chitosan films, without and with gelatin (Formulas 1 and 6). Full article
Show Figures

Figure 1

20 pages, 1498 KiB  
Article
Novel Green Synthesis Route of ZnO Nanoparticles for Dielectric Applications
by Zohra Benzarti, Joana Neiva, Pedro Faia, Eduardo Silva, Sandra Carvalho and Susana Devesa
Nanomaterials 2025, 15(13), 991; https://doi.org/10.3390/nano15130991 - 26 Jun 2025
Viewed by 425
Abstract
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the [...] Read more.
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the plant extract, with the medium pH adjusted using sodium hydroxide (NaOH), followed by calcination at 300 °C, 400 °C, and 500 °C, and then by a washing step to enhance purity. Comprehensive characterization was performed using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrical impedance spectroscopy to investigate the structural, morphological, and dielectric properties of the nanoparticles. The sample calcined at 400 °C, followed by washing (HT400W), exhibits highly crystalline ZnO nanoparticles with a predominant wurtzite structure (93.15 wt% ZnO) and minimal impurities (6.85 wt% Na2SO4). SEM analysis indicated a flake-like morphology with nanoscale features (50–100 nm), while Raman spectroscopy confirmed enhanced crystallinity and purity post-washing. Additionally, the HT400W sample exhibited a dielectric constant (ε′) of 16.96 and a low loss tangent (tan δ) of 0.14 at 1 MHz, suggesting superior energy efficiency for high-frequency applications. This green synthesis approach not only eliminates hazardous reagents but also delivers ZnO nanoparticles with good dielectric performance. Furthermore, this work demonstrates the efficacy of a sustainable biotemplate, offering an environmentally friendly approach for synthesizing ZnO nanoparticles with tailored physicochemical properties. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

13 pages, 1947 KiB  
Article
Photothermal Performance of 2D Material-Based Nanoparticles for Biomedical Applications
by Amir Eghbali, Nikolay V. Pak, Aleksey V. Arsenin, Valentyn Volkov and Andrey A. Vyshnevyy
Nanomaterials 2025, 15(12), 942; https://doi.org/10.3390/nano15120942 - 18 Jun 2025
Viewed by 475
Abstract
Photothermal therapy (PTT) is one of the rapidly developing methods for cancer treatment based on the strong light-to-heat conversion by nanoparticles. Over the past decade, the palette of photonic materials has expanded drastically, and nanoparticle fabrication techniques can now preserve the optical response [...] Read more.
Photothermal therapy (PTT) is one of the rapidly developing methods for cancer treatment based on the strong light-to-heat conversion by nanoparticles. Over the past decade, the palette of photonic materials has expanded drastically, and nanoparticle fabrication techniques can now preserve the optical response of a bulk material in produced nanoparticles. This progress potentially holds opportunities for the efficiency enhancement of PTT, which have not fully explored yet. Here we study the photothermal performance of spherical nanoparticles (SNs) composed of novel two-dimensional (2D) and conventional materials with existing or potential applications in photothermal therapy such as MoS2, PdSe2, Ti3C2, TaS2, and TiN. Using the Mie theory, we theoretically analyze the optical response of SNs across various radii of 5–100 nm in the near-infrared (NIR) region with a particular focus on the therapeutic NIR-II range (1000–1700 nm) and radii below 50 nm. Our calculations reveal distinct photothermal behaviors: Large (radius > 50 nm) nanoparticles made of van der Waals semiconductors and PdSe2 perform exceptionally well in the NIR-I range (750–950 nm) due to excitonic optical responses, while Ti3C2 nanoparticles achieve broad effectiveness across both NIR zones due to their dual dielectric/plasmonic properties. Small TiN SNs excel in the NIR-I zone due to the plasmonic response of TiN at shorter wavelengths. Notably, the van der Waals metal TaS2 emerges as the most promising photothermal transduction agent in the NIR-II region, particularly for smaller nanoparticles, due to its plasmonic resonance. Our insights lay a foundation for designing efficient photothermal transduction agents, with significant implications for cancer therapy and other biomedical applications. Full article
(This article belongs to the Special Issue Nanostructured Materials and Coatings for Biomedical Applications)
Show Figures

Figure 1

16 pages, 5881 KiB  
Article
High-Performance Carbon Black/Fe3O4/Epoxy Nanodielectrics for Electrostatic Energy Storage and Harvesting Solutions
by Sotirios Stavropoulos, Aikaterini Sanida and Georgios Psarras
Energies 2025, 18(12), 3147; https://doi.org/10.3390/en18123147 - 16 Jun 2025
Viewed by 317
Abstract
The present study explores the energy storage and harvesting properties of nanocomposite systems reinforced with carbon black and magnetite nanoparticles (Fe3O4). The systems’ energy storage performance was evaluated under both AC and DC conditions to analyze the impact of [...] Read more.
The present study explores the energy storage and harvesting properties of nanocomposite systems reinforced with carbon black and magnetite nanoparticles (Fe3O4). The systems’ energy storage performance was evaluated under both AC and DC conditions to analyze the impact of temperature, DC charging voltage levels, and varying filler contents on the stored and recovered energy. The experimental findings demonstrated that these systems are capable of efficiently storing and releasing energy on demand via a rapid charge–discharge mechanism. Dynamic mechanical and dielectric analyses revealed significant enhancements in the storage modulus and the energy efficiency of these materials due to the synergistic effects of the nanoparticles and the interactions between them and the polymer matrix. The incorporation of the carbon black and magnetite nanoparticles improves the energy-storage capabilities, supported by augmented interfacial polarization phenomena, which facilitate charge migration and accumulation. These systems exhibit rapid charge and discharge behavior, making them suitable for applications requiring high power density and fast energy storage and recovery cycling. These findings underscore the aptitude of these nanocomposites for high-performance energy-storage solutions, emphasizing their adaptability to applications requiring both high energy density and efficient recovery in tandem with adequate thermomechanical performance. Full article
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Gate-Controlled Three-Terminal ZnO Nanoparticle Optoelectronic Synaptic Devices for In-Sensor Neuromorphic Memory Applications
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Nanomaterials 2025, 15(12), 908; https://doi.org/10.3390/nano15120908 - 11 Jun 2025
Cited by 1 | Viewed by 380
Abstract
This study reports a gate-tunable three-terminal optoelectronic synaptic device based on an Al/ZnO nanoparticles (NPs)/SiO2/Si structure for neuromorphic in-sensor memory applications. The ZnO NP film, fabricated via spin coating, exhibited strong UV-induced excitatory post-synaptic current (EPSC) responses that were modulated by [...] Read more.
This study reports a gate-tunable three-terminal optoelectronic synaptic device based on an Al/ZnO nanoparticles (NPs)/SiO2/Si structure for neuromorphic in-sensor memory applications. The ZnO NP film, fabricated via spin coating, exhibited strong UV-induced excitatory post-synaptic current (EPSC) responses that were modulated by gate voltage through charge injection across the SiO2 dielectric rather than by conventional field effect. Optical stimulation enabled short-term synaptic plasticity, with paired-pulse facilitation (PPF) values reaching 185% at a gate voltage of −5.0 V and decreasing to 180% at +5.0 V, confirming gate-dependent modulation of synaptic weight. Repeated stimulation enhanced learning efficiency and memory retention, as demonstrated by reduced pulse numbers for relearning and slower EPSC decay. Wickelgren’s power law analysis further revealed a decrease in the forgetting rate under negative gate bias, indicating improved long-term memory characteristics. A 3 × 3 synaptic device array visualized visual memory formation through EPSC-based color mapping, with darker intensities and slower fading observed under −5.0 V bias. These results highlight the critical role of gate-voltage-induced charge injection through the SiO2 dielectric in controlling optical potentiation and electrical depression, establishing ZnO NP-based optoelectronic synaptic devices as promising platforms for energy-efficient, light-driven neuromorphic computing. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

11 pages, 1825 KiB  
Article
Polyarylene Ether Nitrile/Modified Hollow Silica Composite Films for Ultralow Dielectric Properties and Enhanced Thermal Resistance
by Shuning Liu, Jinqi Wu, Yani Chen, Ting Zhang, Lifen Tong and Xiaobo Liu
Polymers 2025, 17(12), 1623; https://doi.org/10.3390/polym17121623 - 11 Jun 2025
Viewed by 429
Abstract
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content [...] Read more.
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content of approximately 9.3 wt%, which were subsequently incorporated into high-performance polyarylene ether nitrile (PEN) polymers to fabricate composite films. The modified nanoparticles demonstrated significantly enhanced compatibility with the polymer matrix, while their hollow structure effectively reduced the dielectric constant of the composite film. When loaded with 50 wt% KHGM particles, the PEN-based composite film exhibited an elevated glass transition temperature of 198 °C and achieved a dielectric constant as low as 2.32 at 1 MHz frequency, coupled with dielectric loss below 0.016; compared with pure PEN, the dielectric constant of PEN/KHGM-50% decreased by 26.47%. Additionally, the composite demonstrated excellent water repellency. These advancements provide high-performance material support for applications in electronic communications, aerospace, and related fields. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

23 pages, 3909 KiB  
Article
Design of Polysaccharide-Based Nanocomposites for Eco-Friendly Flexible Electronics
by Gabriela Turcanu, Iuliana Stoica, Raluca Marinica Albu, Cristian-Dragos Varganici, Mihaela Iuliana Avadanei, Andreea Irina Barzic, Lavinia-Petronela Curecheriu, Paola Stagnaro and Maria Teresa Buscaglia
Polymers 2025, 17(12), 1612; https://doi.org/10.3390/polym17121612 - 10 Jun 2025
Viewed by 597
Abstract
Flexible electronics is an applicative field in continuous expansion. This article addresses the requirements of this domain regarding eco-friendly and flexible components from a renewable chitosan polysaccharide that is progressively reinforced with barium titanate nanoparticles. Ultrafine ceramic powder was produced by the coprecipitation [...] Read more.
Flexible electronics is an applicative field in continuous expansion. This article addresses the requirements of this domain regarding eco-friendly and flexible components from a renewable chitosan polysaccharide that is progressively reinforced with barium titanate nanoparticles. Ultrafine ceramic powder was produced by the coprecipitation method, and the resulting phase composition and morphology were investigated by X-ray diffraction and transmission electron microscopy, together with the perovskite structure of the spherical nanoparticles. FTIR studies were conducted to elucidate the interactions between the two constituting phases of the composites. The filler dispersion in the matrix was checked by scanning electron microscopy. The rheological percolation threshold was compared with that extracted from electrical measurements. The thermal behavior was assessed by thermogravimetry and differential scanning calorimetry. The dielectric properties as a function of frequency and applied electric field were investigated, and the results are discussed in terms of extrinsic contributions. The current results demonstrate a straightforward method for producing tunable flexible structures. Full article
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Highly Efficient Upconversion Emission Platform Based on the MDM Cavity Effect in Aluminum Nanopillar Metasurface
by Xiaofeng Wu, Xiangyuan Mao, Shengbin Cheng, Haiou Li and Shiping Zhan
Photonics 2025, 12(6), 582; https://doi.org/10.3390/photonics12060582 - 7 Jun 2025
Viewed by 414
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication [...] Read more.
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication of a plasmonics–UCNPs system is still a challenge. Here, we reported a metal–dielectric–metal (MDM)-type plasmonic platform based on the aluminum metasurface, which can efficiently enhance the luminescence intensity of magnetic and non-magnetic rare earth-doped UCNPs. Attributed to the strong local field effect of the nanocavities formed by the aluminum anti-transmission layer at the bottom, the fluorescence of the two types of UCNPs in such a platform can be enhanced by over 1000 folds compared with that in the conventional substrate. It is found that the deposited UCNPs amount and the aluminum pillar size can both impact the enhancement. We confirmed that the constructed MDM nanocavities could enhance and regulate the local field strength, and the optimum enhancement can be achieved by choosing proper parameters. All these findings provide an efficient way of exploring the plasmon-enhanced UCNPs luminescence system with low cost, high efficiency, and easy fabrication and can be promising in the fields of biosensing and photovoltaic devices. Full article
Show Figures

Figure 1

Back to TopTop