Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = dibenzylated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 859 KB  
Article
Lepidiline-Derived Imidazole-2(3H)-Thiones: (3+2)-Cycloadditions vs. Nucleophilic Additions in Reactions with Fluorinated Nitrile Imines
by Wiktor K. Poper, Kamil Świątek, Katarzyna Urbaniak, Barbara Olszewska and Marcin Jasiński
Molecules 2025, 30(19), 3851; https://doi.org/10.3390/molecules30193851 - 23 Sep 2025
Cited by 1 | Viewed by 632
Abstract
Two series of imidazole-2(3H)-thiones inspired by naturally occurring lepidiline alkaloids, bearing either one or two benzyl-type substituents located at the N(1)/N(3) atoms, respectively, were prepared and examined in reactions with in situ generated C-trifluoromethyl-N-aryl nitrile imines. N, [...] Read more.
Two series of imidazole-2(3H)-thiones inspired by naturally occurring lepidiline alkaloids, bearing either one or two benzyl-type substituents located at the N(1)/N(3) atoms, respectively, were prepared and examined in reactions with in situ generated C-trifluoromethyl-N-aryl nitrile imines. N,N-Dibenzylated imidazole-2-thiones served exclusively as C=S dipolarophiles to afford hitherto unknown CF3-functionalized spiro [1,3,4-thiadiazole-5,2′-imidazole] derivatives formed through the (3+2)-cycloaddition pathway. In contrast, the enolizable N-monobenzylated imidazole-2-thiones provided acyclic products, i.e., hydrazonothioates, resulting from nucleophilic addition of the respective en(thio)late onto the C-termini of the 1,3-dipole. The presented results extend the scope of both fluorinated products available via trapping of the in situ generated CF3-nitrile imines as well as synthetic analogues of lepidilines. In addition, spectroscopic analysis of the obtained products and the known related systems revealed 13C NMR chemical shifts attributed to the C-(CF3) atom as useful probes to differentiate the open-chain hydrazonothioates (δ = 112–120), 2,2-diaryl/dialkyl-2,3-dihydro-1,3,4-thiadiazoles (δ = 130–145), and more strained spiro-1,3,4-thiadiazole derivatives (δ = 166–170) reported herein. Full article
Show Figures

Graphical abstract

15 pages, 5659 KB  
Article
Development of Dehydrogenation System for Liquid Organic Hydrogen Carrier with Enhanced Reaction Rate
by Juhan Lee, Muhammad Usman, Sanghyoun Park, Sangyong Lee and Myung Ho Song
Appl. Sci. 2024, 14(13), 5803; https://doi.org/10.3390/app14135803 - 3 Jul 2024
Cited by 2 | Viewed by 3249
Abstract
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic [...] Read more.
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic hydrogen carrier (LOHC) technology. The present study focused on increasing the speed of dehydrogenation, resulting in the proposal of a triple-loop dehydrogenation system comprising reaction, heating, and chilling loops. The reactor has a rotating cage containing a packed bed of catalyst pellets, which is designed to enhance both heat and mass transfer by helping to detach precipitated hydrogen bubbles from the catalyst surface. In addition, the centrifugal force aids in isolating the gas phase from the LOHC liquid. A dehydrogenation experiment was conducted using the reaction and chilling loops, which revealed that the average hydrogen production rate during the first hour was 52.6 LPM (liter per minute) from 26.3 L of perhydro-dibenzyl-toluene with 1.5 kg of 0.5 wt% Pt/Al2O3 catalyst. This was approximately 48% more than the value predicted with the reaction kinetics measured with a small-scale plug flow dehydrogenation reactor with less than 1.0 g of 5.0 wt% Pt/Al2O3 catalyst. The concept, construction methods, and results of the preliminary gas infiltration, flow visualization, and reactor pumping experiments are also described in this paper. Full article
Show Figures

Figure 1

19 pages, 1012 KB  
Article
Does the Oxygen Functionality Really Improve the Thermodynamics of Reversible Hydrogen Storage with Liquid Organic Hydrogen Carriers?
by Sergey P. Verevkin, Artemiy A. Samarov and Sergey V. Vostrikov
Oxygen 2024, 4(3), 266-284; https://doi.org/10.3390/oxygen4030015 - 2 Jul 2024
Cited by 6 | Viewed by 1728
Abstract
Liquid organic hydrogen carriers (LOHCs) are aromatic molecules that are being considered for the safe storage and release of hydrogen. The thermodynamic properties of a range of aromatic ethers were investigated using various experimental and theoretical methods to assess their suitability as LOHC [...] Read more.
Liquid organic hydrogen carriers (LOHCs) are aromatic molecules that are being considered for the safe storage and release of hydrogen. The thermodynamic properties of a range of aromatic ethers were investigated using various experimental and theoretical methods to assess their suitability as LOHC materials. The absolute vapour pressures were measured for benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene using the transpiration method. The standard molar enthalpies and entropies of vaporisation/sublimation were derived from the temperature dependence of the vapour pressures. The combustion energies of benzyl phenyl ether and dibenzyl ether were measured using high-precision combustion calorimetry, and their standard molar enthalpies of formation were derived from these data. High-level quantum chemical calculations were used to calculate the standard molar enthalpies of formation in the gas phase for benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene. The latter values agreed very well with the experimental results obtained in this work. The thermodynamic properties of the hydrogenation/dehydrogenation reactions in liquid phase in LOHC systems based on methoxy–benzene, diphenyl ether, benzyl phenyl ether, dibenzyl ether and 2-methoxynaphthalene were derived and compared with the data for similarly structured hydrogen carriers based on benzene, diphenylmethane, 1,2-diphenylethane, 1,3-diphenylpropane and naphthalene. The influence of the oxygen functionality on the thermodynamic properties of the hydrogenation/dehydrogenation reactions was evaluated. Full article
Show Figures

Figure 1

11 pages, 3616 KB  
Communication
Extraction of Dibenzyl Disulfide from Transformer Oils by Acidic Ionic Liquid
by Lili Zhang, Pei Peng, Qian Pan, Fang Wan and Huaxin Zhang
Molecules 2024, 29(10), 2395; https://doi.org/10.3390/molecules29102395 - 19 May 2024
Cited by 1 | Viewed by 2332
Abstract
In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil [...] Read more.
In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil for the first time. The results show that the desulfurization ability of the ILs for DBDS followed the order of [BMIM]FeCl4 > [BMIM]N(CN)2 > [BMIM]SCN > [BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 > [BMIM]OTf > [BMIM]PF6 > [BMIM]BF4. Especially, [BMIM]FeCl4 ionic liquid had excellent removal efficiency for DBDS, with its S partition coefficient KN (S) being up to 2642, which was much higher than the other eight imidazolium-based ILs. Moreover, the extractive performance of [BMIM]FeCl4 increased with an increasing molar ratio of FeCl3 to [BMIM]Cl, which was attributed to its Lewis acidity and fluidity. [BMIM]FeCl4 ionic liquid could also avail in the desulfurization of diphenyl sulfide (DPS) from model oils. The experimental results demonstrate that π−π action, π-complexation, and Lewis acid−base interaction played important roles in the desulfurization process. Finally, the ([BMIM]FeCl4) ionic liquid could be recycled five times without a significant decrease in extractive ability. Full article
Show Figures

Graphical abstract

22 pages, 52995 KB  
Article
β-Lactam TRPM8 Antagonists Derived from Phe-Phenylalaninol Conjugates: Structure–Activity Relationships and Antiallodynic Activity
by Cristina Martín-Escura, M. Ángeles Bonache, Jessy A. Medina, Alicia Medina-Peris, Jorge De Andrés-López, Sara González-Rodríguez, Sara Kerselaers, Gregorio Fernández-Ballester, Thomas Voets, Antonio Ferrer-Montiel, Asia Fernández-Carvajal and Rosario González-Muñiz
Int. J. Mol. Sci. 2023, 24(19), 14894; https://doi.org/10.3390/ijms241914894 - 4 Oct 2023
Cited by 3 | Viewed by 2534
Abstract
The protein transient receptor potential melastatin type 8 (TRPM8), a non-selective, calcium (Ca2+)-permeable ion channel is implicated in several pathological conditions, including neuropathic pain states. In our previous research endeavors, we have identified β-lactam derivatives with high hydrophobic character that exhibit [...] Read more.
The protein transient receptor potential melastatin type 8 (TRPM8), a non-selective, calcium (Ca2+)-permeable ion channel is implicated in several pathological conditions, including neuropathic pain states. In our previous research endeavors, we have identified β-lactam derivatives with high hydrophobic character that exhibit potent and selective TRPM8 antagonist activity. This work describes the synthesis of novel derivatives featuring C-terminal amides and diversely substituted N′-terminal monobenzyl groups in an attempt to increase the total polar surface area (TPSA) in this family of compounds. The primary goal was to assess the influence of these substituents on the inhibition of menthol-induced cellular Ca2+ entry, thereby establishing critical structure–activity relationships. While the substitution of the tert-butyl ester by isobutyl amide moieties improved the antagonist activity, none of the N′-monobencyl derivatives, regardless of the substituent on the phenyl ring, achieved the activity of the model dibenzyl compound. The antagonist potency of the most effective compounds was subsequently verified using Patch-Clamp electrophysiology experiments. Furthermore, we evaluated the selectivity of one of these compounds against other members of the transient receptor potential (TRP) ion channel family and some receptors connected to peripheral pain pathways. This compound demonstrated specificity for TRPM8 channels. To better comprehend the potential mode of interaction, we conducted docking experiments to uncover plausible binding sites on the functionally active tetrameric protein. While the four main populated poses are located by the pore zone, a similar location to that described for the N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB) antagonist cannot be discarded. Finally, in vivo experiments, involving a couple of selected compounds, revealed significant antinociceptive activity within a mice model of cold allodynia induced by oxaliplatin (OXA). Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Pharmacology in Spain 2.0)
Show Figures

Figure 1

20 pages, 4099 KB  
Article
Influence of Monomer Sequence on the Cyclization Behavior of Poly(acrylonitrile-co-acrylamide)
by Roman V. Toms, Mikhail S. Balashov, Alexander Yu. Gervald, Nikolay I. Prokopov, Anna V. Plutalova and Elena V. Chernikova
Appl. Sci. 2023, 13(6), 3734; https://doi.org/10.3390/app13063734 - 15 Mar 2023
Cited by 2 | Viewed by 2920
Abstract
In this research, we have developed the approach to controlled synthesis of acrylonitrile-acrylamide copolymers with narrow molecular weight distribution and various monomer sequence distributions. By using dibenzyl trithiocarbonate and batch/semibatch polymerization, we have first synthesized random, gradient, and block-gradient copolymers containing 3.4–10.2 mol. [...] Read more.
In this research, we have developed the approach to controlled synthesis of acrylonitrile-acrylamide copolymers with narrow molecular weight distribution and various monomer sequence distributions. By using dibenzyl trithiocarbonate and batch/semibatch polymerization, we have first synthesized random, gradient, and block-gradient copolymers containing 3.4–10.2 mol. % of acrylamide and revealed the influence of the monomer sequence on the cyclization behavior of poly(acrylonitrile-co-acrylamide) by combination of differential scanning calorimetry and Fourier transform infrared spectroscopy. This allowed us to find differences in cyclization behavior of the copolymers in argon and air atmosphere. Intramolecular cyclization was the main process proceeding in argon atmosphere. The radical mechanism of cyclization was suppressed already at the molar part of acrylamide units in copolymer exceeding ~3 mol. % for random copolymer and ~6 mol. % for block-gradient copolymer. The activation energy of ionic cyclization was equal to 89 ± 3 kJ·mol−1 and was not influenced by both copolymer composition and chain microstructure in contrast to the rate of cyclization. The latter was increased with the rise of acrylamide content, the content of hetero-triads and in the range block-gradient < gradient < random structure. In air atmosphere, the oxidation reactions dominated over cyclization. The oxidation reactions were found to be less sensitive to copolymer composition and chain microstructure. Full article
(This article belongs to the Special Issue Advanced Polymers Synthesis, Analysis and Applications)
Show Figures

Figure 1

16 pages, 8236 KB  
Article
Critical Role of Non-Halogenated Solvent Additives in Eco-Friendly and Efficient All-Polymer Solar Cells
by Saeah Kim, Huijeong Choi, Myeongjae Lee, Hyeseung Jung, Yukyung Shin, Seul Lee, Kyungkon Kim, Myung Hwa Kim, Kyungwon Kwak and BongSoo Kim
Polymers 2023, 15(6), 1354; https://doi.org/10.3390/polym15061354 - 8 Mar 2023
Cited by 6 | Viewed by 3364
Abstract
Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in [...] Read more.
Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in attaining an optimal morphology when non-halogenated solvents (typically o-xylene (XY)) were used. To address this issue, we studied the dependence of the photovoltaic properties of all-polymer solar cells (APSCs) on various high-boiling-point non-halogenated additives. We synthesized PTB7-Th and PNDI2HD-T polymers that are soluble in XY and fabricated PTB7-Th:PNDI2HD-T-based APSCs using XY with five additives: 1,2,4-trimethylbenzene (TMB), indane (IN), tetralin (TN), diphenyl ether (DPE), and dibenzyl ether (DBE). The photovoltaic performance was determined in the following order: XY + IN < XY + TMB < XY + DBE ≤ XY only < XY + DPE < XY + TN. Interestingly, all APSCs processed with an XY solvent system had better photovoltaic properties than APSCs processed with chloroform solution containing 1,8-diiodooctane (CF + DIO). The key reasons for these differences were unraveled using transient photovoltage and two-dimensional grazing incidence X-ray diffraction experiments. The charge lifetimes of APSCs based on XY + TN and XY + DPE were the longest, and their long lifetime was strongly associated with the polymer blend film morphology; the polymer domain sizes were in the nanoscale range, and the blend film surfaces were smoother, as the PTB7-Th polymer domains assumed an untangled, evenly distributed, and internetworked morphology. Our results demonstrate that the use of an additive with an optimal boiling point facilitates the development of polymer blends with a favorable morphology and can contribute to the widespread use of eco-friendly APSCs. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Korea (2022,2023))
Show Figures

Graphical abstract

5 pages, 328 KB  
Short Note
Dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate
by Diego Olivieri, Riccardo Tarroni and Carla Carfagna
Molbank 2023, 2023(1), M1586; https://doi.org/10.3390/M1586 - 15 Feb 2023
Viewed by 1822
Abstract
The synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate has been realized through a diastereospecific bis-alkoxycarbonylation reaction, which starts from the cheap and easily available 1H-indene, benzyl alcohol, and carbon monoxide. The catalyst is formed in situ by mixing Pd(TFA) [...] Read more.
The synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate has been realized through a diastereospecific bis-alkoxycarbonylation reaction, which starts from the cheap and easily available 1H-indene, benzyl alcohol, and carbon monoxide. The catalyst is formed in situ by mixing Pd(TFA)2, the ligand N2,N3-bis(2,6-dimethylphenyl)butane-2,3-diimine, p-benzoquinone is used as an oxidant, and benzyl alcohol acts both as a nucleophile and as the main solvent. Full article
Show Figures

Graphical abstract

16 pages, 1951 KB  
Article
Pseudomonas aeruginosa and Staphylococcus aureus Display Differential Proteomic Responses to the Silver(I) Compound, SBC3
by Magdalena Piatek, Cillian O’Beirne, Zoe Beato, Matthias Tacke and Kevin Kavanagh
Antibiotics 2023, 12(2), 348; https://doi.org/10.3390/antibiotics12020348 - 8 Feb 2023
Cited by 18 | Viewed by 4671
Abstract
The urgent need to combat antibiotic resistance and develop novel antimicrobial therapies has triggered studies on novel metal-based formulations. N-heterocyclic carbene (NHC) complexes coordinate transition metals to generate a broad range of anticancer and/or antimicrobial agents, with ongoing efforts being made to [...] Read more.
The urgent need to combat antibiotic resistance and develop novel antimicrobial therapies has triggered studies on novel metal-based formulations. N-heterocyclic carbene (NHC) complexes coordinate transition metals to generate a broad range of anticancer and/or antimicrobial agents, with ongoing efforts being made to enhance the lipophilicity and drug stability. The lead silver(I) acetate complex, 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*) (SBC3), has previously demonstrated promising growth and biofilm-inhibiting properties. In this work, the responses of two structurally different bacteria to SBC3 using label-free quantitative proteomics were characterised. Multidrug-resistant Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) are associated with cystic fibrosis lung colonisation and chronic wound infections, respectively. SBC3 increased the abundance of alginate biosynthesis, the secretion system and drug detoxification proteins in P. aeruginosa, whilst a variety of pathways, including anaerobic respiration, twitching motility and ABC transport, were decreased in abundance. This contrasted the affected pathways in S. aureus, where increased DNA replication/repair and cell redox homeostasis and decreased protein synthesis, lipoylation and glucose metabolism were observed. Increased abundance of cell wall/membrane proteins was indicative of the structural damage induced by SBC3 in both bacteria. These findings show the potential broad applications of SBC3 in treating Gram-positive and Gram-negative bacteria. Full article
Show Figures

Figure 1

13 pages, 4261 KB  
Article
β-Phosphonated Glycine Pendant Groups Grafted on Styrene-6.7% Divinylbenzene Copolymers: Synthesis and Their Application as Photocatalysts
by Adriana Popa, Laura Cocheci, Lavinia Lupa, Aniela Pop and Aurelia Visa
Appl. Sci. 2023, 13(3), 2025; https://doi.org/10.3390/app13032025 - 3 Feb 2023
Cited by 3 | Viewed by 2423
Abstract
Environmental pollution from organic contaminants caused by textile dyeing is a real danger. Wastewater from the textile industry has high organic loads, as well as dyes and chemical compounds used in their preparation. Among the azo dyes, Congo red (CR) dye is widely [...] Read more.
Environmental pollution from organic contaminants caused by textile dyeing is a real danger. Wastewater from the textile industry has high organic loads, as well as dyes and chemical compounds used in their preparation. Among the azo dyes, Congo red (CR) dye is widely used as a model in the experimental studies of textile wastewater treatment. Heterogeneous photocatalysis consists of UV or VIS light irradiation of various types of organic compounds in water in the presence of a solid catalyst; it is considered an important technique for the purification and reuse of aqueous effluents. In the present study, two novel compounds of β-phosphonate-type glycine pendant groups grafted on S-DVB copolymer were used for the decontamination of Congo red dye polluted water. They were characterized by FTIR spectroscopy, scanning electron microscopy, EDX spectroscopy, thermogravimetric analysis and UV-VIS spectroscopy. By using 25 mg/L initial concentration of Congo red dye and a catalyst concentration of 1 g/L and 240 min of irradiation, a photocatalysis efficiency of 98.6% in the case of [(diethyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (EthylAmAcid material), and of 83.1% in the case of [(dibenzyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (BenzylAmAcid material), respectively, was achieved. Full article
(This article belongs to the Special Issue New Trends in Functional and Multifunctional Advanced Materials)
Show Figures

Figure 1

28 pages, 8328 KB  
Article
A Bridge too Far? Comparison of Transition Metal Complexes of Dibenzyltetraazamacrocycles with and without Ethylene Cross-Bridges: X-ray Crystal Structures, Kinetic Stability, and Electronic Properties
by Ashlie N. Walker, Megan A. Ayala, Somrita Mondal, Mackenzie C. Bergagnini, Phuong John D. Bui, Stephanie N. Chidester, Chad I. Doeden, Louise Esjornson, Brian R. Sweany, Leslie Garcia, Jeanette A. Krause, Allen G. Oliver, Timothy J. Prior and Timothy J. Hubin
Molecules 2023, 28(2), 895; https://doi.org/10.3390/molecules28020895 - 16 Jan 2023
Cited by 3 | Viewed by 3744
Abstract
Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the [...] Read more.
Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds’ kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand–metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness. Full article
(This article belongs to the Special Issue Recent Advance in Transition Metal Complexes and Their Applications)
Show Figures

Graphical abstract

5 pages, 655 KB  
Short Note
(S)-N1,N3-Dibenzyl-1-cyclohexyl-N1,N3-bis((R)-1-phenylethyl)propane-1,3-diamine
by Leland Belda, Ángel García-González, Alejandro Manchado, Carlos T. Nieto and Narciso M. Garrido
Molbank 2023, 2023(1), M1544; https://doi.org/10.3390/M1544 - 11 Jan 2023
Viewed by 2700
Abstract
(S)-N1,N3-dibenzyl-1-cyclohexyl-N1,N3-bis((R)-1-phenylethyl)propane-1,3-diamine was prepared in good yield by the reduction of the corresponding amide, which was obtained by the addition of a chiral lithium amide to an α,β-unsaturated [...] Read more.
(S)-N1,N3-dibenzyl-1-cyclohexyl-N1,N3-bis((R)-1-phenylethyl)propane-1,3-diamine was prepared in good yield by the reduction of the corresponding amide, which was obtained by the addition of a chiral lithium amide to an α,β-unsaturated ester. The target compound was fully characterized by NMR (1H and 13C), high-resolution mass spectrometry and polarimetry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

12 pages, 1414 KB  
Article
Synthesis and Anti-Proliferative Evaluation of Arctigenin Analogues with C-9′ Derivatisation
by Emily K. Paulin, Euphemia Leung, Lisa I. Pilkington and David Barker
Int. J. Mol. Sci. 2023, 24(2), 1167; https://doi.org/10.3390/ijms24021167 - 6 Jan 2023
Cited by 1 | Viewed by 2559
Abstract
Dibenzylbutyrolactone lignans (DBLs) are a class of natural products with a wide variety of biological activities. Due to their potential for the development of human therapeutic agents, DBLs have been subjected to various SAR studies in order to optimise activity. Previous reports have [...] Read more.
Dibenzylbutyrolactone lignans (DBLs) are a class of natural products with a wide variety of biological activities. Due to their potential for the development of human therapeutic agents, DBLs have been subjected to various SAR studies in order to optimise activity. Previous reports have mainly considered changes on the aromatic rings and at the benzylic carbons of the compounds, whilst the effects of substituents in the lactone, at the C-9′ position, have been relatively unexplored. This position has an unexploited potential for the development of novel dibenzyl butyrolactone derivatives, with previous preliminary findings revealing C-9′-hydroxymethyl analogues inducing programmed cell cycle death. Using the core structure of the bioactive natural product arctigenin, C-9′ derivatives were synthesised using various synthetic pathways and with prepared derivatives providing more potent anti-proliferative activity than the C-9′-hydroxymethyl lead compound. Full article
Show Figures

Figure 1

13 pages, 2647 KB  
Article
Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones
by Antonia Iazzetti, Dario Allevi, Andrea Calcaterra, Giancarlo Fabrizi, Antonella Goggiamani, Giulia Mazzoccanti, Alessio Sferrazza, Rosanna Verdiglione and Valeria Vergine
Molecules 2023, 28(1), 300; https://doi.org/10.3390/molecules28010300 - 30 Dec 2022
Cited by 1 | Viewed by 2861
Abstract
The gold-catalyzed cyclization of 2,2-bis(3-arylprop-2-yn1-yl)malonic acid has been proposed as an efficient approach to substituted 3,8-dibenzyl-2,7-dioxaspiro[4.4]nonane-1,6-diones. The reaction proceeds smoothly in mild reaction conditions to give the desired products in quantitative yields in the presence of variously substituted starting materials. In addition, the [...] Read more.
The gold-catalyzed cyclization of 2,2-bis(3-arylprop-2-yn1-yl)malonic acid has been proposed as an efficient approach to substituted 3,8-dibenzyl-2,7-dioxaspiro[4.4]nonane-1,6-diones. The reaction proceeds smoothly in mild reaction conditions to give the desired products in quantitative yields in the presence of variously substituted starting materials. In addition, the synthesis of γ-arylidene spirobislactone bearing different substituents on the two aromatic rings has been achieved. This kind of compound could be of great interest in pharmaceutical science given the widespread presence of this scaffold in bioactive natural and synthetic products. Full article
Show Figures

Figure 1

19 pages, 3028 KB  
Article
Main Determinants Affecting the Antiproliferative Activity of Stilbenes and Their Gut Microbiota Metabolites in Colon Cancer Cells: A Structure–Activity Relationship Study
by Antonio González-Sarrías, Juan Carlos Espín-Aguilar, Salvador Romero-Reyes, Julio Puigcerver, Mateo Alajarín, José Berná, María Victoria Selma and Juan Carlos Espín
Int. J. Mol. Sci. 2022, 23(23), 15102; https://doi.org/10.3390/ijms232315102 - 1 Dec 2022
Cited by 20 | Viewed by 2779
Abstract
trans-Resveratrol can be catabolized by the gut microbiota to dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, and 4-hydroxydibenzyl. These metabolites can reach relevant concentrations in the colon. However, not all individuals metabolize RSV equally, as it depends on their RSV gut microbiota metabotype (i.e., lunularin producers [...] Read more.
trans-Resveratrol can be catabolized by the gut microbiota to dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, and 4-hydroxydibenzyl. These metabolites can reach relevant concentrations in the colon. However, not all individuals metabolize RSV equally, as it depends on their RSV gut microbiota metabotype (i.e., lunularin producers vs. non-producers). However, how this microbial metabolism affects the cancer chemopreventive activity of stilbenes and their microbial metabolites is poorly known. We investigated the structure–antiproliferative activity relationship of dietary stilbenes, their gut microbial metabolites, and various analogs in human cancer (Caco-2 and HT-29) and non-tumorigenic (CCD18-Co) colon cells. The antiproliferative IC50 values of pterostilbene, oxy-resveratrol, piceatannol, resveratrol, dihydroresveratrol, lunularin, 3,4′-dihydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 4-hydroxy-trans-stilbene, 4-hydroxydibenzyl, 3-hydroxydibenzyl, and 4-trans-stilbenemethanol were calculated. IC50 values were correlated with 34 molecular characteristics by bi- and multivariate analysis. Little or no activity on CCD18-Co was observed, while Caco-2 was more sensitive than HT-29, which was explained by their different capacities to metabolize the compounds. Caco-2 IC50 values ranged from 11.4 ± 10.1 μM (4-hydroxy-trans-stilbene) to 73.9 ± 13.8 μM (dihydropinosylvin). In HT-29, the values ranged from 24.4 ± 11.3 μM (4-hydroxy-trans-stilbene) to 96.7 ± 6.7 μM (4-hydroxydibenzyl). At their IC50, most compounds induced apoptosis and arrested the cell cycle at the S phase, pterostilbene at G2/M, while 4-hydroxy-trans-stilbene and 3,4′-dihydroxy-trans-stilbene arrested at both phases. Higher Connolly values (larger size) hindered the antiproliferative activity, while a lower pKa1 enhanced the activity in Caco-2, and higher LogP values (more hydrophobicity) increased the activity in HT-29. Reducing the styrene double bond in stilbenes was the most critical feature in decreasing the antiproliferative activity. These results (i) suggest that gut microbiota metabolism determines the antiproliferative effects of dietary stilbenes. Therefore, RSV consumption might exert different effects in individuals depending on their gut microbiota metabotypes associated with RSV metabolism, and (ii) could help design customized drugs with a stilbenoid and (or) dibenzyl core against colorectal cancer. Full article
Show Figures

Graphical abstract

Back to TopTop