Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Procedure for the Screening of Optimal Catalyst, Temperature and Additive for the Gold (I)-Catalyzed Synthesis of 3,8-Dimethylene-2,7-dioxaspiro[4.4]nonane-1,6-diones 5
3.3. Procedures for the Synthesis of Stating Materials
3.4. Typical Procedure for the Preparation of 2,2-Bis(3-phenylprop-2-yn-1-yl)malonate (8a)
3.5. Typical Procedure for the Preparation of Diethyl 2-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (8d)
3.6. General Procedure for the Synthesis of 3,8-Dimethylenespiro[4.4]nonane-1,6-diones (5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chupakhin, E.; Babich, O.; Prosekov, A.; Asyakina, L.; Krasavin, M. Spirocyclic Motifs in Natural Products. Molecules 2019, 24, 4165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintavalla, A. Spirolactones: Recent Advances in Natural Products, Bioactive Compounds and Synthetic Strategies. Curr. Med. Chem. 2018, 25, 917–962. [Google Scholar] [CrossRef]
- Wu, J.-W.; Tang, C.; Ke, C.-Q.; Yao, S.; Liu, H.-C.; Lin, L.-G.; Ye, Y. Dicarabrol A, dicarabrone C and dipulchellin A, unique sesquiterpene lactone dimers from Carpesium abrotanoides. RSC Adv. 2017, 7, 4639–4644. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, F.U.; Roberts, C.D.; Abadi, A.D.M.; Griffith, R.C.; Laivers, M.R.; Slobodov, I.; Rai, R. N-(5-Membered Aromatic Ring)-Amido Anti-Viral Compounds. U.S. Patent US2007265265A1, 21 June 2007. [Google Scholar]
- Andersonc, A.G. Preparation and Use of Gamma-Butyrolactones as Cross-Linking Agents. U.S. Patent 6423850B1, 23 July 2002. [Google Scholar]
- Tiecco, M.; Tingoli, M.; Testaferri, L.; Bartoli, D. Simple Synthesis of γ-Lactones from Olefinic Nitriles. Synth. Commun. 1989, 19, 2817–2824. [Google Scholar] [CrossRef]
- Kochikyan, T.V.; Samvelyan, M.A.; Arutyunyan, V.S.; Avetisyan, A.A. Synthesis and Some Transformations of Ethyl 5-Alkoxymethyl-3-(2-methyl-3-oxobutyl)-2-oxotetrahydrofuran-3-carboxylates. Russ. J. Org. Chem. 2003, 39, 1329–1333. [Google Scholar] [CrossRef]
- Ghochikyan, T.V.; Muzalevskiy, V.M.; Samvelyan, M.A.; Galstyan, A.S.; Nenajdenko, V.G. Efficient synthesis of triazole-containing spiro dilactones. Mendeleev Commun. 2016, 26, 11–13. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Ghochikyan, T.V.; Spinelli, D.; Galstyan, A.S.; Geronikaki, A.; Samvelyan, M.A.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis of novel 1,2,3-triazole-based hybrids via click reactions. Arkivoc 2021, 2022, 7–21. [Google Scholar] [CrossRef]
- Roland, J.R.; Little, E.L.; Winberg, H.E. Bis(2-bromoalkyl)malononitriles by Addition of Dibromomalononitrile to Alkenes. J. Org. Chem. 1963, 28, 2809–2811. [Google Scholar] [CrossRef]
- Kotha, S.; Dipak, M.K.; Mobin, S.M. Serendipitous and acid catalyzed synthesis of spirolactones. Tetrahedron 2011, 67, 4616–4619. [Google Scholar] [CrossRef]
- Toshimitsu, A.; Aoai, T.; Owada, H.; Uemura, S.; Okano, M. Phenylselenenyl chloride in acetonitrile-water: A highly convenient reagent for hydroxyselenation of olefins and preparation of cyclic ethers from dienes. Tetrahedron 1985, 41, 5301–5306. [Google Scholar] [CrossRef]
- Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M. Phenylselenenyl chloride as a reagent for the facile preparation of cyclic ethers from diolefins. Tetrahedron Lett. 1980, 21, 1533–1536. [Google Scholar] [CrossRef]
- Malmedy, F.; Wirth, T. Cyclization of Malonate Derivatives with Iodine(III) Reagents. Eur. J. Org. Chem. 2017, 2017, 786–789. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.P.; Lloyd-Jones, G.C. Triflic Acid Mediated Dealkylative Lactonisation via NMR-Observable Alkyloxonium Intermediates. Eur. J. Org. Chem. 2009, 2009, 516–524. [Google Scholar] [CrossRef]
- Fairlamb, I.J.S.; Grant, S.; Tommasi, S.; Lynam, J.M.; Bandini, M.; Dong, H.; Lin, Z.; Whitwood, A.C. Phosphinite Ligand Effects in Palladium(II)-Catalysed Cycloisomerisation of 1,6-Dienes: Bicyclo[3.2.0]heptanyl Diphosphinite (B[3.2.0]DPO) Ligands Exhibit Flexible Bite Angles, an Effect Derived from Conformational Changes (exo-or endo-Envelope) in the Bicyclic Ligand Scaffold. Adv. Synth. Catal. 2006, 348, 2515–2530. [Google Scholar]
- Angelini, T.; Fringuelli, F.; Lanari, D.; Pizzo, F.; Vaccaro, L. A catalytic approach to the base-promoted reaction of epoxides with activated methylenes. Tetrahedron Lett. 2010, 51, 1566–1569. [Google Scholar] [CrossRef]
- Ito, N.; Nishino, H.; Kurosawa, K. The Reaction of Olefins with Malonic Acid in the Presence of Manganese(III) Acetate. Bull. Chem. Soc. Jpn. 1983, 56, 3527–3528. [Google Scholar] [CrossRef] [Green Version]
- Fristad, W.E.; Hershberger, S.S. Manganese(III)-mediated spirodilactonization. J. Org. Chem. 1985, 50, 1026–1031. [Google Scholar] [CrossRef]
- Fristad, W.E.; Peterson, J.R.; Ernst, A.B. Manganese(III). gamma.-lactone annulation with substituted acids. J. Org. Chem. 1985, 50, 3143–3148. [Google Scholar] [CrossRef]
- Adrio, L.A.; Quek, L.S.; Taylor, J.G.; Kuok Hii, K. Copper-catalysed intramolecular O–H addition to unactivated alkenes. Tetrahedron 2009, 65, 10334–10338. [Google Scholar] [CrossRef]
- Yang, C.-G.; Reich, N.W.; Shi, Z.; He, C. Intramolecular Additions of Alcohols and Carboxylic Acids to Inert Olefins Catalyzed by Silver(I) Triflate. Org. Lett. 2005, 7, 4553–4556. [Google Scholar] [CrossRef]
- Dorel, R.; Echavarren, A.M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. [Google Scholar] [CrossRef] [PubMed]
- Teles, J.H.; Brode, S.; Chabanas, M. Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. Angew. Chem. Int. Ed. Engl. 1998, 37, 1415–1418. [Google Scholar] [CrossRef]
- Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Highly Efficient AuI-Catalyzed Hydration of Alkynes. Angew. Chem. Int. Ed. Engl. 2002, 41, 4563–4565. [Google Scholar] [CrossRef]
- Arcadi, A.; Ciogli, A.; Fabrizi, G.; Fochetti, A.; Franzini, R.; Ghirga, F.; Goggiamani, A.; Iazzetti, A. Synthesis of pyrano[2,3-f]chromen-2-ones vs. pyrano[3,2-g]chromen-2-ones through site controlled gold-catalyzed annulations. Org. Biomol. Chem. 2019, 17, 10065–10072. [Google Scholar] [CrossRef]
- Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A. Construction of the 1,5-Benzodiazepine Skeleton from o-Phenylendiamine and Propargylic Alcohols via a Domino Gold-Catalyzed Hydroamination/Cyclization Process. Org. Lett. 2016, 18, 3511–3513. [Google Scholar] [CrossRef]
- Cera, G.; Piscitelli, S.; Chiarucci, M.; Fabrizi, G.; Goggiamani, A.; Ramón, R.S.; Nolan, S.P.; Bandini, M. One-Pot Gold-Catalyzed Synthesis of Azepino[1,2-a]indoles. Angew. Chem. Int. Ed. 2012, 51, 9891–9895. [Google Scholar] [CrossRef]
- Arcadi, A.; Calcaterra, A.; Fabrizi, G.; Fochetti, A.; Goggiamani, A.; Iazzetti, A.; Marrone, F.; Marsicano, V.; Mazzoccanti, G.; Serraiocco, A. Synthesis of 4-Substituted-1,2-Dihydroquinolines by Means of Gold-Catalyzed Intramolecular Hydroarylation Reaction of N-Ethoxycarbonyl-N-Propargylanilines. Molecules 2021, 26, 3366. [Google Scholar] [CrossRef]
- Arcadi, A.; Fabrizi, G.; Fochetti, A.; Franzini, R.; Ghirga, F.; Goggiamani, A.; Iazzetti, A.; Marrone, F.; Serraiocco, A. Synthesis of Polycyclic Chromene Cores through Gold (I)-Catalyzed Intramolecular Hydroarylation Reaction (IMHA). Eur. J. Org. Chem. 2021, 2021, 1676–1687. [Google Scholar] [CrossRef]
- Chiarucci, M.; Locritani, M.; Cera, G.; Bandini, M. Gold(I)-catalyzed synthesis of γ-vinylbutyrolactones by intramolecular oxaallylic alkylation with alcohols. Beilstein J. Org. Chem. 2011, 7, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Ye, L.; Wu, W.; Jiang, H. N-Heterocyclic carbene–gold(I)-catalyzed carboheterofunctionalization of alkenes with arylboronic acids. Tetrahedron 2013, 69, 10375–10383. [Google Scholar] [CrossRef]
- Fernández, G.; Bernardo, L.; Villanueva, A.; Pleixats, R. Gold nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the synthesis of propargylamines and the cycloisomerization of γ-alkynoic acids. New J. Chem. 2020, 44, 6130–6141. [Google Scholar] [CrossRef]
- Lin, B.; Yang, T.; Zhang, D.; Zhou, Y.; Wu, L.; Qiu, J.; Chen, G.-Q.; Che, C.-M.; Zhang, X. Gold-Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angew. Chem. Int. Ed. 2022, 61, e202201739. [Google Scholar]
- Lin, B.; Chen, G.; Zhi, Z.; Zhang, X. Application of Phosphine-Nitrogen Ligands and Complexes Thereof in Catalysis of Asymmetric Reactions. CN Patent CN113527360A, 19 September 2021. [Google Scholar]
- König, N.F.; Al Ouahabi, A.; Poyer, S.; Charles, L.; Lutz, J.-F. A Simple Post-Polymerization Modification Method for Controlling Side-Chain Information in Digital Polymers. Angew. Chem. Int. Ed. Engl. 2017, 56, 7297–7301. [Google Scholar] [CrossRef]
- Al Ouahabi, A.; Charles, L.; Lutz, J.-F. Synthesis of Non-Natural Sequence-Encoded Polymers Using Phosphoramidite Chemistry. J. Am. Chem. Soc. 2015, 137, 5629–5635. [Google Scholar] [CrossRef]
Entry | Catalyst | Base | Solvent | T (°C) | t (h) | Yield 5a (%) |
---|---|---|---|---|---|---|
1 | PdCl2(CH3CN)2 | K2CO3 c | MeCN | 80 | 24 | - |
2 | NaAuCl4 | - | EtOH | 100 | 12 | - |
3 | JohnPhosAu (MeCN)SbF6 | - | DCM | 80 | 1 | 90 |
4 | JohnPhosAu (MeCN)SbF6 d | - | DCM | 40 | 1 | 99 |
5 | JohnPhosAu (MeCN)SbF6 d | - | DCM | rt | 1 | 100 |
Entry | Ar1 | Ar2 | t (h) | Yield of 5 (%) |
---|---|---|---|---|
1 | Ph | Ph | 1 | 5a 100 |
2 | H | H | 1 | 5b 100 |
3 | 4-OCH3-C6H4- | 4-OCH3-C6H4- | 0.5 | 5c 96 |
4 | 3-OCH3-C6H4- | Ph- | 1 | 5d 98 |
5 | Ph- | 4-COCH3-C6H4- | 0.5 | 5e 99 |
6 | 4-CH3-C6H4 | 4-CH3-C6H4- | 1 | 5f 98 |
7 | 1-naphtyl | 1-naphtyl | 1 | 5g 100 |
8 | 3-OCH3-C6H4- | 3-OCH3-C6H4- | 1 | 5h 97 |
9 | 4-Br-3-F-C6H3- | 4-Br-3-F-C6H2- | 0.5 | 5i 100 |
10 | 4-Cl-C6H4- | 4-Cl-C6H4- | 1 | 5j 100 |
11 | 4-Br-C6H4- | 4-Br-C6H4- | 1 | 5k 99 |
12 | 2-CH3,5-NO2-C6H3- | 2-CH3,5-NO2-C6H3- | 1 | 5l 98 |
13 | 4-Cl-C6H4- | 4-OCH3-C6H4- | 1 | 5m 97 |
14 | 2-OCH3-C6H4- | 2-OCH3-C6H4- | 1 | 5n 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iazzetti, A.; Allevi, D.; Calcaterra, A.; Fabrizi, G.; Goggiamani, A.; Mazzoccanti, G.; Sferrazza, A.; Verdiglione, R.; Vergine, V. Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones. Molecules 2023, 28, 300. https://doi.org/10.3390/molecules28010300
Iazzetti A, Allevi D, Calcaterra A, Fabrizi G, Goggiamani A, Mazzoccanti G, Sferrazza A, Verdiglione R, Vergine V. Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones. Molecules. 2023; 28(1):300. https://doi.org/10.3390/molecules28010300
Chicago/Turabian StyleIazzetti, Antonia, Dario Allevi, Andrea Calcaterra, Giancarlo Fabrizi, Antonella Goggiamani, Giulia Mazzoccanti, Alessio Sferrazza, Rosanna Verdiglione, and Valeria Vergine. 2023. "Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones" Molecules 28, no. 1: 300. https://doi.org/10.3390/molecules28010300
APA StyleIazzetti, A., Allevi, D., Calcaterra, A., Fabrizi, G., Goggiamani, A., Mazzoccanti, G., Sferrazza, A., Verdiglione, R., & Vergine, V. (2023). Highly Efficient and Mild Gold (I) Catalyzed Synthesis of 3,8-Diarylidene-2,7-dioxaspiro[4.4]nonane-1,6-diones. Molecules, 28(1), 300. https://doi.org/10.3390/molecules28010300