Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (848)

Search Parameters:
Keywords = diabetic wound healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1581 KiB  
Article
Combining Topical Oxygen and Negative-Pressure Wound Therapy: New Insights from a Pilot Study on Chronic Wound Treatment
by Bartosz Molasy, Mateusz Frydrych, Rafał Kuchciński and Stanisław Głuszek
J. Clin. Med. 2025, 14(15), 5564; https://doi.org/10.3390/jcm14155564 - 7 Aug 2025
Abstract
Background: Chronic wounds are a growing clinical challenge due to their prolonged healing time and associated healthcare burden. Combined therapeutic approaches, including topical oxygen therapy (TOT) and negative-pressure wound therapy (NPWT), have shown promise in enhancing wound healing. This pilot exploratory study aimed [...] Read more.
Background: Chronic wounds are a growing clinical challenge due to their prolonged healing time and associated healthcare burden. Combined therapeutic approaches, including topical oxygen therapy (TOT) and negative-pressure wound therapy (NPWT), have shown promise in enhancing wound healing. This pilot exploratory study aimed to assess the clinical effectiveness of combined TOT and NPWT in chronic wound treatment and to explore the prognostic value of selected laboratory and thermographic markers. Methods: Eighteen patients with chronic wounds due to type 2 diabetes mellitus or chronic venous insufficiency were treated with either TOT alone (control group) or TOT combined with NPWT (intervention group). Wound characteristics, thermographic data, and laboratory parameters (NLR, MLR, PLR, CRP, and total protein) were collected at baseline and during therapy. The primary endpoints were the total treatment duration and complete wound closure. Statistical analyses were exploratory and used non-parametric tests, correlation analyses, and simple linear regression. Results: Ulcer duration was significantly associated with the wound surface area. Lower serum total protein levels correlated negatively with ulcer duration, wound size, and granulation tissue area. A significant reduction in treatment duration was observed in the intervention group compared to the controls. One strong correlation was found between MLR and peripheral wound temperature on day 7 in the control group. No significant group differences were observed in wound size or thermographic measures after one week of treatment. Conclusions: Combining TOT and NPWT may reduce treatment duration in chronic wound management. Selected laboratory and thermographic markers show promise as prognostic tools. These exploratory findings require confirmation in larger, randomized trials. Full article
(This article belongs to the Special Issue New Advances in Wound Healing and Skin Wound Treatment)
Show Figures

Figure 1

24 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 - 4 Aug 2025
Viewed by 127
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

19 pages, 10625 KiB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 310
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 328 KiB  
Article
The Role of Metabolic Disorders and Laboratory Abnormalities in Wound Healing and Recovery in Geriatric and Non-Geriatric Orthopedic Patients in Poland—Prospective Research
by Robert Węgłowski, Bartosz Borowski, Anna Bronikowska, Piotr Piech, Grzegorz Staśkiewicz and Jaromir Jarecki
J. Clin. Med. 2025, 14(15), 5317; https://doi.org/10.3390/jcm14155317 - 28 Jul 2025
Viewed by 282
Abstract
Objectives: This study sought to assess the impact of diabetes and hypertension on wound healing and recovery in orthopedic patients, with an emphasis on laboratory correlations. Materials and Methods: This study included 67 orthopedic patients, divided into a geriatric group (n = 49, [...] Read more.
Objectives: This study sought to assess the impact of diabetes and hypertension on wound healing and recovery in orthopedic patients, with an emphasis on laboratory correlations. Materials and Methods: This study included 67 orthopedic patients, divided into a geriatric group (n = 49, ≥65 years) and a control group (n = 18). Clinical and laboratory assessments were performed at admission and discharge. Data were analyzed statistically. Results: Geriatric patients showed a higher triglyceride glucose-body mass index (TyG-BMI), glucose, cholesterol, C-reactive protein (CRP), interleukin-6 (IL-6), and leukocytes and lower hemoglobin and platelets (PLTs), with poorer healing and well-being. Elevated CRP, IL-6, and urea and decreased protein and hemoglobin persisted in this group. Diabetes improved outcomes in older adults, while hypertension worsened them in younger patients. Favorable outcomes correlated with higher triglycerides, fibrinogen, hemoglobin, and red blood cells (RBCs), while they did not correlate with elevated CRP, IL-6, leptin, urea, creatinine, and white blood cells (WBCs). Conclusions: Key predictors of healing and well-being included CRP, hemoglobin, RBC, and hematocrit in older patients and hypertension, CRP, hemoglobin, and leptin in younger individuals. Age-specific metabolic and inflammatory profiles influence recovery trajectories and may be used to predict problems in both recovery and patients’ well-being. Further research is required to better understand the correlations between these factors. Full article
(This article belongs to the Section Orthopedics)
21 pages, 3365 KiB  
Article
Integrating Regenerative Medicine in Chronic Wound Management: A Single-Center Experience
by Stefania-Mihaela Riza, Andrei-Ludovic Porosnicu, Patricia-Alina Cepi, Sorin Viorel Parasca and Ruxandra-Diana Sinescu
Biomedicines 2025, 13(8), 1827; https://doi.org/10.3390/biomedicines13081827 - 25 Jul 2025
Viewed by 307
Abstract
Background: Chronic wounds represent a persistent clinical challenge and impose a considerable burden on healthcare systems. These lesions often require multidisciplinary management due to underlying factors such as microbial colonization, impaired immunity, and vascular insufficiencies. Regenerative therapies, particularly autologous approaches, have emerged [...] Read more.
Background: Chronic wounds represent a persistent clinical challenge and impose a considerable burden on healthcare systems. These lesions often require multidisciplinary management due to underlying factors such as microbial colonization, impaired immunity, and vascular insufficiencies. Regenerative therapies, particularly autologous approaches, have emerged as promising strategies to enhance wound healing. Adipose tissue-derived stem cells (ADSCs) and platelet-rich plasma (PRP) may improve outcomes through paracrine effects and growth factor release. Methods: A prospective observational study was conducted on 31 patients with chronic wounds that were unresponsive to conservative treatment for over six weeks. Clinical and photographic evaluations were employed to monitor healing. All patients underwent surgical debridement, with adjunctive interventions—negative pressure wound therapy, grafting, or flaps—applied as needed. PRP infiltration and/or autologous adipose tissue transfer were administered based on wound characteristics. Wound area reduction was the primary outcome measure. Results: The cohort included 17 males and 14 females (mean age: 59 years). Etiologies included venous insufficiency (39%), diabetes mellitus (25%), arterial insufficiency (16%), and trauma (16%). Most lesions (84%) were located on the lower limbs. All patients received PRP therapy; five underwent combined PRP and fat grafting. Over the study period, 64% of the patients exhibited >80% wound area reduction, with complete healing in 48.3% and a mean healing time of 49 days. Conclusions: PRP therapy proved to be a safe, effective, and adaptable treatment, promoting substantial healing in chronic wounds. Autologous adipose tissue transfer did not confer additional benefit. PRP may warrant inclusion in national treatment protocols. Full article
(This article belongs to the Special Issue Wound Healing: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

20 pages, 32329 KiB  
Article
D-Tryptophan Promotes Skin Wound Healing via Extracellular Matrix Remodeling in Normal and Diabetic Models
by Dawit Adisu Tadese, James Mwangi, Brenda B. Michira, Yi Wang, Kaixun Cao, Min Yang, Mehwish Khalid, Ziyi Wang, Qiumin Lu and Ren Lai
Int. J. Mol. Sci. 2025, 26(15), 7158; https://doi.org/10.3390/ijms26157158 - 24 Jul 2025
Viewed by 289
Abstract
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. [...] Read more.
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. Among these, D-amino acids such as D-tryptophan (D-Trp) have emerged as key regulators of cellular processes; however, their therapeutic potential in diabetic wounds remains largely unexplored. Here, we investigate the therapeutic potential of D-Trp in streptozotocin (STZ)-induced diabetic mice, comparing it with phosphate-buffered saline (PBS) controls and vascular endothelial growth factor (VEGF) as a positive control. Wound healing, inflammation, and histopathology were assessed. Protein and gene expression were analyzed via Western blot and RT-qPCR, respectively. Biolayer interferometry (BLI) measured the binding of D-Trp to hypoxia-inducible factor-1α (HIF-1α). D-Trp accelerated wound healing by modulating extracellular matrix (ECM) remodeling, signaling, and apoptosis. It upregulated matrix metalloproteinases (MMP1, MMP3, MMP-9), Janus kinase 2 (JAK2), and mitogen-activated protein kinase (MAPK) proteins while reducing pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], IL-6). D-Trp also suppressed caspase-3 and enhanced angiogenesis through HIF-1α activation. These findings suggest that D-Trp promotes healing by boosting ECM turnover, reducing inflammation, and activating MAPK/JAK pathways. Thus, D-Trp is a promising therapeutic for diabetic wounds. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
Curcumin and Papain-Loaded Liposomal Natural Latex Dressings with Phototherapy: A Synergistic Approach to Diabetic Wound Healing
by Franciéle M. Silva, Jaqueline R. Silva, Wellington Rodrigues, Breno A. S. M. Sousa, Thamis F. S. Gomes, Mario F. F. Rosa, Suélia S. R. F. Rosa and Marcella L. B. Carneiro
Pharmaceuticals 2025, 18(7), 1067; https://doi.org/10.3390/ph18071067 - 20 Jul 2025
Viewed by 526
Abstract
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated [...] Read more.
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated with liposome-encapsulated curcumin and papain. The therapeutic efficacy of these composite dressings, in combination with red light-emitting diode (LED) phototherapy, was evaluated in a diabetic rat model. NLBs were produced by blending natural latex with multilamellar liposomes containing either curcumin, papain, or both. In vivo wound healing was assessed by applying the biomembranes to the dorsal lesions and administering red LED irradiation (650 ± 20 nm, 10 min every 48 h) over 11 days. Results: Fourier transform infrared spectroscopy (FTIR) confirmed that the integration of liposomes did not induce significant chemical alterations to the latex matrix. The treated diabetic rats exhibited enhanced wound contraction, with the curcumin and papain groups demonstrating up to 99% and 95% healing, respectively. Plasma fructosamine levels were significantly reduced (p < 0.05), indicating improved glycemic control. Conclusions: Combining NLBs with bioactive-loaded liposomes and phototherapy accelerated wound healing in diabetic rats. This multifunctional platform shows promise for the treatment of chronic wounds in diabetic patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

16 pages, 1159 KiB  
Article
SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies
by Gozde Cay, Myeounggon Lee, David G. Armstrong and Bijan Najafi
Sensors 2025, 25(14), 4490; https://doi.org/10.3390/s25144490 - 19 Jul 2025
Viewed by 587
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes, associated with high recurrence and amputation rates. Adherence to offloading devices is critical for wound healing but remains inadequately monitored in real-world settings. This study evaluates the SmartBoot edge-computing system—a wearable, real-time remote [...] Read more.
Diabetic foot ulcers (DFUs) are a serious complication of diabetes, associated with high recurrence and amputation rates. Adherence to offloading devices is critical for wound healing but remains inadequately monitored in real-world settings. This study evaluates the SmartBoot edge-computing system—a wearable, real-time remote monitoring solution integrating an inertial measurement unit (Sensoria Core) and smartwatch—for its validity in quantifying cadence and step count as digital biomarkers of frailty, and for detecting adherence. Twelve healthy adults wore two types of removable offloading boots (Össur and Foot Defender) during walking tasks at varied speeds; system outputs were validated against a gold-standard wearable and compared with staff-recorded adherence logs. Additionally, user experience was assessed using the Technology Acceptance Model (TAM) in healthy participants (n = 12) and patients with DFU (n = 81). The SmartBoot demonstrated high accuracy in cadence and step count across conditions (bias < 5.5%), with an adherence detection accuracy of 96% (Össur) and 97% (Foot Defender). TAM results indicated strong user acceptance and perceived ease of use across both cohorts. These findings support the SmartBoot system’s potential as a valid, scalable solution for real-time remote monitoring of adherence and mobility in DFU management. Further clinical validation in ongoing studies involving DFU patients is underway. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 578
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

14 pages, 895 KiB  
Review
On the Merits of Targeted and Individualized Physical Exercise in Persons with Diabetic Foot Disease—From Controversies to Consensus
by Edyta Sutkowska, Anna Korzon-Burakowska and Karolina Biernat
Biomedicines 2025, 13(7), 1752; https://doi.org/10.3390/biomedicines13071752 - 17 Jul 2025
Viewed by 409
Abstract
Exercise is a cornerstone of diabetes management, but the onset of diabetic foot disease (DFD) can significantly limit its implementation. Meanwhile, physical activity (PA) has been shown to reduce the risk of developing DFD through various mechanisms, and emerging evidence also supports the [...] Read more.
Exercise is a cornerstone of diabetes management, but the onset of diabetic foot disease (DFD) can significantly limit its implementation. Meanwhile, physical activity (PA) has been shown to reduce the risk of developing DFD through various mechanisms, and emerging evidence also supports the role of exercise in managing the active phase of the condition. Appropriately tailored PA offers both local and systemic benefits—even in clinical contexts where foot offloading is recommended. The research indicates that selected exercises can be safely incorporated into care plans, providing therapeutic effects without compromising wound healing. Drawing from current knowledge based on basic science, clinical research, and relatively general recommendations, this article summarizes the local and systemic effects of properly selected exercises in patients with DFD. It explains the underlying mechanisms and briefly discusses practical examples, integrating the most recently published findings. Full article
Show Figures

Figure 1

11 pages, 255 KiB  
Article
Effect of Pandemic on the Clinical Status of Patients Admitted to Hospital for Diabetic Foot: A Retrospective Study
by Seda Pehlivan, Hülya Ek, Semure Zengi, Suzan Adalı, Özen Öz Gül, Soner Cander, Canan Ersoy and Erdinç Ertürk
J. Clin. Med. 2025, 14(14), 5067; https://doi.org/10.3390/jcm14145067 - 17 Jul 2025
Viewed by 239
Abstract
Background/Objectives: Diabetic foot (DF) is among the leading causes of diabetes-related disability. It is important to maintain regular follow-up and patient education in the prevention and treatment of DF ulcers. In extraordinary situations such as a pandemic, there are disruptions in regular [...] Read more.
Background/Objectives: Diabetic foot (DF) is among the leading causes of diabetes-related disability. It is important to maintain regular follow-up and patient education in the prevention and treatment of DF ulcers. In extraordinary situations such as a pandemic, there are disruptions in regular clinical follow-up and patient education, and the effects of this disruption need to be investigated. The aim of this study was to investigate the impact of the pandemic on the clinical condition of patients hospitalised for DF. Methods: Patients were divided into two groups according to the date of admission to the clinic: the pre-pandemic (1 January 2019–11 March 2020) and the pandemic period (12 March 2020–1 June 2021). Comparisons were made between the two groups in terms of DF data and clinical parameters. Data were analysed with SPSS using chi-square, Student’s t-test and Mann–Whitney U analysis. Results: As a result of the screening, data from 125 DF patients (45 pre-pandemic and 80 pandemic) were collected. The DF stage, according to the Wagner classification, was significantly more advanced in patients during the pandemic period (p = 0.015). However, the time between the onset of symptoms and hospitalisation was longer for patients during the pandemic period (p = 0.035). When analysing treatment outcomes, the rate of wound healing was found to be lower (62.2% vs. 30%), and the rate of transtibial amputation was higher (11.2% vs. 20%) during the pandemic period (p = 0.002). Conclusions: This study found that the number of patients hospitalised for DF increased during the pandemic period, as did the severity of the wound, length of admission and radical treatment interventions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
20 pages, 1063 KiB  
Review
ANGPTL4: A Comprehensive Review of 25 Years of Research
by Pedro Ramos, Qiongyu Shi, Jeremy Kleberg, Chandra K. Maharjan, Weizhou Zhang and Ryan Kolb
Cancers 2025, 17(14), 2364; https://doi.org/10.3390/cancers17142364 - 16 Jul 2025
Viewed by 678
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved [...] Read more.
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved in many biological processes, including glucose and lipid metabolism, angiogenesis, and wound healing, with implications in diseases such as type 2 diabetes, cardiovascular (e.g., atherosclerosis) and renal diseases, and cancer. For instance, ANGPTL4 is upregulated in several cancers, including renal cell carcinoma, breast cancer, and colorectal cancer. Interestingly, ANGPTL4 has been shown to exhibit both pro-tumor—promoting tumor growth, cell survival, angiogenesis and metastasis—as well as anti-tumor activities, underscoring its complex roles in cancer biology. This review examines the comprehensive biological functions of ANGPTL4 and its contributions to disease mechanisms with a specific emphasis on cancer, as well as its potential as a therapeutic target across different types of human cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

7 pages, 201 KiB  
Brief Report
The Post-Healing Follow-Up of Diabetic Foot Ulcers by a Multidisciplinary Team to Reduce Their Recurrence: An Observational Retrospective Study
by Marie Bouly, Francois-Xavier Laborne, Caroline Tourte, Elodie Henry, Alfred Penfornis and Dured Dardari
J. Clin. Med. 2025, 14(14), 4975; https://doi.org/10.3390/jcm14144975 - 14 Jul 2025
Viewed by 325
Abstract
Background: Diabetic foot disease is a public health problem. The challenges of its management lie in the complexity of wound healing and, in particular, the high rate of lesion recurrence. Objectives: The primary objective of the study was to evaluate whether [...] Read more.
Background: Diabetic foot disease is a public health problem. The challenges of its management lie in the complexity of wound healing and, in particular, the high rate of lesion recurrence. Objectives: The primary objective of the study was to evaluate whether optimized post-healing follow-up by a multidisciplinary team can reduce the recurrence rate of foot ulcers in people living with diabetes. The secondary objectives were to assess patient needs in terms of hospitalization for recurrence, the number of amputations, pedicure care, and the use of adapted footwear. Participants: The study included 129 patients with diabetes presenting a healed foot ulcer. A total of 38 patients underwent an annual post-healing follow-up visit with a multidisciplinary team (optimized follow-up), while 91 had a visit every 2 years (minimum follow-up). Results: Of the 38 patients with optimal follow-up, 8 presented a wound recurrence (21.1%) compared with 38 out of 91 patients (41.8%) receiving minimum follow-up. The recurrence rate decreased significantly between the two groups (p < 0.05). The use of adapted shoes was also significantly better in the group with optimized follow-up (p = 0.02). Conclusions: Regular post-healing follow-up with a multidisciplinary team seems to be a contributing factor to reducing the recurrence of diabetic foot ulcers among people living with diabetes. Full article
17 pages, 7402 KiB  
Article
Multilayered Tissue Assemblies Through Tuneable Biodegradable Polyhydroxyalkanoate Polymer (Mesh)-Reinforced Organ-Derived Extracellular Matrix Hydrogels
by Vasilena E. Getova, Alex Pascual, Rene Dijkstra, Magdalena Z. Gładysz, Didi Ubels, Malgorzata K. Wlodarczyk-Biegun, Janette K. Burgess, Jeroen Siebring and Martin C. Harmsen
Gels 2025, 11(7), 539; https://doi.org/10.3390/gels11070539 - 11 Jul 2025
Viewed by 472
Abstract
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [...] Read more.
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3–5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants. Full article
Show Figures

Graphical abstract

Back to TopTop