Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = deuteration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2666 KB  
Article
Experimental and Theoretical Studies on the Kinetics and Mechanism of the C3H8/C3D8 + Cl Reaction
by Łukasz Fojcik, Grzegorz Mierzwa, Zdzisław Latajka and Dariusz Stanisław Sarzyński
Molecules 2025, 30(22), 4406; https://doi.org/10.3390/molecules30224406 - 14 Nov 2025
Abstract
An experimental and theoretical investigation of the reaction between chlorine atoms and propane/deuterated propane (C3H8/C3D8) was performed. The experimental work aimed to determine absolute and site-specific rate constants for hydrogen and deuterium abstraction in the [...] Read more.
An experimental and theoretical investigation of the reaction between chlorine atoms and propane/deuterated propane (C3H8/C3D8) was performed. The experimental work aimed to determine absolute and site-specific rate constants for hydrogen and deuterium abstraction in the Cl + C3H8/C3D8 system. Measurements were conducted using the relative rate method at three temperatures between 298 and 387 K. Total rate constants for H/D abstraction by chlorine, as well as individual rate constants for abstraction from primary and secondary carbon sites, were obtained. The kinetic data for H abstraction agree well with previously reported literature values, confirming the reliability of the experimental approach. Notably, rate constants for the C3D8 + Cl reaction were determined for the first time, and the consistency of these results supports the reliability of the newly derived kinetic parameters. In the theoretical part of the study, hydrogen/deuterium abstraction from propane by atomic chlorine was analyzed within an atmospheric-chemistry context to clarify temperature dependence and site selectivity. Stationary points (SC, TS, PC, reactants, products) were optimized at MP2/aug-cc-pVDZ and verified by harmonic frequencies and intrinsic reaction-coordinate analyses. Eyring transition-state theory yielded 298–550 K rate constants with activation free energies referenced to SC. Our calculations indicate entrance-channel complex formation and effectively barrierless progress for most pathways; a small barrier appears only for RD1′. L-parameter evaluation classifies TS2 as reactant-like, and branching ratios identify –CH2– abstraction (RX2) as dominant. These findings align with the experimental data. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

10 pages, 2438 KB  
Article
Atomically Dispersed Rhodium on TiO2 for Tandem Hydrogenation–H/D Exchange of Cinnamic Acid
by Fatima Asif, Shu-Xian Li, Xiang-Ting Min, Wen-Ting Zhang and Botao Qiao
Catalysts 2025, 15(11), 1014; https://doi.org/10.3390/catal15111014 - 29 Oct 2025
Viewed by 587
Abstract
An atomically dispersed rhodium on TiO2 catalyst enables a tandem process, combining hydrogenative reduction with α,β-hydrogen–deuterium exchange of cinnamic acid, in which D2O serves as the deuterium source. In contrast with previous reductive deuteration methods that yield [...] Read more.
An atomically dispersed rhodium on TiO2 catalyst enables a tandem process, combining hydrogenative reduction with α,β-hydrogen–deuterium exchange of cinnamic acid, in which D2O serves as the deuterium source. In contrast with previous reductive deuteration methods that yield only partially labeled 3-phenylpropanoic acids (Dα-inc.: ≤50%, Dβ-inc.: ≤50%), this heterogeneous system delivers near-quantitative deuterium incorporation (Dα-inc.: 94%, Dβ-inc.: 99%) under mild conditions, outperforming Rh nanoparticles and homogeneous Rh catalysts. Mechanistic studies indicate that α-C–H activation is the slowest transformation step within the overall process, owing to the exceptional C–H bond activation capability of the atomically dispersed catalyst; efficient α-C–H hydrogen–deuterium exchange is readily achieved. In addition, although catalyst recyclability is constrained by Rh aggregation, no Rh leaching is detected. This work provides a concise, operationally simple route to alkyl fully deuterated 3-phenylpropanoic acids (d4-PA) and showcases the application of an atomically dispersed catalyst in tackling challenging deuterium-labeling transformations. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in China: New Horizons and Recent Advances)
Show Figures

Figure 1

19 pages, 1418 KB  
Article
Development of the Direct Deuteration Method for Amino Acids and Characterization of Deuterated Tryptophan
by Chie Shibazaki, Haruki Sugiyama, Misaki Ueda, Takayuki Oku, Motoyasu Adachi, Zoë Fisher and Kazuhiro Akutsu-Suyama
Bioengineering 2025, 12(9), 981; https://doi.org/10.3390/bioengineering12090981 - 16 Sep 2025
Viewed by 1152
Abstract
Proteins and peptides are vital biomolecules, and deuterated amino acids are increasingly applied in areas such as drug discovery, metabolic tracing, and neutron scattering studies. In this study, we performed deuteration on all 20 proteinogenic amino acids, including their side chains, and established [...] Read more.
Proteins and peptides are vital biomolecules, and deuterated amino acids are increasingly applied in areas such as drug discovery, metabolic tracing, and neutron scattering studies. In this study, we performed deuteration on all 20 proteinogenic amino acids, including their side chains, and established efficient methods for 13 amino acids. Using a Pt/C-catalyzed hydrogen–deuterium exchange reaction, the reaction parameters were optimized to achieve the selective and stable incorporation of deuterium. In addition, the resulting deuterated compounds, focusing on tryptophan, were characterized in order to assess their physicochemical properties. Because the deuteration reaction caused significant racemization of amino acids, deuterated D/L-tryptophan was isolated using a chiral separation method. Deuterated tryptophan characterization studies confirmed that the photostability was markedly enhanced by deuteration, whereas the acid stability showed no clear isotopic effect. The X-ray crystal structure analyses revealed minimal changes upon the hydrogen-to-deuterium substitution. These results provide a robust platform for the supply of deuterated amino acids, facilitating their application in drug development, structural analysis, and creation of advanced functional biomaterials. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Deuterated Biomaterials)
Show Figures

Graphical abstract

15 pages, 1793 KB  
Article
Formation of Racemic Phases of Amino Acids by Liquid-Assisted Resonant Acoustic Mixing Monitored by Solid-State NMR Spectroscopy
by Leeroy Hendrickx, Calogero Quaranta, Emilian Fuchs, Maksim Plekhanov, Mirijam Zobel, Carsten Bolm and Thomas Wiegand
Molecules 2025, 30(18), 3745; https://doi.org/10.3390/molecules30183745 - 15 Sep 2025
Viewed by 587
Abstract
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball [...] Read more.
Mechanochemistry has become a fundamental method in various sciences including biology and chemistry. Despite its popularity, the mechanisms behind mechanochemically induced reactions are not very well understood. In previous work, we investigated molecular-recognition processes of molecules capable of forming racemic phases in ball mill devices. Solid-state nuclear magnetic resonance (solid-state NMR) was used as the key technique to analyze such events. We now extended this study and focused on mechanochemically induced racemic-phase formations of two representative amino acids, alanine and serine, in a resonant acoustic mixer. The data reveal the importance of adding small amounts of solvents (here water) to facilitate the underlying solid-state molecular-recognition processes. The role of water therein is further studied by deuterium magic-angle spinning (MAS) NMR experiments, also revealing that resonant acoustic mixing (RAM) enables efficient hydrogen to deuterium exchange in enantiopure serine, paving the way to deuterate organic compounds in the RAM device. Full article
(This article belongs to the Special Issue NMR and MRI in Materials Analysis: Opportunities and Challenges)
Show Figures

Figure 1

18 pages, 2070 KB  
Article
Structural Water Accommodation in Co3O4: A Combined Neutron and Synchrotron Radiation Diffraction and DFT Study
by Mariangela Longhi, Mauro Coduri, Paolo Ghigna, Davide Ceresoli and Marco Scavini
Inorganics 2025, 13(9), 288; https://doi.org/10.3390/inorganics13090288 - 27 Aug 2025
Viewed by 847
Abstract
Spinels like Co3O4 have acquired relevance because of their photocatalytic, electrocatalytic, optical and magnetic properties. In this context, we investigated the defect structure evolution of compounds synthetized using the nitrate precursor method and after annealing cycles at temperatures ranging from [...] Read more.
Spinels like Co3O4 have acquired relevance because of their photocatalytic, electrocatalytic, optical and magnetic properties. In this context, we investigated the defect structure evolution of compounds synthetized using the nitrate precursor method and after annealing cycles at temperatures ranging from 260 to 650 °C by means of thermogravimetric analysis (TGA), neutron powder diffraction (NPD), X-ray powder diffraction (XRPD) coupled to Pair Distribution Function (PDF) analysis, and Density Functional Theory (DFT) calculations. Deuterated and hydrogenated precursors were adopted to produce the samples for NPD and XRPD experiments, respectively. TGA measurements displayed weight losses, the extent of which increased on lowering the preparation annealing temperature, suggesting that the adopted wet synthesis introduces structural water in the sample. Both XRPD and NPD revealed the presence of vacancies in tetrahedral cobalt sites (VCo1) whose concentration at RT decreases on raising the annealing temperatures, while octahedral cobalt and oxygen sites were fully occupied in all the samples. In addition, the VCo1 presence induces a shrinking of the volume of the CoO4 tetrahedra. The combination of DFT calculation and diffraction revealed that deuterium/hydrogen ions (Di/Hi), introduced during the synthesis by the nitrate precursor balanced the VCo1. Finally, DFT calculations revealed that (Di/Hi) in Co3O4 forms hydroxyl groups. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Graphical abstract

38 pages, 5434 KB  
Review
Chemical Deuteration of α-Amino Acids and Optical Resolution: Overview of Research Developments
by Nageshwar R. Yepuri
Bioengineering 2025, 12(9), 916; https://doi.org/10.3390/bioengineering12090916 - 26 Aug 2025
Viewed by 1545
Abstract
Deuterium-labelled amino acids have found extensive applications in such research areas as pharmaceutical, bioanalytical, neutron diffraction, inelastic neutron scattering, in analysis of drug metabolism using mass spectrometry (MS), and, structuring of biomolecules by NMR. For these reasons, interest in new methodologies for the [...] Read more.
Deuterium-labelled amino acids have found extensive applications in such research areas as pharmaceutical, bioanalytical, neutron diffraction, inelastic neutron scattering, in analysis of drug metabolism using mass spectrometry (MS), and, structuring of biomolecules by NMR. For these reasons, interest in new methodologies for the deuterium labelling of amino acids and the extent of their applications are equally rising. The ideal method will be able to label target compounds rapidly and cost-effectively by the direct exchange of a hydrogen atom by a deuterium atom. Most of these exchange reactions can often be carried out directly on the final target compound or a late intermediate in the synthesis, and often D2O can be used as the deuterium source. This review aims to provide a high-level overview of the chemical deuteration of amino acids in various groups (aromatic, heterocyclic, and non-aromatic α-amino acids). It primarily focuses on metal-catalyzed H/D exchange under hydrothermal conditions, with some attention given to studies on stereoselectivity and chemically synthesized perdeuteration and selective deuteration. In addition, we present different methods tested, manipulated, and developed for versatile new scalable protocols for preparation of selective and perdeuterated biologically important amino acids and their enzymatic and kinetic resolution to give pure enantiomers. Different methods for the synthesis of stereocontrolled selective and perdeuterated amino acids, including synthetic, and methods for preparing optically pure amino acids are presented. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Deuterated Biomaterials)
Show Figures

Graphical abstract

23 pages, 12646 KB  
Article
Titanite Textures, U-Pb Dating, Chemistry, and In Situ Nd Isotopes of the Lalingzaohuo Mafic Magmatic Enclaves and Host Granodiorites in the East Kunlun Orogen Belt: Insights into Magma Mixing Processes
by Zisong Zhao, Bingzhang Wang, Shengwei Wu and Jiqing Li
Minerals 2025, 15(9), 886; https://doi.org/10.3390/min15090886 - 22 Aug 2025
Viewed by 785
Abstract
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In [...] Read more.
Widespread Triassic granitic magmatism is archived in the East Kunlun Orogen Belt (EKOB) of Northern Qinghai–Tibet Plateau. Mafic magmatic enclaves (MMEs), commonly hosted in these plutons, are generally interpreted as products of magma mixing; however, the specific magmatic processes remain poorly understood. In this study, we present new data on the complex zoning patterns, in situ U–Pb ages, trace element compositions, and Nd isotopic characteristics of titanite grains from the MMEs and host granodiorite of Laningzaohuo Zhongyou pluton. Whole-rock geochemical data indicate that the pluton is composed of volcanic arc-related, calc-alkaline, metaluminous I-type granodiorite. Titanite in the MMEs and the granodiorite yield similar U–Pb ages of ~244 Ma but display distinct textural and compositional features. Titanite from the granodiorite is typically euhedral, characterized by magmatic core and mantle with deuteric rim, and exhibits sector and fir-tree zoning in the core. In contrast, titanite from the MMEs is generally anhedral, also showing magmatic core and mantle as well as deuteric rims, but exhibits oscillatory zoning and incomplete sector and fir-tree zoning in the core. Titanite cores in the MMEs have εNd(t) ranging from −2.5 to −3.4, comparable to those of the coeval gabbro and MMEs elsewhere in the EKOB. These cores also show higher LREE/HREE ratios compared to titanite cores in the granodiorite, suggesting crystallization from mixed magmas with greater contributions from enriched lithospheric mantle sources. Titanite mantles in the MMEs yield εNd(t) of −4.0 to −4.8, slightly lower than the cores in the MMEs but higher than those of titanite cores and mantles in the granodiorite (−4.6 to −5.5). The mantle can be interpreted as crystallized from mixed magmas with less mafic components. Titanite rims in the MMEs have εNd(t) of −5.0 to −5.7, identical to those in the granodiorite, and have REE concentrations and Th/U and Nb/Ta ratios consistent with the titanite rims in the granodiorite, clearly indicative of crystallization from evolved, hydrated, granodioritic magmas. Plagioclase in the MMEs exhibits disequilibrium textures such as sieve texture and reverse zoning, with An36–66, contrasting with the more uniform An contents (An35–37) in the granodiorite. This suggests that plagioclase in the MMEs crystallized in an environment influenced by both mafic and felsic magmas. Amphibole thermobarometry indicates that amphibole in the MMEs crystallized at ~788 °C and ~295 MPa, slightly higher than the crystallization conditions in the granodiorite (~778 °C and ~259 MPa). We thus propose that the chemical and textural differences between titanite in the MMEs and granodiorite suggest that the MMEs formed within a mushy hybrid layer generated by injection of upwelling basaltic magma into a pre-existing granitic magma chamber. Titanite cores and mantles in the MMEs likely crystallized from variably mixed magmas. They subsequently underwent resorption and disequilibrium growth within the hybrid layer, and were eventually overgrown by rims formed from evolved interstitial granitic melts within the mushy enclaves. These findings demonstrate that the complex zoning and geochemical titanite in the MMEs provide valuable insights into magma mixing processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 2559 KB  
Article
Calix[4]resorcinarene Amide Derivative: Thermodynamics of Cation Complexation Processes and Its Remarkable Properties for the Removal of Calcium (II) from Water
by Angela F. Danil de Namor, Ahmad Jumaa and Nawal Al Hakawati
Int. J. Mol. Sci. 2025, 26(16), 8043; https://doi.org/10.3390/ijms26168043 - 20 Aug 2025
Viewed by 630
Abstract
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN [...] Read more.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations. 1H NMR complexation in acetonitrile revealed that L forms relatively strong 1:1 complexes with cations, with selectivity for Ca(II) and, to lesser extent, with Pb(II) over other metal cations. The composition of the complexes is corroborated by conductance measurements. The thermodynamics of these systems indicate that the complexation process is predominantly enthalpy controlled in acetonitrile, while it is entropy controlled in methanol. A remarkable outcome of fundamental studies is found in its application as new material for the removal of Ca(II) from water. The capacity of L to remove Ca(II) from water is 24 mmol/g which exceeds by far the capacity of cation exchange resins. Full article
(This article belongs to the Special Issue Supramolecular Receptors for Cations and Anions)
Show Figures

Figure 1

20 pages, 1717 KB  
Article
Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs)
by Varathan Vinayagam, Arunachalam Thirugnanasambandam, Subramanyam Ragupathy, Ragupathy Sneha and Steven G. Newmaster
Molecules 2025, 30(16), 3379; https://doi.org/10.3390/molecules30163379 - 14 Aug 2025
Viewed by 1427
Abstract
Metabolite fingerprint profiling is a robust tool for verifying suppliers of authentic botanical ingredients. While comparative studies exist, few apply identical conditions across multiple species; this study utilized a cross-species comparison to identify versatile solvents despite biochemical variability. Multiple solvents were used for [...] Read more.
Metabolite fingerprint profiling is a robust tool for verifying suppliers of authentic botanical ingredients. While comparative studies exist, few apply identical conditions across multiple species; this study utilized a cross-species comparison to identify versatile solvents despite biochemical variability. Multiple solvents were used for sample extraction prior to analysis by proton NMR and liquid chromatography–mass spectrometry (LC-MS) for multiple botanicals including Camellia sinensis, Cannabis sativa, Myrciaria dubia, Sambucus nigra, Zingiber officinale, Curcuma longa, Silybum marianum, Vaccinium macrocarpon, and Prunus cerasus. Comparisons were normalized by total intensity; deuterated methanol aids NMR lock but is not required for LC-MS. Hierarchical clustering analysis (HCA) evaluated solvent efficacy. Methanol–deuterium oxide (1:1) was the most effective extraction method, yielding 155 NMR spectral metabolite variables for Camellia sinensis, while methanol (90% CH3OH + 10% CD3OD) produced 198 for Cannabis sativa and 167 for Myrciaria dubia, with 11, 9, and 28 assigned metabolites, respectively. LC-MS detected 121 metabolites in Myrciaria dubia in methanol as the most effective extraction method. Methanol (10% deuterated) is the most effective extraction method for comprehensive metabolite fingerprinting using NMR and LC-MS protocols because it provides the broadest metabolite coverage. This study advances fit-for-purpose methods to qualify suppliers of botanical ingredients in food and NHP quality control programs. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 1899 KB  
Article
Performance Analysis of New Deuterium Tracer for Online Oil Consumption Measurements
by Francesco Marzemin, Martin Vareka, Kevin Gschiel, Bernhard Rossegger, Peter Grabner, Michael Engelmayer and Nicole Wermuth
Lubricants 2025, 13(8), 351; https://doi.org/10.3390/lubricants13080351 - 5 Aug 2025
Viewed by 797
Abstract
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, [...] Read more.
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, accurate, and fast lubricating oil consumption measurements. Previously performed measurements have shown that the use of poly-deuterated poly-alpha olefins has minimal impact on lubricating oil properties, except for a slight drop in oil viscosity. To further reduce the impact on lubricating oil characteristics, a new base oil for the synthesis of a poly-deuterated tracer is introduced, and its influence on the lubricating oil’s chemical, tribological, and rheological properties is analyzed. Furthermore, the influence of the tracer addition on the preignition tendencies of the fully formulated oil is also examined. Based on the analyses, no relevant changes in the lubricating oil properties, such as viscosity, density, and thermal degradation behavior, can be observed. Additionally, the deuterium tracer does not negatively influence combustion anomalies, thus reducing preignition tendencies. These results establish the method’s compatibility with new-generation engines, especially hydrogen-fueled internal combustion engines. Full article
Show Figures

Figure 1

17 pages, 2627 KB  
Article
Cuscohygrine and Hygrine as Biomarkers for Coca Leaf Chewing: Analytical Challenges in GC-MS Detection and Implications for the Differentiation of Cocaine Use in Forensic Toxicology
by Nélida C. Rubio, Iván Alvarez-Freire, Pamela Cabarcos-Fernández, María J. Tabernero-Duque, Inés Sánchez-Sellero, Antonio Moreda-Piñeiro, Pilar Bermejo-Barrera and Ana M. Bermejo-Barrera
Separations 2025, 12(8), 201; https://doi.org/10.3390/separations12080201 - 30 Jul 2025
Viewed by 1268
Abstract
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used [...] Read more.
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used in Latin American toxicology labs due to accessibility. This study critically evaluates the analytical limitations of GC-MS for detecting CUS and HYG in biological matrices. Key parameters—injector temperature (180–290 °C), injection mode (split/splitless), solvent, liner condition, and matrix—were systematically studied. GC-MS showed significant limitations: low-abundance, non-specific fragments (m/z 42, 84, 98, 140) failed to meet the identification criteria in SIM mode. Thermal degradation of CUS to HYG and CUS-d6 to HYG-d3 was observed, especially with splitless injection and aged liners. Matrix effects produced signal enhancement ranging from +29% to +316%, meaning that analyte responses in biological samples were significantly higher than in neat standards, likely due to reduced degradation or adsorption. Although deuterated internal standards (CUS-d6) partially corrected signal variability and matrix enhancement, these corrections were not sufficient to overcome the fundamental limitations of GC-MS, including poor ion specificity and compound instability. These findings support the need for LC-MS/MS-based approaches for reliable alkaloid detection and question the suitability of GC-MS for CUS analysis in forensic toxicology contexts. Full article
Show Figures

Graphical abstract

14 pages, 5036 KB  
Article
Intermolecular Charge Transfer Induced Sensitization of Yb3+ in β-Diketone Coordination Compounds with Excellent Luminescence Efficiency
by Trofim A. Polikovskiy, Daniil D. Shikin, Vladislav M. Korshunov, Victoria E. Gontcharenko, Mikhail T. Metlin, Nikolay P. Datskevich, Marat M. Islamov, Victor O. Kompanets, Sergey V. Chekalin, Yuriy A. Belousov and Ilya V. Taydakov
Int. J. Mol. Sci. 2025, 26(14), 6814; https://doi.org/10.3390/ijms26146814 - 16 Jul 2025
Viewed by 1034
Abstract
Achieving high quantum yields for Yb3+ ion emission in complexes with organic ligands is a challenging task, as most Yb3+ complexes with such ligands typically exhibit efficiencies below 3.5%. Our research demonstrates that the introduction of heavy atom-containing ancillary ligands, such [...] Read more.
Achieving high quantum yields for Yb3+ ion emission in complexes with organic ligands is a challenging task, as most Yb3+ complexes with such ligands typically exhibit efficiencies below 3.5%. Our research demonstrates that the introduction of heavy atom-containing ancillary ligands, such as TPPO or TPAO, along with the careful engineering of the main β-diketone ligand, can increase the luminescence efficiency up to 20-fold by the alteration of the energy migration pathway. It is demonstrated that the combination of two distinct organic ligands leads to the blockage of singlet–triplet intersystem crossing (ISC), alongside electronic energy transfer from β-diketone to Yb3+ ions through charge transfer states. The synthesized complexes exhibit quantum yields of 6.5% and 7.0% in the solid state, which places them at the top globally among this class of materials with simple non-deuterated and non-fluorinated ligands. Full article
Show Figures

Figure 1

12 pages, 1298 KB  
Article
Effect of Deuteration on the Temperature Dependence of the Quadratic Electro-Optic Effect in KDP Crystals
by Marek Izdebski and Rafał Ledzion
Materials 2025, 18(14), 3290; https://doi.org/10.3390/ma18143290 - 12 Jul 2025
Viewed by 462
Abstract
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 [...] Read more.
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 (DKDP) crystals at a wavelength of 632.8 nm are presented. We consider electro-optic coefficients describing changes in the optical impenetrability tensor resulting from an applied electric field, as well as intrinsic electro-optic coefficients defined in terms of induced polarization. The results show significant differences in the values of the analogous coefficients for the KDP and DKDP crystals and their temperature dependencies. Therefore, the quadratic electro-optic effect in KDP-type crystals cannot be easily described based solely on the contribution of PO4 tetrahedra, as assumed in current models of the linear effect. Moreover, the values of the intrinsic coefficients in the KDP and DKDP crystals differ even more than the corresponding usual electro-optic coefficients, which contradicts the conventional belief in their lower variability. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 3575 KB  
Article
Turnover Rates and Numbers of Exchangeable Hydrogens in Deuterated Water Labeled Samples
by Henock M. Deberneh, Ali Bagherinia and Rovshan G. Sadygov
Int. J. Mol. Sci. 2025, 26(13), 6398; https://doi.org/10.3390/ijms26136398 - 3 Jul 2025
Viewed by 638
Abstract
Metabolic labeling with deuterated water is used in combination with liquid-chromatography coupled with mass spectrometry to study the turnover rates of individual proteins in vivo. This technique and bioinformatics tools for data analysis quantify the turnover rates of thousands of proteins. Turnover rates [...] Read more.
Metabolic labeling with deuterated water is used in combination with liquid-chromatography coupled with mass spectrometry to study the turnover rates of individual proteins in vivo. This technique and bioinformatics tools for data analysis quantify the turnover rates of thousands of proteins. Turnover rates change during organismal growth and respond to alterations in the environment and diet. The accurate and statistically significant determination of the turnover rate changes of a protein depend on the variations in the turnover rates of the peptides of the protein. One of the systematic factors contributing to this variability is the dependence of the turnover rates on the number of exchangeable hydrogens of the peptides. This variability (by reducing the statistical power) reduces biological interpretability. Here, we propose a computational approach to eliminate the dependence of the turnover rates on the number of exchangeable hydrogens. This approach enhances the accuracy of turnover rate estimation and may help to support more accurate assessments of biological dynamics and disease mechanisms. Full article
(This article belongs to the Special Issue High Resolution Mass Spectrometry in Molecular Sciences: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2450 KB  
Article
Development and Validation of a Simple and Cost-Effective LC-MS/MS Method for the Quantitation of the Gut-Derived Metabolite Trimethylamine N-Oxide in Human Plasma of Healthy and Hyperlipidemic Volunteers
by Nikolaos A. Parisis, Panoraia Bousdouni, Aikaterini Kandyliari, Maria-Helen Spyridaki, Amalia Despoina Koutsogianni, Christina Telli, Konstantinos K. Tsilidis, Antonios E. Koutelidakis and Andreas G. Tzakos
Molecules 2025, 30(11), 2398; https://doi.org/10.3390/molecules30112398 - 30 May 2025
Cited by 2 | Viewed by 2779
Abstract
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite of dietary precursors, including choline and carnitine. Elevated levels of TMAO in human plasma have been associated with several diseases such as cardiovascular, diabetes mellitus, chronic kidney disease, neurological disorders, and cancer. This has led [...] Read more.
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite of dietary precursors, including choline and carnitine. Elevated levels of TMAO in human plasma have been associated with several diseases such as cardiovascular, diabetes mellitus, chronic kidney disease, neurological disorders, and cancer. This has led to an increased interest in the accurate determination of TMAO in human blood, for which a reliable, cost-effective and sensitive analytical method should be established. LC-MS/MS has emerged as a powerful tool for the determination of TMAO due to its high sensitivity, specificity, and ability to handle complex matrices. Herein, we describe the development and validation of an LC-MS/MS method for the determination of TMAO in human blood plasma. Our method involves a simple sample preparation protocol, involving a protein precipitation step along with a non-deuterated IS, followed by a Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis using a triple quadrupole mass spectrometer. Additionally, the method was adapted and implemented on an UPLC-QTOF/MS. The method was validated using the guidelines set by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for assay performance and robustness in human plasma and successfully applied to plasma derived from healthy and hyperlipidemic volunteers. The developed method was found to be specific, sensitive, and accurate for the determination of TMAO in human plasma, with a lower limit of quantification of 0.25 µM. The intra- and inter-assay precision and trueness were within acceptable limits. Full article
Show Figures

Graphical abstract

Back to TopTop