Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs)
Abstract
1. Introduction
1.1. Why NMR for Botanical Ingredient Quality Control in NHPs and Food?
1.2. Comparison of NMR with DNA-Based Other Analytical Chemistry Methods
1.3. Key Uncertainties Concerning Different NMR Extraction Methods
1.4. Objective of This Study
- Establish NMR protocols utilizing a variety of solvents to detect a broad spectrum of spectral variables across the selected taxa, adjusting sample masses based on initial trials that indicated no significant differences with varying quantities.
- Implement targeted LC-MS metabolomics through direct injection and reverse-phase LC-MS/MS techniques, aiming to identify and quantify an extensive array of metabolites within plant material extracts prepared at standardized concentrations.
- Evaluate the efficiency of different solvents in assigning metabolites through NMR-based chemical shift analyses, providing insights into extraction optimization.
- Conduct analyses of NMR fingerprints using hierarchical clustering techniques to group a specific model botanical (tea—Camellia sinensis) samples according to their key metabolite profiles, facilitating a comparative assessment of extraction solvent performance.
- Investigate the utility of methanol as an extraction solvent across multiple botanicals, targeting the detection of a wide range of spectral variables to assess its versatility.
- Examine the stability of methanol extracts over an extended duration, assessing variations in key metabolite profiles to ensure reliability under storage conditions.
2. Results
2.1. Extraction Efficiency and Sample Preparation
2.2. Metabolite Detection
2.3. Hierarchical Clustering Analysis of Tea Samples
2.4. Stability Assessment of Methanol Extracts
2.5. Heatmap Analysis of NMR Metabolite Fingerprints
2.6. Stability of Methanol Extracts
3. Discussion
3.1. Chemotaxonomy and the Role of Metabolite Fingerprints in Botanical Authentication
3.2. Comparison of Extraction Methods for Cannabis Samples
3.3. Comparison of Extraction Methods for Camu Camu Samples
3.4. Comparison of Extraction Methods for Tea Samples
3.5. Heatmap Analysis of Metabolite Fingerprints
3.6. Effect of Extraction Solvent on Metabolite Fingerprint Profiles
3.7. Comparison of Solvent Efficiency for Metabolite Extraction
3.8. Efficiency of Methanol Extraction on Other Botanicals
3.9. Metabolite Peak Assignments
3.10. Extract Stability During Storage and Ingredient Stability over Time
3.11. Overview and Implications
4. Materials and Methods
4.1. Experimental Design and Sample Collection
4.2. Sample Preparation
4.3. Selection of Extraction Solvents
- Methanol (90% CH3OH + 10% CD3OD): Extracted polar and semi-polar metabolites, including alkaloids, flavonoids, and cannabinoids [43].
- Deuterium Oxide (D2O): As a dissolution medium for polar extracts such as amino acids and sugars [37].
- Chloroform (CDCl3): Used for the extraction of lipophilic compounds, including lipids and terpenoids [43].
- Dimethyl Sulfoxide (DMSO-d6): Enhanced extraction of flavonoids and alkaloids [20].
- Acetone (Acetone-d6) and Acetonitrile (Acetonitrile-d3): Targeted phenolics and flavonoids [45].
- Combinations: Included methanol–deuterium oxide (1:1), chloroform–cyclohexane (1:1), dimethyl sulfoxide–chloroform (2:3 and 1:1), and acetone–deuterium oxide (1:1) to broaden metabolite coverage.
4.4. Proton NMR Acquisition and Processing
4.5. Extract Solvent Stability During Storage
4.6. LC-MS Analysis
4.7. Statistical Analysis
5. Conclusions
5.1. Implications for Botanical Ingredient Authentication
5.2. Key Findings
- Solvent Efficiency: Methanol (90% CH3OH + 10% CD3OD) demonstrated high efficiency, capturing 198 variables (58% of maximum) for Cannabis sativa, 167 variables (100%) for Myrciaria dubia, and 82 variables for Camellia sinensis, encompassing flavonoids, alkaloids, and organic acids (based on variable counts; criteria: >150 variables, <10% CV reproducibility). Methanol–deuterium oxide (1:1) was optimal for Camellia sinensis with 155 variables (100%), effectively detecting catechins and alkaloids. For LC-MS, methanol extracted 121 metabolites (100%) from Myrciaria dubia, followed by methanol–water (1:1) with 84 metabolites (69%) [22].
- Polar Metabolite Extraction: Deuterium oxide (D2O) excelled in extracting polar metabolites, yielding 343 variables (100%) for Cannabis sativa and 159 variables (95%) for Myrciaria dubia, though its limited coverage of nonpolar compounds reduced its chemotaxonomic utility [37].
- Chemotaxonomic Applications: Methanol-based NMR data facilitated robust chemotaxonomic libraries via hierarchical clustering analysis (HCA), differentiating the nine taxa: Prunus cerasus (402 variables), Sambucus nigra (397), Silybum marianum (396), Vaccinium macrocarpon (347), Curcuma longa (314), Zingiber officinale (313), Cannabis sativa (198), Myrciaria dubia (167), and Camellia sinensis (82). This approach supports species-specific authentication [9].
- Stability of Methanol Extraction: Methanol extracts of Cannabis sativa, stored in airtight amber vials at 4 °C for 95 days, maintained spectral integrity with less than 5% variation in 198 variables. The pre-analysis protocol—equilibration to room temperature (25 °C) for 30 min and sonication at 40 Hz for 30 s before NMR tube transfer—ensured minimal disruption, validating long-term quality control applicability [2,20].
- Complementary LC-MS Analysis: LC-MS detected 121 metabolites in Myrciaria dubia with methanol, though approximately 30% remain unassigned. Expansion to all nine taxa is planned, with statistical methods (e.g., partial least squares–discriminant analysis) under optimization [47].
5.3. Future Directions
5.4. Conclusion Statement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Nagana Gowda, G.A.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. Nmr Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155–161. [Google Scholar] [CrossRef]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The Future of NMR-Based Metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. Recent Advances in NMR-Based Metabolomics. Anal. Chem. 2017, 89, 490–510. [Google Scholar] [CrossRef]
- Chauthe, S.K.; Sharma, R.J.; Aqil, F.; Gupta, R.C.; Singh, I.P. Quantitative NMR: An Applicable Method for Quantitative Analysis of Medicinal Plant Extracts and Herbal Products. Phytochem. Anal. 2012, 23, 689–696. [Google Scholar] [CrossRef]
- Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of Metabolomic Data Using Support Vector Machines. Anal. Chem. 2008, 80, 7562–7570. [Google Scholar] [CrossRef]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Universal Quantitative NMR Analysis of Complex Natural Samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Cagliani, L.R.; Lalou, S.; Naziri, E.; Tsimidou, M.Z.; Consonni, R. 1H NMR-Based Metabolomics of Saffron Reveals Markers for Its Quality Deterioration. Food Res. Int. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR Applications to Tackle Future Food Fraud Issues. Trends Food Sci. Technol. 2019, 91, 347–353. [Google Scholar] [CrossRef]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and Nontargeted Wine Analysis by 1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Frank, W.; Humpfer, E.; Schäfer, H.; Keller, S.; Mörtter, M.; Spraul, M. Quality Control of Beer Using High-Resolution Nuclear Magnetic Resonance Spectroscopy and Multivariate Analysis. Eur. Food Res. Technol. 2005, 220, 215–221. [Google Scholar] [CrossRef]
- Amargianitaki, M.; Spyros, A. NMR-Based Metabolomics in Wine Quality Control and Authentication. Chem. Biol. Technol. Agric. 2017, 4, 9. [Google Scholar] [CrossRef]
- Palmioli, A.; Alberici, D.; Ciaramelli, C.; Airoldi, C. Metabolomic Profiling of Beers: Combining 1H NMR Spectroscopy and Chemometric Approaches to Discriminate Craft and Industrial Products. Food Chem. 2020, 327, 127025. [Google Scholar] [CrossRef]
- Le Gall, G.; Metzdorff, S.B.; Pedersen, J.; Bennett, R.N.; Colquhoun, I.J. Metabolite Profiling of Arabidopsis Thaliana (L.) Plants Transformed with an Antisense Chalcone Synthase Gene. Metabolomics 2005, 1, 181–198. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. Nuclear Magnetic Resonance and Chemometrics to Assess Geographical Origin and Quality of Traditional Food Products. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, UK, 2010; Volume 59, pp. 87–165. [Google Scholar]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef]
- Mannina, L.; Sobolev, A.P.; Viel, S. Liquid State 1H High Field NMR in Food Analysis. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 66, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Kuballa, T.; Brunner, T.S.; Thongpanchang, T.; Walch, S.G.; Lachenmeier, D.W. Application of NMR for Authentication of Honey, Beer and Spices. Curr. Opin. Food Sci. 2018, 19, 57–62. [Google Scholar] [CrossRef]
- Lee, E.J.; Rustem, S.; Weljie, A.M.; Vogel, H.J.; Facchini, P.J.; Park, S.U.; Kim, Y.K.; Yang, T.J. Quality Assessment of Ginseng By1H NMR Metabolite Fingerprinting and Profiling Analysis. J. Agric. Food Chem. 2009, 57, 7513–7522. [Google Scholar] [CrossRef]
- Kim, H.K.; Verpoorte, R. Sample Preparation for Plant Metabolomics. Phytochem. Anal. 2010, 21, 4–13. [Google Scholar] [CrossRef]
- Schripsema, J. Application of NMR in Plant Metabolomics: Techniques, Problems and Prospects. Phytochem. Anal. 2010, 21, 14–21. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Rudaz, S.; Hae Choi, Y.; Kyong Kim, H. Plant Metabolomics: From Holistic Data to Relevant Biomarkers. Curr. Med. Chem. 2013, 20, 1056–1090. [Google Scholar] [CrossRef] [PubMed]
- Beteinakis, S.; Papachristodoulou, A.; Gogou, G.; Katsikis, S.; Mikros, E.; Halabalaki, M. NMR-Based Metabolic Profiling of Edible Olives-Determination of Quality Parameters. Molecules 2020, 25, 3339. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Farina, C.F.; Driscoll, S.; Wicks, C.; Burton, I.; Wentzell, P.D.; Berrué, F. Chemical Barcoding: A Nuclear-Magnetic-Resonance-Based Approach to Ensure the Quality and Safety of Natural Ingredients. J. Agric. Food Chem. 2019, 67, 7765–7774. [Google Scholar] [CrossRef]
- Ragupathy, S.; Thirugnanasambandam, A.; Henry, T.; Vinayagam, V.; Sneha, R.; Newmaster, S.G. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024, 13, 1862. [Google Scholar] [CrossRef]
- Ragupathy, S.; Thirugnanasambandam, A.; Vinayagam, V.; Newmaster, S.G. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. Plants 2024, 13, 841. [Google Scholar] [CrossRef]
- Burton, I.W.; Martinez Farina, C.F.; Ragupathy, S.; Arunachalam, T.; Newmaster, S.; Berrué, F. Quantitative NMR Methodology for the Authentication of Roasted Coffee and Prediction of Blends. J. Agric. Food Chem. 2020, 68, 14643–14651. [Google Scholar] [CrossRef]
- Coutinho Moraes, D.F.; Still, D.W.; Lum, M.R.; Hirsch, A.M. DNA-Based Authentication of Botanicals and Plant-Derived Dietary Supplements: Where Have We Been and Where Are We Going? Planta Medica 2015, 81, 687–695. [Google Scholar] [CrossRef]
- Lo, Y.T.; Shaw, P.C. DNA-Based Techniques for Authentication of Processed Food and Food Supplements. Food Chem. 2018, 240, 767–774. [Google Scholar] [CrossRef]
- Stoeckle, M.Y.; Gamble, C.C.; Kirpekar, R.; Young, G.; Ahmed, S.; Little, D.P. Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles. Sci. Rep. 2011, 1, 42. [Google Scholar] [CrossRef] [PubMed]
- Sucher, N.J.; Carles, M.C. Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Medica 2008, 74, 603–623. [Google Scholar] [CrossRef]
- Sgamma, T.; Lockie-Williams, C.; Kreuzer, M.; Williams, S.; Scheyhing, U.; Koch, E.; Slater, A.; Howard, C. DNA Barcoding for Industrial Quality Assurance. Planta Medica 2017, 83, 1117–1129. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Licorice Roots Using a Multiplex Approach of GC-MS, LC-MS and 1D NMR Techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef]
- Heyman, H.M.; Meyer, J.J.M. NMR-Based Metabolomics as a Quality Control Tool for Herbal Products. S. Afr. J. Bot. 2012, 82, 21–32. [Google Scholar] [CrossRef]
- Van Der Kooy, F.; Maltese, F.; Young, H.C.; Hye, K.K.; Verpoorte, R. Quality Control of Herbal Material and Phytopharmaceuticals with MS and NMR Based Metabolic Fingerprinting. Planta Med. 2009, 75, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.L.; Baker, J.M.; Beale, M.H. Recent Applications of NMR Spectroscopy in Plant Metabolomics. FEBS J. 2007, 274, 1126–1131. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR Spectroscopy. TrAC-Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Kaiser, K.A.; Barding, G.A.; Larive, C.K. A Comparison of Metabolite Extraction Strategies for 1H-NMR- Basedmetabolic Profiling Using Mature Leaf Tissue from Themodel Plant Arabidopsis Thaliana. Magn. Reson. Chem. 2009, 47, S147–S156. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, H.K.; Hazekamp, A.; Erkelens, C.; Lefeber, A.W.M.; Verpoorte, R. Metabolomic Differentiation of Cannabis Sativa Cultivars Using 1H NMR Spectroscopy and Principal Component Analysis. J. Nat. Prod. 2004, 67, 953–957. [Google Scholar] [CrossRef]
- Halabalaki, M.; Vougogiannopoulou, K.; Mikros, E.; Skaltsounis, A.L. Recent Advances and New Strategies in the NMR-Based Identification of Natural Products. Curr. Opin. Biotechnol. 2014, 25, 1–7. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite Profiling of Helichrysum Italicum Derived Food Supplements By1h-Nmr-Based Metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef]
- Cifuentes, A. (Ed.) Foodomics; Wiley: Hoboken, NJ, USA, 2013; ISBN 9781118169452. [Google Scholar]
- Verpoorte, R.; Choi, Y.H.; Kim, H.K. NMR-Based Metabolomics at Work in Phytochemistry. Phytochem. Rev. 2007, 6, 3–14. [Google Scholar] [CrossRef]
- Yang, S.O.; Shin, Y.S.; Hyun, S.H.; Cho, S.; Bang, K.H.; Lee, D.; Choi, S.P.; Choi, H.K. NMR-Based Metabolic Profiling and Differentiation of Ginseng Roots According to Cultivation Ages. J. Pharm. Biomed. Anal. 2012, 58, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pacholczyk-Sienicka, B.; Ciepielowski, G.; Albrecht, Ł. The Application of Nmr Spectroscopy and Chemometrics in Authentication of Spices. Molecules 2021, 26, 257–290. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human. Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Web-Based Inference of Biological Patterns, Functions and Pathways from Metabolomic Data Using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef]
Sample Type | Taxon | Mass (±1 mg) | Solvent Volume (mL) |
---|---|---|---|
Tea—Orange Pekoe (fermented; extracts) | Camellia sinensis | 50 | 1 |
Tea—Green Tea (unfermented; extracts) | Camellia sinensis | 51 | 1 |
Tea—Black Tea (fermented; extracts) | Camellia sinensis | 51 | 1 |
Cannabis—dry bud | Cannabis sativa | 50 | 1 |
Cannabis—dry leaf | Cannabis sativa | 51 | 1 |
Camu camu—powder extract | Myrciaria dubia | 300 | 2 |
Camu camu—dry seed | Myrciaria dubia | 300 | 2 |
Elderberry—dry fruit | Sambucus nigra | 300 | 2 |
Ginger—dry root | Zingiber officinale | 300 | 2 |
Turmeric—dry root | Curcuma longa | 300 | 2 |
Milk thistle—dry seed | Silybum marianum | 300 | 2 |
Cranberry—dry fruit | Vaccinium macrocarpon | 300 | 2 |
Tart cherry—dry fruit | Prunus cerasus | 300 | 2 |
Taxon | Analysis | Solvent System | NMR Variables | LC-MS Metabolites |
---|---|---|---|---|
Myrciaria dubia | NMR | Methanol (90% CH3OH + 10% CD3OD) | 167 | N/A |
Myrciaria dubia | NMR | Deuterium oxide (D2O) | 159 | N/A |
Myrciaria dubia | NMR | Chloroform (CDCl3) | 165 | N/A |
Myrciaria dubia | NMR | Acetonitrile (Acetonitrile-d3) | 69 | N/A |
Myrciaria dubia | NMR | Acetone (Acetone-d6) | 74 | N/A |
Myrciaria dubia | LC-MS | Methanol | N/A | 121 |
Myrciaria dubia | LC-MS | Water | N/A | 80 |
Myrciaria dubia | LC-MS | Methanol–water (1:1) | N/A | 84 |
Myrciaria dubia | LC-MS | Acetone | N/A | 53 |
Myrciaria dubia | LC-MS | Acetonitrile | N/A | 41 |
Myrciaria dubia | LC-MS | Chloroform | N/A | 48 |
Cannabis sativa | NMR | Methanol (90% CH3OH + 10% CD3OD) | 198 | N/A |
Cannabis sativa | NMR | Deuterium oxide (D2O) | 343 | N/A |
Cannabis sativa | NMR | Chloroform (CDCl3) | 171 | N/A |
Cannabis sativa | NMR | Chloroform–cyclohexane (1:1) | 157 | N/A |
Cannabis sativa | NMR | Acetone (Acetone-d6) | 147 | N/A |
Cannabis sativa | NMR | Acetonitrile (Acetonitrile-d3) | 164 | N/A |
Cannabis sativa | NMR | Dimethyl sulfoxide (DMSO-d6) | 178 | N/A |
Cannabis sativa | NMR | Dimethyl sulfoxide–chloroform (2:3) | 181 | N/A |
Camellia sinensis | NMR | Methanol (90% CH3OH + 10% CD3OD) | 82 | N/A |
Camellia sinensis | NMR | Deuterium oxide (D2O) | 130 | N/A |
Camellia sinensis | NMR | Methanol–deuterium oxide (1:1) | 155 | N/A |
Camellia sinensis | NMR | Chloroform (CDCl3) | 42 | N/A |
Camellia sinensis | NMR | Dimethyl sulfoxide–chloroform (1:1) | 75 | N/A |
Camellia sinensis | NMR | Acetone–deuterium oxide (1:1) | 126 | N/A |
Camellia sinensis | NMR | Acetonitrile (Acetonitrile-d3) | 58 | N/A |
Sambucus nigra | NMR | Methanol (90% CH3OH + 10% CD3OD) | 397 | N/A |
Zingiber officinale | NMR | Methanol (90% CH3OH + 10% CD3OD) | 313 | N/A |
Curcuma longa | NMR | Methanol (90% CH3OH + 10% CD3OD) | 314 | N/A |
Silybum marianum | NMR | Methanol (90% CH3OH + 10% CD3OD) | 396 | N/A |
Vaccinium macrocarpon | NMR | Methanol (90% CH3OH + 10% CD3OD) | 347 | N/A |
Prunus cerasus | NMR | Methanol (90% CH3OH + 10% CD3OD) | 402 | N/A |
Solvent System | Cannabis | Tea | Camu Camu |
---|---|---|---|
Methanol | 18 | 22 | 28 |
Methanol–water (1:1) | Not tested | 11 | Not tested |
Water | 8 | 10 | 14 |
Acetone–deuterium oxide (1:1) | Not tested | 9 | Not tested |
Acetone | 6 | Not tested | 7 |
Dimethyl sulfoxide–chloroform | 12 | 7 | Not tested |
Chloroform | 10 | 5 | 9 |
Acetonitrile | 6 | 6 | 6 |
No. | Species | Compound Class | Metabolite | 1H NMR Chemical Shift (δ, ppm) |
---|---|---|---|---|
1 | Tea | Alkaloids | Caffeine | 7.74 (s, 1H), 3.89 (s, 3H), 3.54 (s, 3H), 3.29 (s, 3H) |
2 | Tea | Alkaloids | Theobromine | 7.77 (s, 1H), 3.46 (s, 3H) |
3 | Tea | Phenolic compounds | p-Coumaroyl quinic acid | 7.47 (s, 1H), 7.36 (s, 1H) |
4 | Tea | Phenolic compounds | Gallic acid | 7.01 (s, 2H) |
5 | Tea | Phenolic compounds | Quinic acid | 4.17–4.19 (m, 2H), 1.99–2.05 (m, 4H) |
6 | Tea | Flavonoids | Epigallocatechin-3-gallate | 6.87 (s, 1H), 6.50 (s, 1H), 5.82 (d, J = 2.3 Hz, 1H), 5.50 (m, 2H), 2.70–2.75 (m, 4H) |
7 | Tea | Flavonoids | Epigallocatechin | 6.75 (s, 1H), 6.50 (s, 1H), 5.86 (d, J = 2.3 Hz, 1H), 5.49 (m, 1H), 2.81–2.86 (m, 2H) |
8 | Tea | Flavonoids | Epicatechin-3-gallate | 6.90 (s, 1H), 5.90 (d, J = 2.3 Hz, 1H), 5.51 (m, 2H), 2.91–2.94 (m, 2H) |
9 | Tea | Flavonoids | Epicatechin | 5.93 (s, 1H), 2.96 (m, 2H) |
10 | Tea | Flavonoids | Catechin | 6.86 (s, 1H), 5.93 (s, 2H), 2.99 (m, 2H) |
11 | Tea | Carbohydrates | Sucrose | 5.39 (d, J = 3.8 Hz, 1H) |
12 | Tea | Carbohydrates | α-Glucose | 5.16 (d, J = 3.5 Hz, 1H) |
13 | Tea | Carbohydrates | β-Glucose | 4.50 (d, J = 7.3 Hz, 1H) |
14 | Tea | Carbohydrates | Fructose | 4.12 (d, J = 8.2 Hz, 1H) |
15 | Tea | Amino acids | Threonine | 3.50 (d, J = 4.0 Hz, 1H) |
16 | Tea | Amino acids | Valine | 0.93 (m, 3H) |
17 | Tea | Amino acids | Isoleucine | 0.98 (m, 3H) |
18 | Tea | Amino acids | Leucine | 1.12 (m, 3H) |
19 | Tea | Other compounds | Succinic acid | 2.15 (s, 4H) |
20 | Tea | Other compounds | Acetic acid | 1.99 (s, 3H) |
21 | Tea | Other compounds | Lactic acid | 1.30 (s, 3H) |
22 | Tea | Other compounds | Theanine | 1.18 (t, J = 7.1 Hz, 3H) |
23 | Cannabis | Cannabinoids | Δ8-THC | 6.08 (d, J = 1.7 Hz, 1H), 2.42–2.36 (m, 2H), 0.90 (t, J = 7.1, 1.8 Hz, 3H) |
24 | Cannabis | Cannabinoids | Δ8-THCA | 6.16 (d, J = 1.7 Hz, 1H), 2.82–2.88 (m, 4H), 1.05 (s, 3H) |
25 | Cannabis | Cannabinoids | Δ9-THC | 6.43 (t, J = 1.7 Hz, 1H), 1.64 (s, 3H), 1.03 (s, 3H) |
26 | Cannabis | Cannabinoids | Δ9-THCA | 6.40 (t, J = 1.7 Hz, 1H), 1.39 (s, 3H) |
27 | Cannabis | Cannabinoids | CBD | 6.20 (s, 1H), 4.50 (s, 1H) |
28 | Cannabis | Cannabinoids | CBDA | 6.15 (s, 1H), 4.48 (s, 1H) |
29 | Cannabis | Cannabinoids | CBDVA | 4.42 (s, 1H) |
30 | Cannabis | Cannabinoids | CBG | 5.24 (t, J = 2.7 Hz, 1H) |
31 | Cannabis | Cannabinoids | CBGV | 5.20 (t, J = 1.3 Hz, 1H) |
32 | Cannabis | Cannabinoids | CBN | 6.14 (s, 1H) |
33 | Cannabis | Cannabinoids | CBC | 6.62 (s, 1H) |
34 | Cannabis | Cannabinoids | CBCA | 6.67 (s, 1H) |
35 | Cannabis | Carbohydrates | Sucrose | 5.44 (d, J = 10.0 Hz, 1H) |
36 | Cannabis | Carbohydrates | α-Glucose | 5.22 (d, J = 1.3 Hz, 1H) |
37 | Cannabis | Carbohydrates | Fructose | 4.05 (d, J = 2.9 Hz, 1H) |
38 | Cannabis | Other compounds | Trigonelline | 9.21 (s, 1H), 8.91 (d, J = 8.1 Hz, 1H), 8.84 (d, J = 6.1 Hz, 1H) |
39 | Cannabis | Other compounds | ATP | 8.36 (s, 1H), 8.46 (s, 1H) |
40 | Cannabis | Other compounds | Choline | 3.22 (s, 2H) |
41 | Camu Camu | Organic acids | Citric acid | 2.78 (d, J = 15.7 Hz, 1H), 2.90 (d, J = 15.6 Hz, 1H) |
42 | Camu Camu | Organic acids | Malic acid | 2.65 (dd, J = 16.1 Hz, 1H), 2.80 (dd, J = 16.1 Hz, 1H) |
43 | Camu Camu | Organic acids | Pyruvic acid | 2.16 (s, 3H) |
44 | Camu Camu | Organic acids | Acetic acid | 2.0 (s) |
45 | Camu Camu | Organic acids | Lactic acid | 1.29 (s) |
46 | Camu Camu | Organic acids | Tartaric acid | 4.30 (d, J = 2.8 Hz, 1H) |
47 | Camu Camu | Organic acids | Fumaric acid | 6.61 (s) |
48 | Camu Camu | Organic acids | Succinic acid | 2.54 (s) |
49 | Camu Camu | Flavanols | Flavanols derivatives | 6.83 (d, J = 3.2 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H) |
50 | Camu Camu | Anthocyanins | Cyanidin derivatives | 9.27 (s), 8.11 (s), 6.90 (s) |
51 | Camu Camu | Ellagic derivatives | Ellagic acid | 7.36 (s, 1H) |
52 | Camu Camu | Gallic derivatives | Gallic acid | 7.04 (s, 1H) |
53 | Camu Camu | Carbohydrates | α-Glucose | 5.12 (d, J = 3.7 Hz, 1H) |
54 | Camu Camu | Carbohydrates | β-Glucose | 4.49 (d, J = 7.8 Hz, 1H) |
55 | Camu Camu | Carbohydrates | Fructose | 4.08 (d, J = 7.6 Hz, 1H) |
56 | Camu Camu | Carbohydrates | Sucrose | 5.63 (d, J = 4.8 Hz, 1H) |
57 | Camu Camu | Amino acids | Alanine | 1.49 (d, J = 2.8 Hz, 1H) |
58 | Camu Camu | Amino acids | Threonine | 1.16 (d, J = 2.9 Hz, 1H) |
59 | Camu Camu | Amino acids | Valine | 1.01 (m, 3H) |
60 | Camu Camu | Amino acids | Isoleucine | 0.95 (m, 3H) |
61 | Camu Camu | Amino acids | Leucine | 0.90 (m, 3H) |
62 | Camu Camu | Amino acids | Methionine | 2.57 (t, J = 4.1 Hz, 1H) |
63 | Camu Camu | Amino acids | Glutamine | 2.32–2.38 (m), 2.02–2.05 (m) |
64 | Camu Camu | Fatty acids | Unsaturated fatty acid | 5.33 (m) |
65 | Camu Camu | Fatty acids | Triglycerides | 4.47 (dd, J = 12.1, 4.0 Hz, 2H) |
66 | Camu Camu | Other compounds | Choline | 3.20 (s) |
67 | Camu Camu | Other compounds | Glutamate | 2.18–2.22 (m), 1.89–1.97 (m) |
68 | Camu Camu | Other compounds | γ-Aminobutyric acid | 2.28 (t, J = 7.4 Hz, 1H), 2.45 (t, J = 7.1 Hz, 1H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinayagam, V.; Thirugnanasambandam, A.; Ragupathy, S.; Sneha, R.; Newmaster, S.G. Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs). Molecules 2025, 30, 3379. https://doi.org/10.3390/molecules30163379
Vinayagam V, Thirugnanasambandam A, Ragupathy S, Sneha R, Newmaster SG. Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs). Molecules. 2025; 30(16):3379. https://doi.org/10.3390/molecules30163379
Chicago/Turabian StyleVinayagam, Varathan, Arunachalam Thirugnanasambandam, Subramanyam Ragupathy, Ragupathy Sneha, and Steven G. Newmaster. 2025. "Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs)" Molecules 30, no. 16: 3379. https://doi.org/10.3390/molecules30163379
APA StyleVinayagam, V., Thirugnanasambandam, A., Ragupathy, S., Sneha, R., & Newmaster, S. G. (2025). Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs). Molecules, 30(16), 3379. https://doi.org/10.3390/molecules30163379