Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = detached fruit assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11614 KiB  
Article
Beneficial Soil Fungi Isolated from Tropical Fruit Crop Systems for Enhancing Yield and Growth in Dragon Fruit in Ecuador
by Yoansy Garcia, Danilo Valdez, Daniel Ponce de Leon, Hypatia Urjilez, Jaime Santos-Pinargote and Daniel Mancero-Castillo
Int. J. Plant Biol. 2025, 16(2), 62; https://doi.org/10.3390/ijpb16020062 - 5 Jun 2025
Viewed by 438
Abstract
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial [...] Read more.
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial communities, and commercial isolates often show limited adaptation to local conditions. This study aimed to identify native beneficial soil fungi associated with dragon fruit cultivation on the Ecuadorian coast and evaluate their effect on commercial production. Fungal isolates from four dragon fruit plantations were identified using microscopy and genetic sequencing (ITS, EF-1α, and beta-tubulin). The selected fungi were isolates closely related to Talaromyces tumuli, Trichoderma asperellum, and Paecilomyces lagunculariae. All isolates were tested for pathogenicity using detached cladode assays at the laboratory, and non-phytopathogenic monomorphic cultures were further evaluated in the field under a randomized complete block design consisting of T. asperellum, Talaromyces tumuli, a combination of both, and a water control. The combination of T. asperellum and Talaromyces spp. showed a favorable trend in terms of the plants’ vegetative development. However, inoculating Talaromyces tumuli into the commercial plants exhibited a slow response during the first 20 days of the field evaluations. Still, it resulted in a significant increase in the fruit’s diameter and weight, with increases of 88.23% and 67.64%, respectively, compared to those in the control. T. asperellum presented a lower number of fruits per plant, although it showed an increase in fruit diameter and weight. In conclusion, using the native beneficial fungi T. asperellum and T. tumuli contributes positively to the dragon fruit production system. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

18 pages, 1144 KiB  
Article
Eugenol, Isoeugenol, Thymol, Carvacrol, and Ester Derivatives as an Ecofriendly Option to Control Glomerella Leaf Spot and Bitter Rot on Apple
by Renan R. Schorr, Meira J. Ballesteros Garcia, Debora Petermann, Rafaele R. Moreira, Beatriz H. L. N. Sales Maia, Francisco A. Marques and Louise L. May-De Mio
Plants 2024, 13(22), 3196; https://doi.org/10.3390/plants13223196 - 14 Nov 2024
Cited by 2 | Viewed by 1529
Abstract
Glomerella leaf spot (GLS) and bitter rot (BR) are severe diseases of apple. Colletotrichum nymphaeae and Colletotrichum chrysophillum are the main species in Brazil. To control GLS and BR in Brazilian apple orchards, mancozeb and thiophanate-methyl fungicides are still used despite reported Colletotrichum [...] Read more.
Glomerella leaf spot (GLS) and bitter rot (BR) are severe diseases of apple. Colletotrichum nymphaeae and Colletotrichum chrysophillum are the main species in Brazil. To control GLS and BR in Brazilian apple orchards, mancozeb and thiophanate-methyl fungicides are still used despite reported Colletotrichum resistance to these active ingredients. In addition, mancozeb has been banned from apple-importing countries and it has been a great challenge for apple producers to find products for its replacement that are eco-friendly. So, this study aimed to search for alternatives to control the diseases. We assessed the antifungal activity of eugenol, isoeugenol, thymol, carvacrol, and some of their ester derivatives. The best products to inhibit the pathogen in in vitro assays were thymol, thymol butyrate, and carvacrol, completely inhibiting mycelial growth at 125 mg L−1 and conidial germination at 100 mg L−1. In detached apple fruit, eugenol, eugenyl acetate, carvacryl acetate, and thymol butyrate, significantly reduced BR symptoms caused by Colletotrichum species with some variation between experiments and species, decreasing the risk of BR with the time compared to control. In detached leaves, all tested compounds significantly reduced the risk of development of GLS symptoms with disease control varying from 30 to 100%. The compounds tested are promising alternatives to replace fungicides to control bitter rot and Glomerella leaf spot on apple culture and should be tested for field conditions. Full article
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Volatile Organic Compounds Produced by Co-Culture of Burkholderia vietnamiensis B418 with Trichoderma harzianum T11-W Exhibits Improved Antagonistic Activities against Fungal Phytopathogens
by Wenzhe Li, Xinyue Wang, Yanqing Jiang, Shuning Cui, Jindong Hu, Yanli Wei, Jishun Li and Yuanzheng Wu
Int. J. Mol. Sci. 2024, 25(20), 11097; https://doi.org/10.3390/ijms252011097 - 16 Oct 2024
Cited by 2 | Viewed by 1852
Abstract
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control [...] Read more.
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control of two phytopathogenic fungi, Botrytis cinerea and Fusarium oxysporum f. sp. cucumerium Owen. The antagonistic activity of VOCs released in mono- and co-culture modes was evaluated by inhibition assays on a Petri dish and in detached fruit experiments, with the co-culture demonstrating significantly higher inhibitory effects on the phytopathogens on both the plates and fruits compared with the mono-cultures. Metabolomic profiles of VOCs were conducted using the solid–liquid microextraction technique, revealing 341 compounds with significant changes in their production during the co-culture. Among these compounds, linalool, dimethyl trisulfide, dimethyl disulfide, geranylacetone, 2-phenylethanol, and acetophenone were identified as having strong antagonistic activity through a standard inhibition assay. These key compounds were found to be related to the improved inhibitory effect of the B418 and T11-W co-culture. Overall, the results suggest that VOCs produced by the co-culture of B. vietnamiensis B418 and T. harzianum T11-W possess great potential in biological control. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions)
Show Figures

Figure 1

18 pages, 4242 KiB  
Article
Sensitivity Profile to Pyraclostrobin and Fludioxonil of Alternaria alternata from Citrus in Italy
by Giuseppa Rosaria Leonardi, Greta La Quatra, Giorgio Gusella, Dalia Aiello, Alessandro Vitale, Boris Xavier Camiletti and Giancarlo Polizzi
Agronomy 2024, 14(9), 2116; https://doi.org/10.3390/agronomy14092116 - 17 Sep 2024
Viewed by 1704
Abstract
Alternaria brown spot (ABS), caused by Alternaria alternata, is one of the main citrus diseases that causes heavy production losses and reductions in fruit quality worldwide. The application of chemical fungicides has a key role in the management of ABS. In this [...] Read more.
Alternaria brown spot (ABS), caused by Alternaria alternata, is one of the main citrus diseases that causes heavy production losses and reductions in fruit quality worldwide. The application of chemical fungicides has a key role in the management of ABS. In this study, 48 isolates of A. alternata collected from citrus orchards since 2014 were tested in vitro for their sensitivity to pyraclostrobin and fludioxonil, the latter being temporarily registered in Italy since 2020. Pyraclostrobin sensitivity was determined using spore germination and mycelial growth assays. The effective concentration inhibiting 50% of fungal growth (EC50) was determined for each isolate. The sensitivity assays showed that the majority of A. alternata isolates tested were sensitive to pyraclostrobin. EC50 values of fludioxonil in a mycelial growth assay indicated that 100% of isolates were sensitive to this fungicide. The analysis of the cytochrome b gene showed that none of the 40 isolates with a different sensitivity profile had the G143A mutation, and the subgroup of 8 isolates analyzed by real-time PCR did not carry the G137R and F129L mutations. A subset of four more sensitive and two reduced-sensitive isolates was chosen to assess sensitivity on detached citrus leaves treated with pyraclostrobin at the maximum recommended label rate. Disease incidence and symptom severity were significantly reduced, with a small reduction reported in leaves inoculated with the reduced-sensitive isolates. Furthermore, there was no correlation between sensitivity and fitness parameters evaluated in vitro (mycelium growth and sporulation rate). These findings help the development of monitoring resistance programs and, consequently, set up effective anti-resistance strategies for managing ABS on citrus orchards. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 6132 KiB  
Article
Genetic and Phytopathogenic Characterization of Endemic Colletotrichum Isolates in Major Olive Cultivars of Greece
by Christina Angeli, Polina C. Tsalgatidou, Athanasios Tsafouros, Anastasia Venieraki, Antonios Zambounis, Alexandros Vithoulkas, Anna Milionis, Epaminondas J. Paplomatas, Vasilios Demopoulos and Costas Delis
Horticulturae 2024, 10(8), 847; https://doi.org/10.3390/horticulturae10080847 - 9 Aug 2024
Cited by 1 | Viewed by 2088
Abstract
Olive anthracnose outbreaks caused by the Colletotrichum species complex in the Mediterranean region decrease both fruit yield and olive oil production while also drastically degrading olive oil quality. The presence of various Colletotrichum species able to produce disease symptoms in olive fruits significantly [...] Read more.
Olive anthracnose outbreaks caused by the Colletotrichum species complex in the Mediterranean region decrease both fruit yield and olive oil production while also drastically degrading olive oil quality. The presence of various Colletotrichum species able to produce disease symptoms in olive fruits significantly deteriorates the efforts for an efficient crop protection strategy. In this report, the major olive productive area of Peloponnese was screened for Colletotrichum species capable of generating anthracnose symptoms. Olive fruits of 12 different olive cultivars were collected from 60 groves distributed analogously in the Peloponnese. Thirty-two fungal strains isolated from asymptomatic olive drupes were identified morphologically as Colletotrichum spp. and were multilocus genetically analyzed. The 32 isolates were grouped into two primary lineages resembling the previously characterized Colletotrichum acutatum and Colletotrichum nymphaeae based on the conducted genetic analysis for five genetic loci. The virulence of 16 Colletotrichum spp. strains were evaluated in a detached fruit assay of 10 Greek olive cultivars. The results clearly suggested that fungal isolates belonging to both C. acutatum and C. nymphaeae exhibited different levels of pathogenicity in a cultivar-dependent manner. Thus, cultivars examined in terms of the % Disease Index (%DI) were divided into highly tolerant, tolerant, and susceptible, and those analyzed regarding the % Disease Severity Index (%DSI) were divided into tolerant and susceptible. Our results suggest that the Greek cultivars of Athinolia and Megaritiki are highly tolerant to the vast majority of Colletotrichum strains isolated from Peloponnesian groves and consist of a significant genetic material for the future design of crop protection programs against anthracnose breakouts. Full article
(This article belongs to the Special Issue Fungal Diseases in Horticultural Crops)
Show Figures

Figure 1

15 pages, 4505 KiB  
Article
Effectiveness of Volatiles Emitted by Streptomyces abikoensis TJGA-19 for Managing Litchi Downy Blight Disease
by Mengyu Xing, Tao Sun, Tong Liu, Zide Jiang and Pinggen Xi
Microorganisms 2024, 12(1), 184; https://doi.org/10.3390/microorganisms12010184 - 17 Jan 2024
Cited by 7 | Viewed by 1689
Abstract
Litchi is a fruit of significant commercial value; however, its quality and yield are hindered by downy blight disease caused by Peronophythora litchii. In this study, volatile organic compounds (VOCs) from Streptomyces abikoensis TJGA-19 were investigated for their antifungal effects and studied [...] Read more.
Litchi is a fruit of significant commercial value; however, its quality and yield are hindered by downy blight disease caused by Peronophythora litchii. In this study, volatile organic compounds (VOCs) from Streptomyces abikoensis TJGA-19 were investigated for their antifungal effects and studied in vitro and in planta for the suppression of litchi downy blight disease in litchi leaves and fruits. The growth of P. litchii was inhibited by VOCs produced by TJGA-19 cultivated on autoclaved wheat seeds for durations of 10, 20, or 30 days. Volatiles from 20-day-old cultures were more active in inhibition effect against P. litchii than those from 10- or 30-day-old cultures. These volatiles inhibit the growth of mycelia, sporulation, and oospore production, without any significant effect on sporangia germination. Additionally, the VOCs were effective in suppressing disease severity in detached litchi leaf and fruit infection assays. With the increase in the weight of the wheat seed culture of S.abikoensis TJGA-19, the diameters of disease spots on leaves, as well as the incidence rate and disease indices on fruits, decreased significantly. Microscopic results from SEM and TEM investigations showed abnormal morphology of sporangia, mycelia, and sporangiophores, as well as organelle damage in P. litchii caused by VOCs of TJGA-19. Spectroscopic analysis revealed the identification of 22 VOCs produced by TJGA-19, among which the most dominant compound was 2-Methyliborneol. These findings indicated the significant role of TJGA-19 compounds in the control of litchi downy blight disease and in improving fruit quality. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

10 pages, 1486 KiB  
Brief Report
Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus
by Marcel van der Merwe, Michael D. Jukes, Caroline Knox, Sean D. Moore and Martin P. Hill
Pathogens 2023, 12(10), 1237; https://doi.org/10.3390/pathogens12101237 - 13 Oct 2023
Cited by 2 | Viewed by 1427
Abstract
Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary [...] Read more.
Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour and development. A series of detached fruit bioassays were performed to determine whether the combination of yeast with CrleGV enhances its efficacy. These assays included determining the optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use alongside CrleGV was determined to be 106 cells·mL−1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there was an observed decrease in larval survival. In future studies, field trials will be conducted with combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory findings can be replicated in orchard conditions. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

23 pages, 11575 KiB  
Article
Exploring the Potentiality of Native Actinobacteria to Combat the Chilli Fruit Rot Pathogens under Post-Harvest Pathosystem
by Rajamuthu Renuka, Kupusamy Prabakar, Rangasamy Anandham, Lakshmanan Pugalendhi, Lingam Rajendran, Thiruvengadam Raguchander and Gandhi Karthikeyan
Life 2023, 13(2), 426; https://doi.org/10.3390/life13020426 - 2 Feb 2023
Cited by 8 | Viewed by 4737
Abstract
Chilli is an universal spice cum solanaceous vegetable crop rich in vitamin A, vitamin C, capsaicin and capsanthin. Its cultivation is highly threatened by fruit rot disease which cause yield loss as high as 80–100% under congenial environment conditions. Currently actinobacteria are considered [...] Read more.
Chilli is an universal spice cum solanaceous vegetable crop rich in vitamin A, vitamin C, capsaicin and capsanthin. Its cultivation is highly threatened by fruit rot disease which cause yield loss as high as 80–100% under congenial environment conditions. Currently actinobacteria are considered as eco-friendly alternatives to synthetic fungicides at pre and post-harvest pathosystems. Hence, this research work focuses on the exploitation of rhizospheric, phyllospheric and endophytic actinobacteria associated with chilli plants for their antagonistic activity against fruit rot pathogens viz., Colletotrichum scovillei, Colletotrichum truncatum and Fusarium oxysporum. In vitro bioassays revealed that the actinobacterial isolate AR26 was found to be the most potent antagonist with multifarious biocontrol mechanisms such as production of volatile, non-volatile, thermostable compounds, siderophores, extracellular lytic enzymes. 16S rRNA gene sequence confirmed that the isolate AR26 belongs to Streptomyces tuirus. The results of detached fruit assay revealed that application of liquid bio-formulation of Stretomyces tuirus @ 10 mL/L concentration completely inhibited the development of fruit rot symptoms in pepper fruits compared to methanol extracts. Hence, the present research work have a great scope for evaluating the biocontrol potential of native S. tuirus AR26 against chilli fruit rot disease under field condition as well against a broad spectrum of post-harvest plant pathogens. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
Show Figures

Figure 1

23 pages, 7930 KiB  
Article
Calendula officinalis—A Great Source of Plant Growth Promoting Endophytic Bacteria (PGPEB) and Biological Control Agents (BCA)
by Polina C. Tsalgatidou, Eirini-Evangelia Thomloudi, Kallimachos Nifakos, Costas Delis, Anastasia Venieraki and Panagiotis Katinakis
Microorganisms 2023, 11(1), 206; https://doi.org/10.3390/microorganisms11010206 - 13 Jan 2023
Cited by 16 | Viewed by 5336
Abstract
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic [...] Read more.
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic Bacteria, PGPEB). In the present study, 36 out of 119 isolated endophytic bacterial strains from roots, leaves and flowers of the pharmaceutical plant Calendula officinalis were further identified and classified into Bacillus, Pseudomonas, Pantoea, Stenotrophomonas and Rhizobium genera. Selected endophytes were evaluated depending on positive reaction to different plant growth promoting (PGP) traits, motility, survival rate and inhibition of phytopathogenic fungi in vitro and ex vivo (tomato fruit). Bacteria were further assessed for their plant growth effect on Arabidopsis thaliana seedlings and on seed bio-primed tomato plantlets, in vitro. Our results indicated that many bacterial endophytes increased seed germination, promoted plant growth and changed root structure by increasing lateral root density and length and root hair formation. The most promising antagonistic PGPEB strains (Cal.r.29, Cal.l.30, Cal.f.4, Cal.l.11, Cal.f.2.1, Cal.r.19 and Cal.r.11) are indicated as effective biological control agents (BCA) against Botrytis cinerea on detached tomato fruits. Results underlie the utility of beneficial endophytic bacteria for sustainable and efficient crop production and disease control. Full article
Show Figures

Figure 1

12 pages, 1715 KiB  
Article
Potential Role of Biocontrol Agents for Sustainable Management of Fungal Pathogens Causing Canker and Fruit Rot of Pistachio in Italy
by Giorgio Gusella, Alessandro Vitale and Giancarlo Polizzi
Pathogens 2022, 11(8), 829; https://doi.org/10.3390/pathogens11080829 - 25 Jul 2022
Cited by 10 | Viewed by 2735
Abstract
Pistachio (Pistacia vera) is an important Mediterranean crop. In Italy, pistachio is cultivated in the southern regions, of which Sicily is the main production area. Recently, the phytopathological situation of this crop has started to be updated, and new diseases have [...] Read more.
Pistachio (Pistacia vera) is an important Mediterranean crop. In Italy, pistachio is cultivated in the southern regions, of which Sicily is the main production area. Recently, the phytopathological situation of this crop has started to be updated, and new diseases have been discovered, studied, and reported. Botryosphaeriaceae spp. and Leptosillia pistaciae are major canker/rot pathogens, and Cytospora pistaciae and Eutypa lata have been reported as minor canker pathogens. In this paper, we evaluated different biological control agents, belonging to Trichoderma asperellum, T. atroviride and T. harzianum, as well as some Bacillus amyloliquefaciens strains, against above-mentioned pathogens. Results of dual culture assays showed that all the biological products, both fungi and bacteria, were able to inhibit the mycelial growth of the pathogens in vitro. Experiments using detached twigs showed no effect of biocontrol agents in reducing infections, except for Neofusicoccum hellenicum treated with T. harzianum T22 and Leptosillia pistaciae treated with B. amyloliquefaciens D747. Results of detached fruit experiments showed an efficacy ranging from 32.5 to 66.9% of all the biological products in reducing the lesions caused by N. mediterraneum. This study provides basic information for future research on biological control of pistachio diseases and future prospects for search of more effective biological control agents for canker diseases than those studied here. Full article
(This article belongs to the Special Issue Prevention and Management of Tree Diseases)
Show Figures

Figure 1

17 pages, 1793 KiB  
Article
Biocontrol Ability and Production of Volatile Organic Compounds as a Potential Mechanism of Action of Olive Endophytes against Colletotrichum acutatum
by Yosra Sdiri, Teresa Lopes, Nuno Rodrigues, Kevin Silva, Isabel Rodrigues, José Alberto Pereira and Paula Baptista
Microorganisms 2022, 10(3), 571; https://doi.org/10.3390/microorganisms10030571 - 6 Mar 2022
Cited by 15 | Viewed by 3684
Abstract
Olive anthracnose, mainly caused by Colletotrichum acutatum, is considered a key biotic constraint of the olive crop worldwide. This work aimed to evaluate the ability of the endophytes Aureobasidium pullulans and Sarocladium summerbellii isolated from olive trees to reduce C. acutatum growth [...] Read more.
Olive anthracnose, mainly caused by Colletotrichum acutatum, is considered a key biotic constraint of the olive crop worldwide. This work aimed to evaluate the ability of the endophytes Aureobasidium pullulans and Sarocladium summerbellii isolated from olive trees to reduce C. acutatum growth and anthracnose symptoms, and to assess A. pullulans-mediated changes in olive fruit volatile organic compounds (VOCs) and their consequences on anthracnose development. Among the endophytes tested, only A. pullulans significantly reduced the incidence (up to 10-fold) and severity (up to 35-fold) of anthracnose in detached fruits, as well as the growth (up to 1.3-fold), sporulation (up to 5.9-fold) and germination (up to 3.5-fold) of C. acutatum in dual culture assays. Gas chromatography–mass spectrometry analysis of olives inoculated with A. pullulans + C. acutatum and controls (olives inoculated with C. acutatum, A. pullulans or Tween) led to the identification of 37 VOCs, with alcohols being the most diversified and abundant class. The volatile profile of A. pullulans + C. acutatum revealed qualitative and quantitative differences from the controls and varied over the time course of microbial interactions. The most significant differences among treatments were observed at a maximal reduction in anthracnose development. At this stage, a set of VOCs, particularly Z-3-hexen-1-ol, benzyl alcohol and nonanal, were highly positively correlated with the A. pullulans + C. acutatum treatment, suggesting they play a critical role in anthracnose reduction. 6-Methyl-5-hepten-2-one and 2-nonanone were positively associated with the C. acutatum treatment and thus likely have a role in pathogen infection. Full article
(This article belongs to the Special Issue Endophytes for Managing Biotic and Abiotic Stress in Plants)
Show Figures

Figure 1

16 pages, 1437 KiB  
Article
Native Vineyard Non-Saccharomyces Yeasts Used for Biological Control of Botrytis cinerea in Stored Table Grape
by Antonio Domenico Marsico, Matteo Velenosi, Rocco Perniola, Carlo Bergamini, Scott Sinonin, Vanessa David-Vaizant, Flavia Angela Maria Maggiolini, Alexandre Hervè, Maria Francesca Cardone and Mario Ventura
Microorganisms 2021, 9(2), 457; https://doi.org/10.3390/microorganisms9020457 - 22 Feb 2021
Cited by 24 | Viewed by 3741
Abstract
Postharvest spoilage fungi, such as Botrytis cinerea, are considered the main cause of losses of fresh fruit quality and vegetables during storage, distribution, and consumption. The current control strategy is the use of SO2 generator pads whose application is now largely [...] Read more.
Postharvest spoilage fungi, such as Botrytis cinerea, are considered the main cause of losses of fresh fruit quality and vegetables during storage, distribution, and consumption. The current control strategy is the use of SO2 generator pads whose application is now largely under observation. A high quantity of SO2 can be deleterious for fresh fruits and vegetables and it is not allowed in organic agriculture. For this reason, great attention has been recently focused on identifying Biological Control Agents (BCA) to implement biological approaches devoid of chemicals. In this direction, we carried out our study in isolating five different non-Saccharomyces yeast strains from local vineyards in the South of Italy as possible BCA. We performed both in vitro and in vivo assays in semi-commercial conditions on detached grape berries stored at 0 °C, simulating the temperature normally used during cold storage, and obtained relevant results. We isolated three M. pulcherrima strains and one L. thermotolerans strain able to largely antagonize the development of the B. cinerea, at both in vitro and in vivo conditions. In particular, we detected the ability of the three isolates of M. pulcherrima strains Ale4, N20/006, and Pr7 and the L. thermotolerans strain N10 to completely inhibit (100% in reduction) the mycelial growth of B. cinerea by producing fungistatic compounds. We found, using an extracellular lytic enzymes activity assay, that such activity could be related to lipid hydrolyzation, β-1,3-glucanase and pectinase activity, and pectinase and protease activity, depending on the yeasts used. Results from our in vitro assays allowed us to hypothesize for M. pulcherrima strains Ale4 and N20/006 a possible combination of both the production of soluble metabolites and volatile organic compounds to antagonize against B. cinerea growth. Moreover, in semi-commercial conditions, the M. pulcherrima strain N20/006 and L. thermotolerans strain N10 showed relevant antagonistic effect also at low concentrations (with a significantly reduction of ‘slip skin’ incidence of 86.4% and 72.7%, respectively), thus highlighting a peculiar property to use in commercial development for organic agriculture and the handling process. Full article
Show Figures

Figure 1

16 pages, 3795 KiB  
Article
Antifungal Effects of Rhizospheric Bacillus Species Against Bayberry Twig Blight Pathogen Pestalotiopsis versicolor
by Md. Arshad Ali, Haiying Ren, Temoor Ahmed, Jinyan Luo, Qianli An, Xingjiang Qi and Bin Li
Agronomy 2020, 10(11), 1811; https://doi.org/10.3390/agronomy10111811 - 18 Nov 2020
Cited by 32 | Viewed by 6373
Abstract
Bayberry is an attractive, nutritious, and popular fruit in China. The plant fungal pathogen Pestalotiopsis versicolor XJ27 is the causative agent of bayberry twig blight disease, which severely affects bayberry production. Traditional control techniques, such as chemical fungicides, are being used to control [...] Read more.
Bayberry is an attractive, nutritious, and popular fruit in China. The plant fungal pathogen Pestalotiopsis versicolor XJ27 is the causative agent of bayberry twig blight disease, which severely affects bayberry production. Traditional control techniques, such as chemical fungicides, are being used to control this disease; however, these techniques cause environmental and health hazards. In this study, we screened sweet potato rhizospheric bacteria with biocontrol potentials against P. versicolor XJ27, the bayberry twig blight pathogen. Ten isolates showed inhibition; Bacillus siamensis S3 and Bacillus tequilensis S5 showed the highest fungal growth inhibition. The antagonistic bacterial culture suspensions of S3 and S5 inhibited the mycelial growth by 82.9% and 76.2%, respectively. Their extracellular culture filtrates had mycelial growth inhibition of 86.8% and 82.2%, respectively. In detached leaf assay, the extracellular culture filtrates of S3 and S5 inhibited the size of the leaf lesion by 82.3% and 76.2%, respectively. SEM and TEM imaging showed a severe hyphal-damaged structure caused by the antagonistic bacteria. The fungal inhibition mechanisms might employ the hydrolytic enzymes and lipopeptides produced by the bacteria. Both the S3 and S5 have chitinase and protease activity; they produce a series of lipopeptides such as surfactin, iturin, and mycosubtilin. Therefore, we can suggest these bacteria as biocontrol agents for bayberry twig blight disease as an alternative to fungicides based upon their attributes of antifungal activity. Full article
Show Figures

Figure 1

17 pages, 3981 KiB  
Article
Biological Control of Tomato Gray Mold Caused by Botrytis Cinerea with the Entomopathogenic Fungus Metarhizium Anisopliae
by Most.Sinthia Sarven, Qiuyan Hao, Junbo Deng, Fang Yang, Gaofeng Wang, Yannong Xiao and Xueqiong Xiao
Pathogens 2020, 9(3), 213; https://doi.org/10.3390/pathogens9030213 - 13 Mar 2020
Cited by 57 | Viewed by 9443
Abstract
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone [...] Read more.
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone in front of the B. cinerea colony in the dual culture test. In addition, volatile organic compounds generated by M. anisopliae were shown to have an inhibitory effect on B. cinerea mycelia growth and reduced 41% of gray mold severity of postharvest tomatoes. The 10% concentration of the culture filtrate of M. anisopliae inhibited 88.62% of colony radial growth as well as 63.85% of sclerotia germination and all conidia germination of B. cinerea. Furthermore, the culture filtrate of M. anisopliae retained its inhibitory effect against the radial growth of B. cinerea even after heating for 15 min at 100 °C. Feasible mechanisms of M. anisopliae involved in the control of B. cinerea were explored, and it was demonstrated that the plasma membrane of B. cinerea conidia was damaged by the product of metabolism of M. anisopliae. In addition, after treating with culture filtrate of M. anisopliae, the B. cinerea phenotype was shown to be abnormal, and cell organelles of B. cinerea mycelia were damaged significantly. A significant control efficacy of M. anisopliae against tomato gray mold was detected on both the detached leaf assay (84.24%) as well as the whole plant (72.38%). In addition, a 78% reduction in tomato fruit mold was detected at a 10% treated concentration of M. anisopliae. These findings suggest that M. anisopliae possesses potential as a biocontrol agent against tomato gray mold in the greenhouse and during the postharvest stage. Full article
(This article belongs to the Section Plant Pathogens)
Show Figures

Figure 1

15 pages, 20769 KiB  
Article
Antifungal Activity of Natural Volatile Organic Compounds against Litchi Downy Blight Pathogen Peronophythora litchii
by Mengyu Xing, Li Zheng, Yizhen Deng, Dandan Xu, Pinggen Xi, Minhui Li, Guanghui Kong and Zide Jiang
Molecules 2018, 23(2), 358; https://doi.org/10.3390/molecules23020358 - 8 Feb 2018
Cited by 66 | Viewed by 6552
Abstract
Litchi (Litchi chinensis Sonn.) is a commercially important fruit but its production and quality are restricted by litchi downy blight, caused by the oomycete pathogen Peronophythora litchii Chen. Volatile substances produced by a biocontrol antinomycetes Streptomyces fimicarius BWL-H1 could inhibited P. litchii [...] Read more.
Litchi (Litchi chinensis Sonn.) is a commercially important fruit but its production and quality are restricted by litchi downy blight, caused by the oomycete pathogen Peronophythora litchii Chen. Volatile substances produced by a biocontrol antinomycetes Streptomyces fimicarius BWL-H1 could inhibited P. litchii growth and development both in vitro and in detached litchi leaf and fruit infection assay. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses indicated that volatile organic compounds (VOCs) from BWL-H1 resulted in severe damage to the endomembrane system and cell wall of P. litchii cells in vitro and abnormal morphology of appressoria, as well as deformed new hyphae in infection process. VOCs could suppress mycelial growth, sporulation, while with no obvious effect on sporangia germination. Based on gas chromatography-mass spectrophotometric analyses, 32 VOCs were identified from S. fimicarius BWL-H1, the most abundant of which was phenylethyl alcohol. Eight VOCs, including phenylethyl alcohol, ethyl phenylacetate, methyl anthranilate, α-copaene, caryophyllene, humulene, methyl salicylate and 4-ethylphenol, that are commercially available, were purchased and their bioactivity was tested individually. Except for humulene, the other seven tested volatile compounds shown strong inhibitory activity against mycelial growth, sporulation, sporangia germination and germ-tube growth of P. litchii. Especially, 4-ethylphenol showed the highest inhibitory effect on sporulation at a very low concentration of 2 µL/L. Overall, our results provided a better understanding of the mode of action of volatiles from BWL-H1 on P. litchii, and showed that volatiles from BWL-H1 have the potential for control of postharvest litchi downy blight. Full article
Show Figures

Figure 1

Back to TopTop