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Abstract: Yeasts associated with lepidopteran pests have been shown to play a role in their survival,
development, and oviposition preference. It has been demonstrated that combining these yeasts with
existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta
is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia
leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several
yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour
and development. A series of detached fruit bioassays were performed to determine whether the
combination of yeast with CrleGV enhances its efficacy. These assays included determining the
optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further
improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use
alongside CrleGV was determined to be 106 cells·mL−1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces
marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared
to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S.
cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there
was an observed decrease in larval survival. In future studies, field trials will be conducted with
combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory
findings can be replicated in orchard conditions.
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1. Introduction

Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (false codling moth) is
a significant pest of the South African citrus industry and other citrus-producing regions
throughout sub-Saharan Africa [1]. The feeding of larvae on fruit causes damage, potentially
reducing yields and resulting in financial losses [2]. Improved management practices
in recent years have effectively suppressed T. leucotreta populations in South African
orchards [3]. However, T. leucotreta is now primarily a phytosanitary risk rather than
a destructive crop pest, with zero tolerance in the European Union and other export
markets [4].

Several control options are available to manage T. leucotreta, including chemical,
biological, cultural, and pheromone-based methods [3,4]. Treatments are strategically
combined into an integrated pest management (IPM) programme to suppress T. leucotreta,
beginning early in the season [5,6]. IPM programmes are considered the most effective
approach to managing this pest and rely on the intelligent selection and implementation of
pest monitoring and control options. Biological control agents are fast becoming an integral
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part of IPM programmes due to the stringent regulations around chemical insecticides,
which limit their use and availability [7]. A number of biological agents are available for
use against T. leucotreta in South Africa, most notably baculoviruses [3,8].

The baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) has been extensively
used for more than 15 years to control T. leucotreta throughout South Africa [3,9]. Despite the
significant benefits of baculoviruses, they have a few drawbacks, including their sensitivity
to ultraviolet (UV) degradation, slower speed of kill, short field persistence and narrow
host range [8–11].

While CrleGV is an effective biological control agent against T. leucotreta [9], continued
research and innovation are necessary to enhance its efficacy. Improving the effectiveness
of baculoviruses is crucial for their long-term use as biopesticides. The principal biological
limitation affecting the efficacy of baculoviruses is the possibility for them to be ingested by
their intended host before penetrating the fruit [12]. Efforts to improve the performance of
baculoviruses have mainly focused on increasing virus exposure time to larvae before they
penetrate the fruit through the use of attractants and feeding stimulants [9,13]. Adding
adjuvants such as molasses to virus formulations has been shown to significantly improve
virus efficacy compared to applying the virus alone [9,14]. Recently, the incorporation of
mutualistic microorganisms associated with the target pest into formulations has been
proposed as a new larval attractant [15].

Previous attempts to enhance Cydia pomonella granulovirus (CpGV) performance
through the combination of feeding stimulants and larval attractants have not yielded
definitive improvements [13,16,17]. These efforts have predominantly centred around host
plant volatiles that attract Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) neonates,
but they have primarily appeared to facilitate host location rather than stimulate feeding
behaviour [18,19]. Microbes consumed and harboured within the gut of insects have the
potential to profoundly influence both the survival and behaviour of their host [20]. The
significance of microbial communities in insect–plant interactions is indispensable [21,22].
Cydia pomonella larvae have a close affiliation with yeasts from the genus Metschnikowia,
which were isolated from their gut and feeding galleries. Larval feeding assays demon-
strated that M. andauensis positively impacted C. pomonella larvae, accelerating their de-
velopment and lowering mortality rates. Volatiles produced by M. andauensis also elicited
upwind flight in adult C. pomonella females, which resulted in an increased number of eggs
being oviposited on apples that had been inoculated with yeast [15]. The combination
of yeasts, isolated from C. pomonella larvae, with CpGV occlusion bodies (OBs) notice-
ably improved the virus’s efficiency, both in controlled laboratory experiments and in
practical field applications [23]. Yeasts from the genus Metschnikowia actively promoted
larval feeding and facilitated the ingestion of CpGV [15,23]. Furthermore, considering the
widespread availability of Saccharomyces cerevisiae in commercial use, its combination with
CpGV was also evaluated. Larval mortality recorded in CpGV assays using S. cerevisiae
closely resembled that of yeasts isolated from C. pomonella larvae [14].

A recent study aimed to identify yeast species present within the digestive tract of T.
leucotreta larvae collected from citrus orchards across South Africa. This led to the identi-
fication of six yeast species: Meyerozyma guilliermondii, Pichia kluyveri, Pichia kudriavzevii,
Hanseniaspora uvarum, Clavispora lusitaniae, and Kluyveromyces marxianus [24]. Larval devel-
opment assays demonstrated that M. guilliermondii, H. uvarum, and P. kluyveri accelerated
larval development and reduced mortality, while P. kluyveri, H. uvarum, P. kudriavzevii,
and K. marxianus were shown to influence the feeding preference of neonate T. leucotreta in
larval feeding assays. Additionally, the oviposition preference of adult T. leucotreta females
was affected by M. guilliermondii, P. kudriavzevii, and H. uvarum, with an increased number
of eggs being oviposited on Navel oranges inoculated with these yeasts.

Yeast strains hold promising potential as abundant sources of novel biological agents
that can be harnessed for the augmentation and improvement of established control agents.
In this study, we aimed to determine whether previously isolated yeast species associated
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with T. leucotreta larvae increase the efficacy of CrleGV when combined. Furthermore, the
addition of an adjuvant (molasses) to improve the yeast/virus mixture efficacy was analysed.

2. Materials and Methods
2.1. Thaumatotibia leucotreta Culture

Thaumatotibia leucotreta eggs were obtained from the heterogeneous culture, known
as “Mixed Colony”, held at Rhodes University’s Department of Zoology and Entomology,
South Africa. Eggs were stored in Petri dishes sealed with parafilm in a 25 ◦C controlled
environment (CE) room with a relative humidity of 30–60%. Once the eggs had turned
dark brown, a piece of cotton wool moistened with double distilled water (ddH2O) was
placed in the Petri dish to ensure that emerging T. leucotreta neonates did not dehydrate
before being used.

2.2. Detached Fruit Bioassays

Three sets of detached fruit bioassays were conducted to (i) determine the optimal yeast
concentration to use in combination with CrleGV, (ii) assess the effectiveness of combining
each of the isolated yeasts with CrleGV, and (iii) evaluate the efficacy of the yeast/virus
mixture through the addition of an adjuvant and surfactant. CrleGV was applied at an
LC50 concentration of 9.31 × 107 OBs·mL−1 for all treatments [25]. The LC50 concentration
was selected as this would result in 50% mortality of the T. leucotreta population.

Batches of Navel oranges were collected from orchards in the Sunday’s River Valley in
the Eastern Cape Province of South Africa. No postharvest treatments had been applied to
the oranges. The Navel oranges were stored in a 4 ◦C cold room to preserve the fruit until
use. The oranges were checked weekly, with fruit showing any sign of disease or mould
being discarded. Oranges were stored for a maximum period of 6–8 weeks. Navel oranges
were removed from 4 ◦C cold storage one day prior to being used in a detached fruit
bioassay. They were inspected for any sign of disease or mould before being thoroughly
washed in a 0.5% bleach solution (v/v), rinsed twice in ddH2O, and allowed to air dry in a
25 ◦C CE room overnight.

Yeast cultures were grown in a Yeast extract Peptone Dextrose (YPD) medium con-
taining 40 units·mL−1 of penicillin (Pen) and 40 µg·mL−1 of streptomycin (Strep) (Thermo
Fisher Scientific, Waltham, MA, USA) for 20 h at 27 ◦C while shaking. Cell counts were
adjusted appropriately with ddH2O.

A modified version of the detached fruit bioassay described by Moore et al. [25] was
used to determine the effectiveness of combining CrleGV with yeast against T. leucotreta.
The first set of bioassay treatments included a ddH2O control, CrleGV alone, P. kudriavzevii
at 2 × 108 cells·mL−1 plus CrleGV, P. kudriavzevii at 2 × 106 cells·mL−1 plus CrleGV, and
P. kudriavzevii at 2 × 104 cells·mL−1 plus CrleGV. A yeast concentration of 108 cells·mL−1

was selected as a starting point based on prior research on yeast/virus synergism in C.
pomonella [23]. Pichia kudriavzevii was selected as the yeast isolate to use during these
bioassays due to its attractiveness to T. leucotreta neonates and adult females [24]. The
second set of detached fruit bioassays evaluated the efficacy of combining M. guilliermondii,
P. kluyveri, H. uvarum, and K. marxianus with CrleGV. Saccharomyces cerevisiae was also
included as a treatment, as it forms part of the artificial diet on which T. leucotreta larvae
are reared [26]. Yeasts were applied at a concentration of 2 × 106 cells·mL−1 with CrleGV
at 9.31 × 107 OBs·mL−1, as it was previously shown to be the optimal yeast/virus ratio.
Finally, detached fruit bioassays were conducted to enhance the efficacy of the yeast/virus
mixture by adding molasses and BREAK-THRU® S 240, as these have been shown to
enhance the efficacy of the virus in field trials [9]. Pichia kudriavzevii was selected because
it has been shown to influence T. leucotreta neonates and adult female behaviour [24].
Saccharomyces cerevisiae was included, as it is a commercially available yeast strain and has
previously been shown to enhance the efficacy of CpGV [14]. The third set of bioassay
treatments included a ddH2O control, CrleGV, P. kudriavzevii (at 2 × 106 cells·mL−1) plus
CrleGV, and S. cerevisiae (at 2 × 106 cells·mL−1) plus CrleGV, each with an adjuvant
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(molasses) and surfactant (BREAK-THRU® S 240) (Evonik Industries AG, Essen, Germany)
at 0.25% and 0.005%, respectively.

Navel oranges were placed onto a sterile metal rack and sprayed with a specific
treatment until runoff using a handheld sprayer. The treated oranges were subsequently
positioned on a platform with none of the fruit coming into contact with each other,
transported to a 25 ◦C CE room and allowed to dry for 30–45 min. Five T. leucotreta
neonates were placed on each fruit. Thirty Navel oranges were used per treatment, with
each treatment replicated three times. Detached fruit bioassays were run for 14 days, after
which the Navel oranges were dissected and inspected for the presence or absence of live T.
leucotreta larvae.

2.3. Statistical Analysis

A generalized linear mixed model (GLMM) was utilised to determine whether the
inclusion of yeast to CrleGV impacted T. leucotreta larval survival. The data from the three
experiments were individually analysed, as each experiment was conducted sequentially.
The GLMM was specified using a binomial error distribution and a logit link function.
Significant differences in larval survival between treatments were assessed using likelihood
ratio tests. Where significant differences were found, pairwise comparisons were performed
using the “emmeans” R package and were adjusted for multiple comparisons using Tukey
adjustment [27]. All statistical analyses were performed using R version 4.4.2 (R Core
Team 2022) and all models were fitted using the “glmmTMB” R package [28]. Graphs were
produced using GraphPad Prism version 10.0.3.

3. Results
3.1. Optimising the Yeast/Virus Ratio

Detached fruit bioassays were conducted to determine the optimal yeast concentration
to apply alongside CrleGV. There was evidence for a statistically significant difference
in larval survival between treatments (X2 = 62.525, df = 4, p < 0.001). The application
of P. kudriavzevii at a concentration of 2 × 108 cells·mL−1 (beta = 0.405, z-value = 1.346,
p = 0.6623) in combination with CrleGV did not result in a significant reduction in larval
survival when compared to the use of CrleGV alone. However, when P. kudriavzevii was
applied at concentrations of 2 × 106 cells·mL−1 (beta = 1.012, z-value = 3.179, p = 0.0129)
and 2 × 104 cells·mL−1 (beta = 1.012, z-value = 3.179, p = 0.0129), it led to a notable decrease
in larval survival by 23.33% (Figure 1). All treatments were significantly different from the
ddH2O control treatment.

3.2. Combining CrleGV with Yeast

There was evidence for a statistically significant difference in larval survival between
treatments (X2 = 143.82, df = 6, p < 0.001). In comparison to the use of CrleGV alone,
the inclusion of P. kluyveri, K. marxianus, and S. cerevisiae alongside the virus resulted in
reductions in larval survival by 25.01% (with beta = 1.187, z-value = 3.913, p = 0.0018),
27.24% (with beta = 1.332, z-value = 4.243, p = 0.0004), and 21.68% (with beta = 0.990,
z-value = 3.402, p = 0.0119), respectively (Figure 2). Meyerozyma guilliermondii (beta = 0.543,
z-value = 2.006, p = 0.4108) and H. uvarum (beta = 0.647, z-value = 2.357, p = 0.2174)
did not significantly reduce larval survival when applied in combination with CrleGV
compared to the virus alone. All treatments were significantly different from the ddH2O
control treatment.
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oranges were treated with ddH2O, CrleGV at 9.31 × 107 OBs·ml−1, and P. kudriavzevii at varying
concentrations ranging from 2 × 108 to 2 × 104 cells·mL−1 plus CrleGV. Different letters indicate
statistically significant differences (p ≤ 0.05).
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were treated with H. uvarum, K. marxianus, M. guilliermondii, P. kluyveri, and S. cerevisiae combined
with CrleGV. Different letters indicate statistically significant differences (p ≤ 0.05).
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3.3. Enhancing the Efficacy of Yeast/Virus Formulation

There was evidence for a statistically significant difference in larval survival between
treatments (X2 = 80.059, df = 3, p < 0.001). The addition of molasses and BREAK-THRU® S
240 did not significantly enhance the efficacy of P. kudriavzevii (beta = 0.866, z–value = 2.393,
p = 0.0783) or S. cerevisiae (beta = 0.714, z-value = 2.032, p = 0.1763) formulations compared
to CrleGV alone (Figure 3). The inclusion of molasses and BREAK-THRU® S 240 resulted
in a 15.56% and 13.34% decrease in larval survival, respectively, when P. kudriavzevii and
S. cerevisiae were present, compared to treatments without these additives. Furthermore,
no significant differences were recorded between the two yeast isolates (beta = −0.152,
z-value = −0.390, p = 0.9799). All treatments were significantly different from the ddH2O
control treatment.
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Figure 3. Thaumatotibia leucotreta larval survival in 14-day detached fruit bioassays including molasses
and BREAK-THRU® S 240 (n = 3). Navel oranges were treated with ddH2O, CrleGV alone, P.
kudriavzevii plus CrleGV, and S. cerevisiae plus CrleGV, with yeasts applied at 2 × 106 cells·mL−1 and
CrleGV at 9.31 × 107 OBs·mL−1. Except for the control, all treatments had the addition of molasses
and BREAK-THRU® S 240 at 0.25% and 0.005%, respectively. Different letters indicate statistically
significant differences (p ≤ 0.05).

4. Discussion

The influence of mutualistic yeast on insect behaviour and development has been
studied recently [15,20,24,29,30]. Yeasts have demonstrated their vital role as a nutritional
foundation for the growth of insect larvae and in their capacity to impact the feeding
patterns and behaviour of newly hatched larvae [30–33]. Additionally, volatile compounds
produced by yeasts evoke significant behavioural responses in insects [31,34,35]. Cydia
pomonella larvae have a strong symbiotic relationship with yeast belonging to the genus
Metschnikowia [15]. These yeasts have been demonstrated to play a critical role in promoting
the growth of C. pomonella larvae by providing vital nutrients and safeguarding them
against fungal infections, thereby reducing mortality [15]. The interactions between insect
pests and their mutualistic microbes present an ideal target for manipulation and use in



Pathogens 2023, 12, 1237 7 of 10

biological control. However, incorporating beneficial microbes to enhance larval feeding
with existing biological control agents has been limited [14,23].

Previous research showed improved effectiveness of baculovirus treatments utilising
mutualistic yeast at 108 cells·mL−1 [14,23]. However, no significant differences were
recorded in this study when P. kudriavzevii was applied in mixtures with CrleGV at a
similar concentration [36]. The concentration at which P. kudriavzevii was applied may
have resulted in an unfavourable yeast/virus ratio and resulted in yeast cells not being
thoroughly covered with CrleGV. Detached fruit bioassays using a 100-fold serial dilution
of P. kudriavzevii, ranging from 2 × 108 to 2 × 104 cells·mL−1, were set up to determine the
optimal yeast/virus ratio. Significant differences were recorded when using the lower yeast
concentrations of 106 cells·mL−1 and 104 cells·mL−1 alongside CrleGV. The effectiveness of
a biological control agent utilising microorganisms relies on how much of the agent used
reaches the target pest [37]. Hence, the use of lower yeast/virus ratios may result in greater
uptake of CrleGV OBs, assuming a consistent intake of contaminated yeast cells during
larval feeding. An overabundance of yeast can also lead to high alcohol levels, which could
negatively affect insect physiology and behaviour [38].

Previous studies have shown that neonate T. leucotreta exhibited altered behaviour
when exposed to H. uvarum, P. kluyveri, P. kudriavzevii, and K. marxianus [24]. Specifically,
they displayed an attraction to yeast broth that had been inoculated with these yeast
species for feeding. It was also demonstrated that the mortality rate of T. leucotreta larvae
significantly decreased when Navel oranges were treated with M. guilliermondii, P. kluyveri,
H. uvarum, and S. cerevisiae [24]. These characteristics render these yeasts remarkably well-
suited as potential feeding stimulants for T. leucotreta. The association of S. cerevisiae with
several key agricultural pests has been extensively documented [39–41]. The addition of S.
cerevisiae to CpGV resulted in a level of larval mortality comparable to that of the wild-type
isolate (Metschnikowia pulcherrima) associated with C. pomonella [14]. Saccharomyces cerevisiae
was included here, due to its commercial availability and inclusion in the artificial diet used
to rear T. leucotreta [26]. A significant decrease in larval survival was recorded with most
gut-associated yeasts and S. cerevisiae. However, M. guilliermondii and H. uvarum did not
enhance the efficacy of CrleGV. The positive effects of their ingestion on the development
and survival of T. leucotreta larvae may have reduced the effectiveness of CrleGV at the
LC50 dose [24].

Once T. leucotreta larvae penetrate the fruit’s rind, they are unlikely to ingest any
additional OBs [25]. Molasses has been used as a larval-feeding stimulant with some success
in improving baculovirus efficacy [9,13]. Furthermore, owing to the adhesive properties
of molasses, it may unintentionally lead to an increase in the number of OBs adhering to
the fruit’s surface. BREAK-THRU® S240 was included as it decreases the surface tension
of spray droplets, leading to enhanced retention and deposition of spray treatments [42].
Additionally, it exhibits a “super-spreading” effect that significantly enhances the coverage
of surfaces by spray treatments, resulting in improved dispersion of spray residues [42].
Adding molasses and BREAK-THRU® S240 to P. kudriavzevii and S. cerevisiae plus CrleGV
treatments did decrease larval survival but not significantly, compared to that of the virus
alone. The efficacy of CrleGV could be further enhanced by adding molasses to yeast/virus
formulations, as it has previously been demonstrated to be an effective adjuvant [9,13,14].
It might be necessary to fine-tune the ratio of molasses and BREAK-THRU® S240 utilized
alongside P. kudriavzevii and S. cerevisiae to achieve the ideal working conditions. An
LC50 concentration of CrleGV was selected, as this would result in 50% mortality of the T.
leucotreta population. Thus, an increase or decrease in mortality could be observed when
combining CrleGV with a specific treatment. The mortality rates of T. leucotreta observed
in detached fruit bioassays using the LC50 concentration of CrleGV were comparable to
previously reported rates [25]. As previously found with C. pomonella [14,23], the addition
of mutualistic yeast to a virus treatment proved effective in increasing larval mortality.

The inclusion of yeast isolated from T. leucotreta to CrleGV formulations proved effec-
tive in increasing virus efficacy. Additionally, the inclusion of molasses and BREAK-THRU®
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S240 further increased the formulation’s effectiveness, compared to CrleGV being applied
alone. Taken together, the results of this study indicate that P. kudriavzevii and S. cerevisiae
hold potential for use in biocontrol, especially when combined with other well-established
control techniques for use against T. leucotreta. These yeasts could potentially serve as
a supplement to enhance larval feeding and thus virus ingestion, and as a distinctive
approach for pest monitoring and attraction. Future work will entail conducting field
trials with P. kudriavzevii and S. cerevisiae to determine whether their ability to increase the
effectiveness of CrleGV in laboratory assays can be replicated in citrus orchards.
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