Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,307)

Search Parameters:
Keywords = dermal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 849 KiB  
Article
Morphofunctional Profile Focusing on Strength and Ultrasound of the Upper Limbs in Female Breast Cancer Survivors: A Comparative Cross-Sectional Study Between Groups with and Without Lymphoedema and Between Ipsilateral and Contralateral Limbs
by Ana Rafaela Cardozo Da Silva, Juliana Netto Maia, Vanessa Maria Da Silva Alves Gomes, Naiany Tenório, Juliana Fernandes de Souza Barbosa, Ana Claudia Souza da Silva, Vanessa Patrícia Soares de Sousa, Leila Maria Alvares Barbosa, Armèle de Fátima Dornelas de Andrade and Diego Dantas
Biomedicines 2025, 13(8), 1884; https://doi.org/10.3390/biomedicines13081884 (registering DOI) - 2 Aug 2025
Abstract
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of [...] Read more.
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of the upper limbs in breast cancer survivors, comparing muscle strength and ultrasound findings between groups with and without lymphoedema, as well as between ipsilateral and contralateral limbs. Methods: This cross-sectional study included female breast cancer survivors treated at an oncology physical therapy clinic. Muscle strength was measured using dynamometry (handgrip and arm flexor strength), and ultrasound assessed the thickness of the dermal–epidermal complex (DEC), subcutaneous tissue (SUB), and muscle (MT). Results: The upper limbs of 41 women were evaluated. No significant differences were observed between those with and without breast cancer-related lymphoedema (BCRL). When comparing the ipsilateral and contralateral limbs, significant reductions were observed in arm flexor strength (p < 0.001; 95% CI: −9.77 to −2.50), handgrip strength (p < 0.001; 95% CI: −4.10 to −1.22), and tissue thickness, with increased DEC thickness on the forearm (0.20 mm; p = 0.022) and arm flexors (0.25 mm; p < 0.001) of the ipsilateral limb. Conclusion: Significant differences in muscle strength and tissue structure between ipsilateral and contralateral limbs may reflect surgical and local pathophysiological effects. A trend toward reduced values for these parameters was also noted in limbs with BCRL, reinforcing the importance of future research to elucidate underlying mechanisms and guide more effective therapeutic strategies. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
by Andrew J. Keebaugh, Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell and Elaine A. Merrill
Toxics 2025, 13(8), 660; https://doi.org/10.3390/toxics13080660 (registering DOI) - 2 Aug 2025
Abstract
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may [...] Read more.
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may experience ACD at elevated rates compared to other occupations. We aimed to better understand the utility of non-animal testing methods in characterizing the sensitization potential of chemicals used during Air Force operations by evaluating the skin sensitization hazard of Air Force-relevant chemicals using new approach methodologies (NAMs) in a case study. We also evaluated the use of NAM data to develop preliminary candidate surface guidelines (PCSGs, maximum concentrations of chemicals on workplace surfaces to prevent induction of dermal sensitization) for chemicals identified as sensitizers. NAMs for assessing skin sensitization, including in silico models and experimental assays, were leveraged into an integrated approach to predict sensitization hazard for 19 chemicals. Local lymph node assay effective concentration values were predicted from NAM assay data via previously published quantitative models. The derived values were used to calculate PCSGs, which can be used to compare the presence of these chemicals on work surfaces to better understand the risk of Airmen developing ACD from occupational exposures. Full article
Show Figures

Figure 1

34 pages, 2849 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 (registering DOI) - 1 Aug 2025
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
24 pages, 866 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 (registering DOI) - 1 Aug 2025
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
23 pages, 1985 KiB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 (registering DOI) - 1 Aug 2025
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
13 pages, 1189 KiB  
Article
The Role of Biodegradable Temporizing Matrix in Paediatric Reconstructive Surgery
by Aikaterini Bini, Michael Ndukwe, Christina Lipede, Ramesh Vidyadharan, Yvonne Wilson and Andrea Jester
J. Clin. Med. 2025, 14(15), 5427; https://doi.org/10.3390/jcm14155427 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients; evaluate the short-term and [...] Read more.
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients; evaluate the short-term and long-term results, including complications and functional outcomes, as well as to share some unique observations regarding the use of BTM in paediatric population. Patients and Methods: Patients undergoing reconstructive surgery and BTM application during the last three years were included. Data collected included patient demographics, primary diagnosis, previous surgical management, post-operative complications and final outcomes. BTM was used in 32 patients. The indications varied including epidermolysis bullosa (n = 6), burns (n = 4), trauma (n = 7), infection (n = 4), ischemia or necrosis (n = 11). Results: The results were satisfying with acceptable aesthetic and functional outcomes. Complications included haematomaunderneath the BTM leading to BTM removal and re-application (n = 1), BTM infection (n = 1) and split-thickness skin graft failure on top of BTM requiring re-grafting (n = 2). Conclusions: BTM can be a good alternative to large skin grafts, locoregional flaps or even free flaps. The big advantages over other dermal substitutes or skin grafts are that BTM is less prone to infection and offers excellent scarring by preserving the normal skin architecture. Specifically in children, BTM might not require grafting, resulting in spontaneous healing with good scarring. In critically ill patients, BTM reduces the operation time and there is no donor site morbidity. BTM should be considered in the reconstructive ladder when discussing defect coverage options in children and young people. Full article
(This article belongs to the Special Issue Trends in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

35 pages, 1395 KiB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 (registering DOI) - 1 Aug 2025
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

20 pages, 1087 KiB  
Review
Visceral, Neural, and Immunotoxicity of Per- and Polyfluoroalkyl Substances: A Mini Review
by Pietro Martano, Samira Mahdi, Tong Zhou, Yasmin Barazandegan, Rebecca Iha, Hannah Do, Joel Burken, Paul Nam, Qingbo Yang and Ruipu Mu
Toxics 2025, 13(8), 658; https://doi.org/10.3390/toxics13080658 (registering DOI) - 31 Jul 2025
Abstract
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, such as inhalation and dermal absorption, also play a significant role. This review provides a concise overview of the toxicological impacts of both legacy and emerging PFASs, such as GenX and perfluorobutane sulfonic acid (PFBS), with a particular focus on their effects on the liver, kidneys, and immune and nervous systems, based on findings from recent in vivo, in vitro, and epidemiological studies. Despite the transition to PFAS alternatives, much of the existing toxicity data focus on a few legacy compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which have been linked to adverse immune outcomes, particularly in children. However, evidence for carcinogenic risk remains limited to populations with extremely high exposure levels, and data on neurodevelopmental effects remain underexplored. While epidemiological and experimental animal studies supported these findings, significant knowledge gaps persist, especially regarding emerging PFASs. Therefore, this review examines the visceral, neural, and immunotoxicity data for emerging PFASs and mixtures from recent studies. Given the known risks from well-studied PFASs, a precautionary principle should be adopted to mitigate human health risks posed by this large and diverse group of chemicals. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

19 pages, 2308 KiB  
Review
The Potential of Functional Hydrogels in Burns Treatment
by Nathalie S. Ringrose, Ricardo W. J. Balk, Susan Gibbs, Paul P. M. van Zuijlen and H. Ibrahim Korkmaz
Gels 2025, 11(8), 595; https://doi.org/10.3390/gels11080595 (registering DOI) - 31 Jul 2025
Abstract
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, [...] Read more.
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, and integration with host tissue. Functional hydrogels are being explored as alternatives due to properties such as high water content, biodegradability, adhesiveness, antimicrobial activity, and support for angiogenesis. Unlike standard templates, hydrogels can adapt to irregular wound shapes as in burn wounds and reach deeper tissue layers, supporting moisture retention, cell migration, and controlled drug delivery. These features may improve the wound environment and support healing in burns of varying severity. This review outlines recent developments in functional hydrogel technologies and compares them to current clinical treatments for burn care. Emphasis is placed on the structural and biological features that influence performance, including material composition, bioactivity, and integration capacity. Through an exploration of key mechanisms of action and clinical applications, this review highlights the benefits and challenges associated with hydrogel technology, providing insights into its future role in burn care. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
20 pages, 313 KiB  
Review
Ophthalmological Complications of Aesthetic Medicine Procedures: A Narrative Review
by Lucía De-Pablo-Gómez-de-Liaño, Fernando Ly-Yang, Bárbara Burgos-Blasco and José Ignacio Fernández-Vigo
J. Clin. Med. 2025, 14(15), 5399; https://doi.org/10.3390/jcm14155399 (registering DOI) - 31 Jul 2025
Viewed by 2
Abstract
Minimally invasive cosmetic procedures, such as dermal fillers, botulinum toxin injections, autologous fat grafting, intense pulsed light (IPL) treatments, and platelet-rich plasma (PRP) treatments, are increasingly popular worldwide due to their convenience and aesthetic benefits. While generally considered safe, these procedures can result [...] Read more.
Minimally invasive cosmetic procedures, such as dermal fillers, botulinum toxin injections, autologous fat grafting, intense pulsed light (IPL) treatments, and platelet-rich plasma (PRP) treatments, are increasingly popular worldwide due to their convenience and aesthetic benefits. While generally considered safe, these procedures can result in rare but serious ophthalmological complications. The most catastrophic adverse events include central retinal artery occlusion and ischemic optic neuropathy, which may lead to irreversible vision loss. Other complications include diplopia, ptosis, dry eye, and orbital cellulitis, with varying degrees of severity and reversibility. Awareness of potential ocular risks, appropriate patient selection, and adherence to safe injection techniques are crucial for preventing complications. This narrative review summarizes the incidence, mechanisms, clinical features, risk factors, diagnostic approaches, and management strategies of ocular complications associated with aesthetic medical procedures. A narrative literature review was conducted, emphasizing data from clinical studies, case series, and expert consensus published between 2015 and 2025. Special attention is given to anatomical danger zones, the pathophysiological pathways of filler embolization, and the roles of hyaluronidase and hyperbaric oxygen therapy in acute management. Although many complications are self-limited or reversible, prompt recognition and intervention are critical to prevent permanent sequelae. The increasing prevalence of these procedures demands enhanced education, informed consent, and interdisciplinary collaboration between aesthetic providers and ophthalmologists. Full article
(This article belongs to the Section Ophthalmology)
19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 (registering DOI) - 30 Jul 2025
Viewed by 116
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 683
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

17 pages, 3168 KiB  
Article
Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells
by Behlul Koc-Bilican, Tugce Karaduman-Yesildal, Selay Tornaci, Demet Cansaran-Duman, Ebru Toksoy Oner, Serkan Gül and Murat Kaya
Polymers 2025, 17(15), 2046; https://doi.org/10.3390/polym17152046 - 27 Jul 2025
Viewed by 315
Abstract
Extensive research on amphibians has focused on areas such as morphological and molecular taxonomy, ecology, embryology, and molecular phylogeny. However, the structure and biotechnological potential of egg jelly—which plays a protective and nutritive role for embryos—have remained largely unexplored. This study presents, for [...] Read more.
Extensive research on amphibians has focused on areas such as morphological and molecular taxonomy, ecology, embryology, and molecular phylogeny. However, the structure and biotechnological potential of egg jelly—which plays a protective and nutritive role for embryos—have remained largely unexplored. This study presents, for the first time, a detailed physicochemical analysis of the egg jelly of Pelophylax ridibundus, an amphibian species, using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analyzer, X-ray Diffraction, and elemental analysis. The carbohydrate content was determined via High-Performance Liquid Chromatography analysis, and the protein content was identified using Liquid Chromatography-Tandem Mass Spectrometry analysis. Additionally, it was revealed that this jelly exhibits a significant cytotoxic effect on melanoma cells (viability < 30%) while showing no cytotoxicity on healthy dermal fibroblast cells (viability > 70%). Consequently, this non-toxic, biologically derived, and cultivable material is proposed as a promising candidate for cancer applications, paving the way for further research in the field. Full article
(This article belongs to the Special Issue Bio-Inspired Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

16 pages, 776 KiB  
Article
Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine
by Essie Komla, Erwin G. Abucayon, C. Steven Godin, Agnieszka Sulima, Arthur E. Jacobson, Kenner C. Rice and Gary R. Matyas
Vaccines 2025, 13(8), 792; https://doi.org/10.3390/vaccines13080792 - 26 Jul 2025
Viewed by 364
Abstract
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to [...] Read more.
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to combat OUD and potentially reduce the risk of overdose death. The TT-6-AmHap heroin conjugate vaccine has effectively reduced heroin-induced pharmacological effects in behavioral assays as well as demonstrated the induction of high titer and high affinity antibody responses in mice and rats. In this GLP study conducted in rabbits, the potential local and systemic toxicity of the TT-6-AmHap heroin vaccine in combination with or without adjuvants ALF43 and Alhydrogel® (ALFA) was investigated. Methods: Male and female New Zealand White rabbits were administered with vaccines or a saline control intramuscularly at two-week intervals over a 57-day study period. The presence, persistence or reversibility of any toxic effects of the vaccine was determined over a four-week recovery period. Results: Administration of TT-6-AmHap with or without the adjuvants induced high antibody-specific IgG in treatment groups compared to the controls. The study found no TT-6-AmHap-related effects on mortality, physical examinations, dermal Draize observations, body weights, body weight changes, food consumption, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, and urinalysis), macroscopic pathology, or organ weights. Conclusions: Under the conditions of this study, these results demonstrate that the TT-6-AmHap vaccine with or without adjuvants was well tolerated, immunogenic, and the effects were not considered adverse in both male and female rabbits. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Graphical abstract

13 pages, 1428 KiB  
Article
Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
by Mei Xiong, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li and Ping Xiang
Toxics 2025, 13(8), 622; https://doi.org/10.3390/toxics13080622 - 25 Jul 2025
Viewed by 315
Abstract
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk [...] Read more.
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk assessment models to evaluate dermal exposure risks. Results reveal that 80% of samples exceeded OEKO-TEX Class I limits for As (mean 1.01 mg/kg), Cd (max 0.25 mg/kg), and Cr (max 4.32 mg/kg), with infant clothing showing unacceptable hazard indices (HI = 1.13) due to Cd (HQ = 1.12). Artificial sweat extraction demonstrated high bioaccessibility for Cr (37.8%) and Ni (28.5%), while keratinocyte exposure triggered oxidative stress (131% ROS increase) and dose-dependent cytotoxicity (22–59% viability reduction). Dark-colored synthetic fabrics exhibited elevated metal loads, linking industrial dye practices to health hazards. These findings underscore systemic gaps in textile safety regulations, particularly for low- and middle-income countries reliant on cost-effective apparel. We propose three policy levers: (1) tightening infant textile standards for Cd/Cr, (2) incentivizing non-toxic dye technologies, and (3) harmonizing global labeling requirements. By bridging toxicological evidence with circular economy principles, this work advances strategies to mitigate heavy metal exposure while supporting Sustainable Development Goals (SDGs) 3 (health), 12 (responsible consumption), and 12.4 (chemical safety). Full article
Show Figures

Figure 1

Back to TopTop