Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = dendrite issue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1235 KB  
Review
Foundations and Clinical Applications of Fractal Dimension in Neuroscience: Concepts and Perspectives
by Francisco J. Esteban and Eva Vargas
AppliedMath 2026, 6(1), 7; https://doi.org/10.3390/appliedmath6010007 - 4 Jan 2026
Viewed by 298
Abstract
Fractal geometry offers a mathematical framework to quantify the complexity of brain structure and function. The fractal dimension (FD) captures self-similarity and irregularity across spatial and temporal scales, surpassing the limits of traditional Euclidean metrics. In neuroscience, FD serves as a key descriptor [...] Read more.
Fractal geometry offers a mathematical framework to quantify the complexity of brain structure and function. The fractal dimension (FD) captures self-similarity and irregularity across spatial and temporal scales, surpassing the limits of traditional Euclidean metrics. In neuroscience, FD serves as a key descriptor of the brain’s hierarchical organization—from dendritic arborization and cortical folding to neural dynamics measured by diverse neuroimaging techniques. This review summarizes theoretical foundations and methodological advances in FD estimation, including the box-counting approach for imaging, and Higuchi’s and Katz’s algorithms for electrophysiological data, addressing reliability and reproducibility issues. In addition, we illustrate how fractal analysis characterizes brain complexity in health and disease. Clinical applications include detecting white matter alterations in multiple sclerosis, atypical maturation in intrauterine growth restriction, reduced cortical complexity in Alzheimer’s disease, and altered neuroimaging patterns in schizophrenia. Emerging evidence highlights FD’s potential for distinguishing consciousness states and quantifying neural integration and differentiation. Bridging mathematics, physics, and neuroscience, fractal analysis provides a quantitative lens on the brain’s multiscale organization and pathological deviations. FD thus stands as both a theoretical descriptor and a translational biomarker whose standardization could advance precision diagnostics and understanding of neural dynamics. Full article
Show Figures

Figure 1

12 pages, 828 KB  
Review
Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases
by Jacopo Meldolesi
Int. J. Mol. Sci. 2026, 27(1), 159; https://doi.org/10.3390/ijms27010159 - 23 Dec 2025
Viewed by 382
Abstract
Synapses, abundant in the brain, are structures needed for life. Our Introduction, based on the forms of such structures published few decades ago, helped in developing recent concepts of health and diseases. Growing axons govern their growth by cell-to-cell communication, axon guidance, and [...] Read more.
Synapses, abundant in the brain, are structures needed for life. Our Introduction, based on the forms of such structures published few decades ago, helped in developing recent concepts of health and diseases. Growing axons govern their growth by cell-to-cell communication, axon guidance, and synapse orientations. The assembly of synapses requires the organization and function of pre-synaptic and post-synaptic neuronal terminals with a liquid–liquid phase, governed by Ca2+ responses of thin astrocyte domains. Upon synapse stimulation, the clefts expand up to several folds while pre- and post-synaptic thickness remains unchanged. In additional responses, neurons co-operate with astrocytes and extracellular vesicles (EVs), the latter dependent on extracellular and intracellular spaces. Astrocyte and microglia cells and/or EV secretions induce neurons by various effects including traveling changes. Pre-synaptic responses are defined as canonical if based on neurotransmitter release; non-canonical if they are without release and are discharged by EVs, not neurotransmitters. Health and diseases depend on other general properties, such as those defined molecularly. Among neurodegenerative diseases, attention is specified by various properties of Alzheimer’s and other diagnoses. Critical identifications can be due to astrocyte and microglia cells or multiple effects induced by EVs. At present, the complexity of therapies, although of limited success, is developing innovative initiatives. Full article
Show Figures

Figure 1

18 pages, 3440 KB  
Article
Influence of Vanadium-Titanium Slag Substitution on Properties and Microstructure of Blast Furnace Slag-Steel Slag-Desulfurization Gypsum Gel System
by Junyao Liu, Siqi Zhang, Huifen Yang, Wen Ni, Dongshang Guan, Xingyang Xu and Yu Zhan
Gels 2026, 12(1), 3; https://doi.org/10.3390/gels12010003 - 19 Dec 2025
Viewed by 239
Abstract
The comprehensive utilisation of solid waste is a primary approach to enhancing the utilisation efficiency of mineral resources. However, vanadium-titanium slag has long faced insufficient resource utilisation due to its low activity. To address this issue, this study integrated macro and micro analytical [...] Read more.
The comprehensive utilisation of solid waste is a primary approach to enhancing the utilisation efficiency of mineral resources. However, vanadium-titanium slag has long faced insufficient resource utilisation due to its low activity. To address this issue, this study integrated macro and micro analytical methods to systematically investigate the effect of mechanical grinding on the activity of vanadium-titanium slag, as well as its performance when partially replacing blast furnace slag in the system of slag—converter steel slag-desulfurization gypsum ternary gel system. Additionally, the hydration mechanism of this cementitious system was analysed. The research results indicate that mechanical grinding can significantly improve the activity index of vanadium-titanium slag and increase its specific surface area. Replacing an appropriate amount of slag with vanadium-titanium slag in the slag-steel slag-desulfurization gypsum ternary gel system can effectively enhance the mechanical properties of the cementitious system. The optimal mix proportion of vanadium-titanium slag:slag:steel slag:desulfurization gypsum as 10.5:31.5:42:16 with a water-to-binder ratio of 0.32, under which the 28-day compressive strength of the specimen reached 33.50 MPa. Through multiple microscopic analysis techniques, it was found that in the alkaline environment and sulfate excitation (provided by steel slag hydration and desulfurization gypsum), the cementitious system generates hydration products such as ettringite (AFt), C–S–H, and C–A–S–H gels. Some unreacted vanadium-titanium slag particles are wrapped and intertwined by hydrated calcium silicate (aluminium) gels, forming a stable dendritic structure that provides support for the system’s strength development. Full article
(This article belongs to the Special Issue Innovative Gels: Structure, Properties, and Emerging Applications)
Show Figures

Figure 1

21 pages, 11427 KB  
Article
The Effect of Heat Treatment on the Abrasive Wear Resistance of Boron-Alloyed Armor Steel Welded Joints
by Martyna Zemlik, Beata Białobrzeska, Mateusz Stachowicz and Łukasz Konat
Appl. Sci. 2025, 15(24), 12860; https://doi.org/10.3390/app152412860 - 5 Dec 2025
Viewed by 343
Abstract
As a result of welding processes in boron-alloyed martensitic armor steels, unfavorable microstructural changes occur, leading to a significant reduction in the mechanical properties of both the weld metal and the base material. The dendritic structure of the weld metal and the partial [...] Read more.
As a result of welding processes in boron-alloyed martensitic armor steels, unfavorable microstructural changes occur, leading to a significant reduction in the mechanical properties of both the weld metal and the base material. The dendritic structure of the weld metal and the partial tempering in the heat-affected zone contribute to the decreased durability of structural components, thereby deteriorating their performance. This issue is particularly important since such steels are widely used not only in the defense industry but also in the mining, construction, transportation, and metallurgical sectors, where they operate under conditions of intensive abrasive wear. For this reason, the authors attempted to improve the mechanical properties of welded joints of boron-alloyed martensitic armor steel (with a nominal hardness of 500 HBW) through post-weld heat treatment. The welded joint was evaluated based on metallographic examinations using light microscopy and scanning electron microscopy, as well as abrasive wear tests carried out on a T-07 tribotester. The conducted investigations demonstrated that, under loose abrasive conditions (using electrofused alumina), heat treatment increased the wear resistance of the joints by 55% compared to the as-welded condition. The obtained results were compared with selected grades of Hardox steel commonly used in industrial applications. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

22 pages, 8956 KB  
Article
Preparation of High-Energy Activated SiC Particles and Their Dispersion and Reaction Behavior in Hypoeutectic Gray Cast-Iron Melt
by Chunfeng Wang, Zhejun Li, Chuangang Huang, Runze Li, Qingyan Liang, Kebin Li, Jie Hu and Feng Jiang
Materials 2025, 18(23), 5264; https://doi.org/10.3390/ma18235264 - 21 Nov 2025
Viewed by 396
Abstract
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the [...] Read more.
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the solidification process and microstructure properties of hypoeutectic gray cast iron were systematically investigated. The results indicate that high-energy activation treatment reduced the average particle size of SiC particles from 26.53 μm to 9.51 μm and increased their specific surface area from 0.35 m2/g to 1.78 m2/g. X-ray diffraction (XRD) analysis revealed that the grain size was refined from 55.5 nm to 17.4 nm, with significant lattice distortion. The absorption rate of EASiCp in the melt stabilized between 68–72%, with particles predominantly dispersed within the grains (78.12%) and at grain boundaries (21.88%) in sizes ranging from 0.3 to 2 μm. The addition of EASiCp enhanced the solidification undercooling from 5.3 °C to 8.4 °C and reduced the latent heat of crystallization from 162.6 J/g to 99.96 J/g due to its endothermic reaction in the melt (SiC + Fe → FeSi + C) and heterogeneous nucleation effects. In terms of microstructure, the addition of 0.15 wt.% EASiCp increased the primary austenite dendrite content by 35.29%, reduced the secondary dendrite arm spacing by 57.98%, shortened the graphite length from 0.46 mm to 0.20 mm, and refined the eutectic colony size from over 500 μm to 180 μm. The final material achieved a tensile strength of 308 MPa, an improvement of 12.82% compared to the unadded group. Mechanistic analysis showed that EASiCp facilitated direct nucleation, reaction-induced “micro-area carbon enrichment,” and a synergistic effect in suppressing grain growth, thereby optimizing the solidification microstructure and enhancing performance. This study provides a new method for the efficient nucleation control of hypoeutectic gray cast iron. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 3046 KB  
Article
Effects of Key Factors on Lithium Dendrite Dissolution and Dead Lithium Formation: A Phase-Field Simulation Study
by Shuzeng Hou, Boyang Zeng, Jingwei Wu, Yongqi Lyu and Xiayi Sun
Batteries 2025, 11(11), 413; https://doi.org/10.3390/batteries11110413 - 11 Nov 2025
Viewed by 965
Abstract
The growth of lithium dendrites and the associated “dead lithium” issue significantly impair the performance and cycle life of lithium metal batteries. This study utilizes a phase-field model under constant-current discharge conditions to simulate the dissolution process of lithium dendrites. The results demonstrate [...] Read more.
The growth of lithium dendrites and the associated “dead lithium” issue significantly impair the performance and cycle life of lithium metal batteries. This study utilizes a phase-field model under constant-current discharge conditions to simulate the dissolution process of lithium dendrites. The results demonstrate that the non-uniform dissolution of lithium dendrites is a primary cause of their stripping and subsequent dead lithium formation. Specifically, a high charging voltage and a high reaction rate constant aggravate dendrite growth and dead lithium accumulation. Although a high discharging voltage accelerates dendrite dissolution, it readily induces stripping at the dendrite roots, generating more dead lithium. In contrast, increasing the temperature, enhancing the interface mobility, adjusting the anisotropy strength to a moderate level, and constructing semi-circular initial nuclei can effectively mitigate dead lithium by promoting a more uniform dissolution process. This research provides a theoretical foundation for optimizing battery operational parameters and electrode designs to improve capacity and safety. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

9 pages, 2220 KB  
Communication
Stabilizing Zinc Anodes with Water-Soluble Polymers as an Electrolyte Additive
by Xueyan Li, Xiaojiang Chen, Senlong Zhang, Jinrong Wang, Zhuo Chen and Yuexian Song
Materials 2025, 18(21), 5040; https://doi.org/10.3390/ma18215040 - 5 Nov 2025
Viewed by 659
Abstract
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with [...] Read more.
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with different hydrophilic groups—polyacrylic acid (PAA), polyacrylamide (PAM), and polyethylene glycol (PEG)—were designed as electrolyte additives in ZnSO4 electrolytes. Among them, the PAA-based system exhibited an optimal electrochemical performance, achieving a stable cycling for more than 360 h at a current density of 5 mA cm−2 with an areal capacity of 2 mA h cm−2. This improvement could be attributed to its carboxyl groups, which effectively suppresses zinc dendrite growth, electrode corrosion, and side reactions, thereby enhancing the cycling performance of zinc-ion batteries. This work provides a reference for the optimization of zinc anodes in aqueous zinc-ion batteries. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

28 pages, 1278 KB  
Review
Polymeric Frontiers in Next-Generation Energy Storage: Bridging Molecular Design, Multifunctionality, and Device Applications Across Batteries, Supercapacitors, Solid-State Systems, and Beyond
by Akhil Sharma, Sonu Sharma, Monu Sharma, Vikas Sharma, Shivika Sharma and Iyyakkannu Sivanesan
Polymers 2025, 17(20), 2800; https://doi.org/10.3390/polym17202800 - 20 Oct 2025
Cited by 2 | Viewed by 1193
Abstract
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing [...] Read more.
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing the drawbacks of traditional inorganic systems. New developments have been made in multifunctional polymers that have the ability to combine conductivity, mechanical properties, thermal stability, and self-healing into a single scaffold system, which is useful in battery, supercapacitor, and solid-state applications. By incorporating polymers with carbon nanostructures, ceramics, or two-dimensional materials, hybrid polymer nanocomposites improve electrochemical performance, durability, and mechanical compliance, and the solid polymer electrolytes, as well as artificial solid electrolyte interphases, resolve dendrite growth and safety issues. The multifunctionality also extends to flexibility, stretchability, and miniaturization, which implies that polymers are suitable for use in wearable devices and biomedical devices. At the same time, sustainable polymer innovation focuses on bio-based feedstocks, which can be recycled, and green synthesis pathways. Polymer discovery using artificial intelligence and machine learning is faster than standard methods, predicts structure–property–performance relationships, and can be rationally engineered. Although there are difficulties in stability during long periods, scalability, and trade-offs between indeedness and mechanical endurance, polymers are a promising avenue with regard to dependable, safe, and sustainable power storage. This review presents the molecular strategies, multifunctional uses, and prospects, where polymers are at the center of the next-generation energy technologies. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Figure 1

26 pages, 6354 KB  
Review
Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries: Recent Progress and Remaining Challenges
by Zhaoxuan Zhu, Sihan Xiong, Jing Li, Lixin Wang, Xiaoning Tang, Long Li, Qi Sun, Yan Shi and Jiaojing Shao
Batteries 2025, 11(10), 380; https://doi.org/10.3390/batteries11100380 - 17 Oct 2025
Cited by 3 | Viewed by 3692 | Correction
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue to hinder their commercial deployment. To address these challenges, hydrogel polymer electrolytes (HPEs) have emerged as an effective strategy. Their unique three-dimensional polymer networks not only retain water and confine ion transport, but also provide a solid–liquid hybrid environment that enhances ionic conductivity and interfacial compatibility. These features enable HPEs to suppress side reactions and improve both electrochemical stability and mechanical adaptability, which are especially valuable for flexible ZIB devices. This review first summarizes fundamental energy storage mechanisms in aqueous ZIBs, including reversible Zn2+ insertion/extraction, proton co-insertion, and cathode phase evolution. It then highlights recent progress in HPE design, with emphasis on polyacrylamide (PAM), polyvinyl alcohol (PVA), and polyacrylic acid (PAA)-based systems, with strategies for dendrite suppression, interfacial regulation, and mechanical robustness. Finally, current challenges and future directions are discussed, with a forward-looking perspective on scalable fabrication methods, advanced electrolyte design, and deeper mechanistic understanding necessary to fully realize the potential of HPE-enabled aqueous ZIBs. Full article
Show Figures

Figure 1

26 pages, 2493 KB  
Review
Dendritic Cell-Derived Exosomes: Next Generation of Cancer Immunotherapy
by Rajib Dhar, Swarup Sonar, Asmit Das, Nur Aliaa Sorfina Tajul Akmal, Ainil Hawa Jasni, Vinod RMT Balasubramaniam, Kumaran Narayanan and Vetriselvan Subramaniyan
Biomedicines 2025, 13(10), 2497; https://doi.org/10.3390/biomedicines13102497 - 14 Oct 2025
Viewed by 2858
Abstract
Dendritic cells (DCs) are the most highlighted cell population for cancer immunotherapy development. Currently, DC-derived exosomes show promising anti-cancer activity. Exosomes are a subpopulation of extracellular vesicles (EVs) and originate from endosomes. It transports dynamic molecular cargos such as DNA, RNA, protein, and [...] Read more.
Dendritic cells (DCs) are the most highlighted cell population for cancer immunotherapy development. Currently, DC-derived exosomes show promising anti-cancer activity. Exosomes are a subpopulation of extracellular vesicles (EVs) and originate from endosomes. It transports dynamic molecular cargos such as DNA, RNA, protein, and lipid. This cellular cargo exchange reprograms the recipient cell naturally. In cancer research, DC-derived exosomes (DEXs) are used as a therapeutic tool. There are some approaches followed in the application of DEX in cancer as a therapeutic tool. DEX-based drug delivery, tumor antigen-loaded DEX, and modified DEX are applicable approaches in cancer therapy. DEXs are biocompatible, nontoxic, and have ability-specific targeting. On the other hand, this method faces some challenges, such as large-scale production, isolation, and heterogeneity. A multidisciplinary approach (advanced nanotechnology, multi-omics, and single-exosome profiling) comes up with a solution to this issue. This review provides a comprehensive overview of the DEX approach, tracing its developmental journey and therapeutic application in cancer immunotherapy. It examines key findings from clinical trials and outlines the challenges and future research directions in this field, ultimately underscoring the potential of DC-derived exosomes as a research-backed, cell-free solution for the next generation of cancer immunotherapies. Full article
Show Figures

Graphical abstract

24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 - 5 Oct 2025
Viewed by 2326
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 1772 KB  
Article
Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries
by Sarmila Dutta, Yasin Emre Durmus, Eunmi Im, Hans Kungl, Hermann Tempel and Rüdiger-A. Eichel
Batteries 2025, 11(10), 359; https://doi.org/10.3390/batteries11100359 - 29 Sep 2025
Viewed by 1962
Abstract
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration [...] Read more.
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration of porous anode structures and electrode additives—two widely investigated approaches for mitigating challenges related to zinc anode—shows significant promise. However, effectively combining these approaches remains challenging. This study introduces a method for fabricating zinc anodes that can combine the benefits of a porous structure and electrode additive. The polytetrafluoroethylene (PTFE) polymer binder used in fabricating the anode material resulted in a stable scaffold, providing the desired anode porosity of approximately 60% and effectively anchoring ZnO nanoparticles. The zinc anodes prepared using a nickel mesh current collector without any electrode additives demonstrated stable cycling performance, sustaining 350 cycles at a current density of 60 mA gZn−1 with a coulombic efficiency of approximately 95%. Incorporating 2 wt.% Bi2O3 as an electrode additive further enhanced the cycling performance, achieving 200 stable cycles with 100% coulombic efficiency under an increased current density of 120 mA gZn−1, signifying the effectiveness of the proposed fabrication strategy. Full article
Show Figures

Figure 1

16 pages, 2916 KB  
Article
Synergistic Regulation of Solvation Shell and Anode Interface by Bifunctional Additives for Stable Aqueous Zinc-Ion Batteries
by Luo Zhang, Die Chen, Chenxia Zhao, Haibo Tian, Gaoda Li, Xiaohong He, Gengpei Xia, Yafan Luo and Dingyu Yang
Nanomaterials 2025, 15(19), 1482; https://doi.org/10.3390/nano15191482 - 28 Sep 2025
Viewed by 908
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this study, a “synergistic solvation shell–interfacial adsorption regulation” strategy is proposed, employing potassium gluconate (KG) and dimethyl sulfoxide (DMSO) as composite additives to achieve highly reversible zinc anodes. DMSO integrates into the Zn2+ solvation shell, weakening Zn2+-H2O interactions and suppressing the activity of free water, while gluconate anions preferentially adsorb onto the zinc anode surface, inducing the formation of a robust solid electrolyte interphase (SEI) enriched in Zn(OH)2 and ZnCO3. Nuclear magnetic resonance(NMR), Raman, and Fourier transform infrared spectroscopy(FTIR) analyses confirm the reconstruction of the solvation structure and reduction in water activity, and X-ray photoelectron spectroscopy(XPS) verifies the formation of the SEI layer. Benefiting from this strategy, Zn||Zn symmetric cells exhibit stable cycling for over 1800 h at 1 mA cm−2 and 1 mAh cm−2, and Zn||Cu cells achieve an average coulombic efficiency of 96.39%, along with pronounced suppression of the hydrogen evolution reaction. This work provides a new paradigm for the design of low-cost and high-performance electrolyte additives. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

35 pages, 9383 KB  
Review
Advances in Integrated Extraction of Valuable Components from Ti-Bearing Slag
by Chenhui Li, Peipei Du, Jiansong Zhang, Suxing Zhao, Minglei Gao, Qianhua Wang, Tielei Tian, Lanjie Li and Yue Long
Metals 2025, 15(10), 1080; https://doi.org/10.3390/met15101080 - 27 Sep 2025
Viewed by 1238
Abstract
Ti-bearing blast furnace slag (TBS), a byproduct of vanadium–titanium magnetite smelting, serves as an important secondary resource for titanium recovery. However, the complex mineralogical composition and finely dispersed nature of titanium in TBS present significant challenges for efficient extraction. This review systematically examines [...] Read more.
Ti-bearing blast furnace slag (TBS), a byproduct of vanadium–titanium magnetite smelting, serves as an important secondary resource for titanium recovery. However, the complex mineralogical composition and finely dispersed nature of titanium in TBS present significant challenges for efficient extraction. This review systematically examines four major titanium extraction routes: hydrometallurgical leaching, pyrometallurgical smelting, molten salt electrolysis, and selective precipitation, focusing on their limitations and recent improvements. For instance, conventional acid leaching suffers from acid mist release, a colloidal formation that hinders titanium recovery, and waste acid pollution. The adoption of concentrated sulfuric acid roasting activation effectively suppresses acid mist emission and prevents colloidal generation. Pyrometallurgical approaches are hampered by high energy consumption and substantial carbon emissions, which can be alleviated through the use of gaseous reductants to enhance reaction efficiency and reduce environmental impact. Molten electrolysis faces issues such as polarization and undesirable dendritic deposition; these are mitigated by employing liquid metal cathodes integrated with vacuum distillation to achieve high-purity titanium products. Selective precipitation struggles with strict crystallization conditions and low separation efficiency, though advanced techniques like supergravity separation show improved extraction performance. We propose an integrated technical strategy termed “Online conditioning driven by waste heat-mineral phase reconstruction-directional crystallization-optimized liberation.” This approach utilizes the inherent waste heat of slag combined with electromagnetic stirring to enhance homogeneity and promote efficient titanium recovery, offering a sustainable and scalable solution for industrial TBS treatment. Full article
Show Figures

Graphical abstract

4 pages, 155 KB  
Editorial
Special Issue “Dendritic Cell and Cancer Therapy 2.0”
by Serena Zanotta and Domenico Galati
Int. J. Mol. Sci. 2025, 26(19), 9354; https://doi.org/10.3390/ijms26199354 - 25 Sep 2025
Viewed by 739
(This article belongs to the Special Issue Dendritic Cell and Cancer Therapy 2.0)
Back to TopTop