Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases
Abstract
1. Introduction
2. Axons and Synapses
3. Astrocytes, Other Glial Cells, and EVs
4. Mechanisms of Healthy Synapses
5. Diseases and Therapies
5.1. Diseases
| Section 1. Introduction. |
|---|
| In 2005, the effect of astrocytes was shown many times: accumulation at the post-synaptic site of tripartite synapses [9]; signaling between glia and neurons; focus on synaptic processes to investigate their plasticity [10]. In 2010 the effect of astrocytes was influential on synaptic formation and function, plasticity, and elimination [11]. Recent evidence has confirmed the astrocyte effects on their secretions [12,13]. |
| Section 3. Astrocytes and other Glial Cells. |
| Important effects of astrocytes, revealed in recent studies, include protection and restoration of synapses induced by vesicle release and/or by astrocyte protein secretion [28,29]. |
| Section 4 and Section 5. From Mechanisms to Diseases and Therapies. |
| Synaptic changes dependent on astrocytes and their EVs [28,29,34,35,36,37,38,39,40,41,42] induce Ca2+ effects analogous to those already reported in other pathways, reported here and in the previous sections. Highly interesting are the astrocyte results of recent studies based on the unexpected effects induced by astrocyte-complex structures such as the following: 1. liquid–liquid phase separations in response to multiple electric forces [44,45,46]; 2. unique complexity and regulation of local physical dynamics; and 3. mini-Ca2+ responses located at small sites of astrocyte thin leaflets near ongoing synaptic responses [55,56,57]. Effects induced by distinct, astrocyte-secreted forms of factors appearing in various areas of the brain may contribute to the development of diseases [70,71,72,73,74,75,76]. Advancing chemical forms are considered for drug targeting and effects of therapy [64,76,77,78,79,80]. |
5.2. Therapy
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Leterrier, C. The axonal initial segment: An updated viewpoint. J. Neurosci. 2018, 38, 2135–2145. [Google Scholar] [CrossRef]
- Rich, S.K.; Terman, J.R. Axon formation, extension, and navigation: Only neuroscience phenomenon. Curr. Opin. Neurobiol. 2018, 53, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Wojnacki, J.; Galli, T. Membrane duing development. Dev. Neurobiol. 2016, 76, 1185–11200. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Raza, H.; Zaidi, J.; Riaz, S.; Hasan, S.; Syed, N.I. Synapse formation from cellular and molecular mechanisms in neurodevelopmental and neurodegenerative disorders. J. Neurophysiol. 2019, 121, 1381–1397. [Google Scholar] [CrossRef] [PubMed]
- Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 2003, 26, 485–508. [Google Scholar] [CrossRef]
- Meldolesi, J. Post-synapses in the brain: Role of dendrites and spine structures. Biomedicine 2022, 10, 1859. [Google Scholar] [CrossRef]
- Lopez-Hernandez, T.; Takenaka, K.I.; Mori, Y.; Kongpracha, P.; Nagamori, S.; Haucke, V.; Takamori, S. Clathrin-independent endocytic retrieval of synaptic vesicle protein mediated by the clathrin adaptor AP-2 at mammalian central synapses. Elife 2022, 11, e71198. [Google Scholar] [CrossRef]
- Saheki, Y.; De Camilli, P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 2012, 4, a005645. [Google Scholar] [CrossRef]
- Peres, G.; Navarrete, M.; Araque, A. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 2009, 32, 421–431. [Google Scholar] [CrossRef]
- Allen, N.J.; Barres, B.A. Signaling between glia and neurons: Focus on synaptic plasticity. Curr. Opin. Neurobiol. 2005, 15, 542–5446. [Google Scholar] [CrossRef]
- Eroglu, C.; Barres, B.A. Regulation of synaptic connectivity by glia. Nature 2010, 468, 223–231. [Google Scholar] [CrossRef]
- Saint-Martin, M.; Goda, Y. Astrocyte-synapse interactions and cell adhesion molecules. FEBS J. 2023, 290, 3512–3526. [Google Scholar] [CrossRef]
- Chung, W.S.; Baldwin, K.T.; Allen, N.J. Astrocyte regulation of synapse formation, maturation, and elimination. Cold Spring Harb. Perspect. Bol. 2024, 16, a041352. [Google Scholar] [CrossRef]
- Pereira-Iglesias, M.; Maldonado-Teixido, J.; Melero, H.; Piriz, J.; Galea, E.; Ransohoff, R.M.; Sierra, A. Microglia as hunters or gatherers of brain synapses. Nat. Neuroheresci. 2025, 28, 15–23. [Google Scholar] [CrossRef]
- Mason, A.J.; Deppmann, C.; Winkler, B. Emerging roles of neuronal extracellular vesicles at the synapse. Neuroscientist 2024, 30, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shual, K.; Sun, Y.; Zhu, L.; Wu, X.M. Advances in the study of axon-associated vesicles. Front. Mol. Neurosci. 2022, 15, 1045778. [Google Scholar] [CrossRef]
- Chen, S.; Bao, Q.; Xu, W.; Zhai, X. Extracellular particles: Emerging insights into central nervous system diseases. J. Nanobiotechnology 2025, 23, 263. [Google Scholar] [CrossRef]
- Steele-Nicholson, L.J.; Andrews, M.R. Axon-targeting motifs: Mechanisms and applications of enhancing axonal localization of transmembrane proteins. Cells 2022, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Teng, T. Exosomes: New target for understanding axon guidance in the developing central nervous system. Front. Cell Dev. Biol. 2025, 12, 1510862. [Google Scholar] [CrossRef] [PubMed]
- Filannino, F.M.; Panaro, M.A.; Benameur, T.; Pizzolorusso, I.; Porro, C. Extracellular vesicles in the central nervous system: A novel mechanism of neuronal cell communication. Int. J. Mol. Sci. 2024, 25, 1629. [Google Scholar] [CrossRef]
- Chen, J.; Tian, C.; Xiong, X.; Yang, Y.; Zhang, J. Extracellular vesicles: New horizons in neurodegeneration. EBioMedicine 2025, 113, 105605. [Google Scholar] [CrossRef]
- Cole, A.A.; Reese, T.S. Transsynaptic assemblies link domains of presynaptic and postsynaptic intracellular structures across the synaptic cleft. J. Neurosci. 2023, 43, 5883–5892. [Google Scholar] [CrossRef]
- Tao-Cheng, J.H.; Moreira, S.L.; Winters, C.A.; Reese, T.S.; Dosemeci, A. Modifications of the synaptic cleft under excitatory conditions. Front. Synaptic Neurosci. 2023, 15, 1239098. [Google Scholar] [CrossRef] [PubMed]
- Muttathukunnel, P.; Frei, P.; Perry, S.; Dickman, D.; Muller, M. Rapid homeostasis modulation of trans-synaptic nanocolumn rings. Proc. Natl. Acad. Sci. USA 2022, 119, e211904119. [Google Scholar] [CrossRef]
- Godavarthi, S.K.; Hiramoto, M.; Ignatyev, Y.; Levin, J.B.; Li, H.Q.; Pratelli, M.; Borchardt, J.; Czajkowski, C.; Borodinsky, L.N.; Sweeney, L.; et al. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges. Proc. Natl. Acad. Sci. USA 2024, 121, e2318041121. [Google Scholar] [CrossRef]
- Ringsevjen, H.; Egbenya, D.L.; Bieler, M.; Davanger, S.; Hussein, S. Activity-regulated cytoskeletal–associated protein (Arc) in presynaptic terminals and extracellular vesicles in hippocampal synapses. Front. Mol. Neurosci. 2023, 16, 1225533. [Google Scholar] [CrossRef]
- Tyagi, M.; Chadha, R.; de Hoog, E.; Sullivan, K.R.; Walker, A.C.; Northrop, A.; Fabian, B.; Fuxreiter, M.; Hyman, B.T.; Shepherd, J.D. Arc mediates intercellular tau transmission via extracellular vesicles. bioRxiv 2024, 22, 2024. [Google Scholar] [CrossRef]
- Walker, C.D.; Risher, W.C.; Risher, M.L. Regulation of synaptic development by astrocyte signaling factors and their emerging roles in substance of abuse. Cells 2021, 9, 28. [Google Scholar] [CrossRef]
- Yamagata, K. Astrocyte-induced synapse formation and ischemic stroke. J. Neurosci. Res. 2021, 99, 140–1431. [Google Scholar] [CrossRef] [PubMed]
- Faust, T.E.; Lee, Y.H.; O’Connor, C.D.; Boyle, M.A.; Gunner, G.; Durán-Laforet, V.; Ferrari, L.L.; Murphy, R.E.; Badimon, A.; Sakers, K.; et al. Microglia-associate crosstalk regulates synapse remodeling via Wnt signaling. Cell 2025, 188, 5212–5230. [Google Scholar] [CrossRef] [PubMed]
- Zipp, F.; Bittner, S.; Schaefer, D.P. Cytokines as emerging regulators of central nervous system synapses. Immunity 2023, 56, 914–925. [Google Scholar] [CrossRef]
- Schafer, D.P.; Stevens, B.; Bennett, M.L.; Bennett, F.C. Role of microglia in CNS development and plasticity. Cold Spring Harb. Perspect. Biol. 2024, 30, a041810. [Google Scholar] [CrossRef]
- Duran Laforet, V.; Schafer, D.P. Microglia: Activity-dependent regulators of neural circuits. Ann. N.Y. Acad. Sci. 2024, 1533, 38–50. [Google Scholar] [CrossRef]
- Blanchette, C.R.; Scalera, L.; Harris, K.P.; Zhao, Z.; Dresselhaus, E.C.; Koles, K.; Yeh, A.; Apiki, J.K.; Stewart, B.A.; Rodal, A.A. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J. Cell Biol. 2022, 221, e202112094. [Google Scholar] [CrossRef]
- Dresselhaus, E.C.; Harris, K.P.; Blancette, C.R.; Koles, K.; Del Signore, S.J.; Pescosolido, M.F.; Ermanoska, B.; Rozencwaig, M.; Soslowsky, R.C.; Parisi, M.J.; et al. ECRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J. Cell Biol. 2024, 223, e202405025. [Google Scholar] [CrossRef]
- Solana-Balaguer, J.; Campoy-Campos, G.; Matin-Flores, N.; Perez-Sisques, L.; Sitja-Roqueta, L.; Kucukerden, M.; Gámez-Valero, A.; Coll-Manzano, A.; Martí, E.; Pérez-Navarro, E.; et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signaling and preserve neuronal complexity. J. Extracell. Vesicles 2023, 12, e12355. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Noblett, N.; Pitts, L.; Colavita, A.; Wehman, A.M.; Jin, Y.; Chisholm, A.D. Dopey-dependent regulation of extracellular vesicles maintains neuron morphology. Curr. Biol. 2024, 34, 4920–4933.e11. [Google Scholar] [CrossRef]
- Ikezu, T.; Yang, Y.; Verderio, C.; Kramer-Albers, E.M. Extracellular vesicle-mediated neuron-glia communications in the central nervous system. J. Neurosci. 2024, 44, e1170242024. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.; Rico-Gallego, J.A.; Binczak, S.; Jacquir, S. Spiking neuron-astrocyte networks for image recognition. Neural Comput. 2025, 37, 635–665. [Google Scholar] [CrossRef]
- Xia, X.; Wang, Y.; Quin, Y.; Zhao, S.; Zheng, J.C. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev. 2022, 74, 101558. [Google Scholar] [CrossRef]
- Nieves Torres, D.; Lee, S.H. Inter-neuronal signaling mediated by small extracellular vesicles: Wireless communication? Front. Mol. Neurosci. 2023, 16, 1187300. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Klingauf, J. The readly retrievable pool of synaptic vesicles. Biol. Chem. 2023, 404, 385–397. [Google Scholar] [CrossRef]
- Meldolesi, J. Specific extracellular vesicles generated and operating at synapses, contribute to neuronal effects and signaling. Int. J. Mol. Sci. 2024, 25, 5103. [Google Scholar] [CrossRef]
- McCaig, C.D. Synaptic physiology depends on electrical forces on liquid-liquid phase separation. Rev. Physiol. Biochem. Pharmacol. 2025, 187, 339–359. [Google Scholar] [CrossRef]
- Guzikowski, N.J.; Kavalali, E.T. Functional specificity of liquid-liqid phase separation at synapse. Nat. Commun. 2024, 15, 10103. [Google Scholar] [CrossRef]
- Choi, J.; Rafiq, N.M.; Park, D. Liquid-liquid phase separation in pre-synaptic nerve terminals. Trends Biochem. Sci. 2024, 49, 888–900. [Google Scholar] [CrossRef]
- Chanaday, N.L.; Cousin, M.A.; Milosevic, I.; Watanabe, S.; Morgan, J.R. The synaptic vesicle cycle revisited: New insights into the modes and mechanisms. J. Neurosci. 2019, 39, 8209–8216. [Google Scholar] [CrossRef]
- Andres-Alonso, M.; Kreutz, M.R.; Karpova, A. Autophagy and endolysosomal system in presynaptic function. Cell Mol. Life Sci. 2021, 78, 2621–2639. [Google Scholar] [CrossRef]
- Eddings, C.R.; Fan, M.; Imoto, Y.; Itoh, K.; McDonald, X.; Eilers, J.; Anderson, W.S.; Worley, P.F.; Lippmann, K.; Nauen, D.W.; et al. Ultrastructural membrane dynamics of mouse and human cortical synapses. Neuron 2025. [Google Scholar] [CrossRef]
- Brenna, S.; Krisp, C.; Altmeppen, H.C.; Magnus, T.; Puig, B. Brain-derived extracellular vesicles in health and diseases: A methodological perspective. Int. J. Mol. Sci. 2021, 33, 1365. [Google Scholar] [CrossRef] [PubMed]
- Ghézali, G.; Dallérac, G.; Rouach, N. Perisynaptic astroglial processes: Dynamic processors of neuronal information. Brain Struct. Funct. 2016, 221, 2427–2442. [Google Scholar] [CrossRef] [PubMed]
- Di Castro, M.A.; Chuquet, J.; Liaudet, N.; Bhaukaurally, K.; Santello, M.; Bouvier, D.; Tiret, P.; Volterra, A. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 2011, 14, 1276–1284. [Google Scholar] [CrossRef]
- Volterra, A.; Liaudet, N.; Savtchouk, I. Astrocyte Ca2+ signalling: An unexpected complexity. Nat. Rev. Neurosci. 2014, 15, 327–335. [Google Scholar] [CrossRef]
- Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.; Mikoshiba, K.; et al. Structural basis of astrocyte Ca2+ signals in tripartite synapses. Nat. Commun. 2020, 11, 1906, Correction in Nat. Commun. 2020, 11, 2541. [Google Scholar] [CrossRef]
- Benoit, L.; Hristovska, I.; Liaudet, N.; Jouneau, P.H.; Fertin, A.; de Ceglia, R.; Litvin, D.G.; Di Castro, M.A.; Jevtic, M.; Zalachoras, I.; et al. Astrocytes functionally integrate multiple synapses via specialized leaflet domains. Cell 2025, 188, 6453–6472.e16. [Google Scholar] [CrossRef]
- Kater, M.S.J.; Baumgart, K.F.; Bodia-Soteras, A.; Heistek, T.S.; Carney, K.E. A novel role for MLC1 in regulating astrocyte-synapse interactions. Glia 2023, 71, 1770–1785. [Google Scholar] [CrossRef]
- Toman, M.; Wade, J.J.; Verkhratsky, A.; Dallas, M.; Bithell, A.; Flanagan, B.; Harkin, J.; McDaid, L. Influence of astrocytic leaflet motility on ionic signaling and homeostasis at active synapses. Sci. Rep. 2023, 13, 3050. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Iqbal, Z.; Xu, L.; When, C.; Duan, L.; Xia, J.; Yang, N.; Zhang, Y.; Liang, Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin. Neurosci. 2024, 78, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Weiping, L.; Jibing, C. Exosomal miRNA therapy for central nervous system injury diseases. Cell Mol. Neurobiol. 2024, 45, 3. [Google Scholar] [CrossRef]
- Zanirati, G.; Dos Santos, P.G.; Alcara, A.M.; Bruzzo, F.; Ghilardi, I.M.; Wietholter, V.; Xavier, F.A.C.; Gonçalves, J.I.B.; Marinowic, D.; Shetty, A.K.; et al. Extracellular vesicles: The new generation of biomarkers and treatment for central nervous system diseases. Int. J. Mol. Sci. 2024, 25, 7371. [Google Scholar] [CrossRef]
- Dzyubenko, E.; Hermann, D.M. Neuroglia and extracellular matrix molecules. Handb. Clin. Neurol. 2025, 209, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Chen, J.; Liu, M.; Zhao, M.; Hu, D.; Xie, F.; Jin, Q.; Xiao, D.; Peng, Z.; Qin, T.; et al. Research progress of extracellular vesicles derived from mesenchymal stem cells in the treatment of neurodegenerative diseases. Front. Immunol. 2025, 16, 1496304. [Google Scholar] [CrossRef]
- Guo, M.; Hao, Y.; Feng, Y.; Li, M.; Mao, Y.; Dong, Q.; Cui, M. Microglial exosomes in neurodegenerative disease. Front. Mol. Neurosci. 2021, 14, 630808. [Google Scholar] [CrossRef]
- Patel, M.R.; Weaver, A.M. Astrocyte-derive small extracellular vesicles promote synapse formation via tubulin-2-mediated TGF-β signaling. Cell Rep. 2021, 34, 108829. [Google Scholar] [CrossRef]
- Liu, H.F.; Hu, Z.D.; Liu, X.C.; Ceo, Y.; Dig, C.M.; Hu, C.J. Diagnostic accuracy of serum glypican-3 for hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Biochem 2014, 47, 196–200. [Google Scholar] [CrossRef]
- Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1, AMPA receptor. Nature 2012, 486, 410–4014. [Google Scholar] [CrossRef]
- Kamimura, K.; Maeda, N. Glypican and heparin sulfate in synaptic development, neural plasticity, and neurological disorders. Front. Neural Circuits 2021, 15, 59556. [Google Scholar] [CrossRef] [PubMed]
- Irala, D.; Wang, S.; Skers, K.; Nagendren, L.; Severino, F.P.U.; Bindu, D.S.; Savage, J.T.; Eroglu, C. Astrocyte-secreted neurocam controls inhibitory synapse formation and function. Neuron 2024, 112, 1657–1675. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, A.; Contreras, M.; Sancho, L.; Salas, H.; Paumler, A.; Novak, S.W.; Manor, U.; Allen, N.J. Astrocyte glypican 5 regulates synapse maturation and stabilization. Cell Rep. 2025, 4, 115374. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhang, R.; Hu, H.; Zhang, C.; Lu, L. Integrative single cell RNA sequencing and mandelian randomization analysis reveal the potential role of synaptic vesicle cycling-related genes in Alzheimer’s disease. J. Prev. Alzheimer’s Dis. 2025, 12, 100097. [Google Scholar] [CrossRef]
- McGeachan, R.I.; Meftan, S.; Taylor, L.W.; Caterson, J.H.; Negro, D.; Bonthron, C.; Holt, K.; Tulloch, J.; Rose, J.L.; Gobbo, F.; et al. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat. Commun. 2025, 16, 3753. [Google Scholar] [CrossRef]
- Kopalli, S.R.; Behi, T.; Kyada, A.; Rekha, M.M.; Kundias, M.; Rani, P.; Nathiya, D.; Naidu, K.S.; Gulati, M.; Bhise, M.; et al. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025, 569, 161–183. [Google Scholar] [CrossRef]
- Rhoden, F.; Ferreira, P.C.L.; Bellaver, B.; Ferrari-Souza, J.P.; Aguzzoli, C.S.; Soares, C.; Abbas, S.; Zalzale, H.; Povala, G.; Lussier, F.Z.; et al. Glial reactivity correlates with synaptic dysfunction across aging and Alzheimer’s disease. Nat. Comm. 2025, 16, 5653. [Google Scholar] [CrossRef] [PubMed]
- Pokrzyk, J.; Kulczynska-Przybik, A.; Guzik-Makaruk, E. Clinical presence of amyloid-β implication in the detection and treatment of Alzheimer’s disease. Int. J. Mol. Sci. 2025, 26, 1935. [Google Scholar] [CrossRef]
- Paul, J.K.; Malik, A.; Azmal, M.; Gulzar, T.; Afghan, M.T.R.; Talukder, O.F.; Shahzadi, S.; Ghosh, A. Advancing Alzheimer’s therapy: Computational strategies and treatment innovations. IBRO Neurosci. Rep. 2025, 18, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Szczupak, D.; Ljung Qvist Brinson, L.; Kolarcik, C.L. Brain connectivity, neural networks, and resilience in aging and neurodegeneration. Am. J. Pathol. 2025, 195, 2032–2047. [Google Scholar] [CrossRef]
- Vahab, S.A.; V, V.K.; Kumar, V.S. Exosome-based drug delivery system for enhanced neurological therapeutics. Drug Deliv. Transl. Res. 2025, 15, 1121–1138. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yang, Z.; Wang, B.; Gong, H.; Zhang, K.; Lin, Y.; Sun, M. Extracellular vesicles: Biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl. Neurodegener. 2024, 13, 60. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Cabrera-Pastor, A. Emerging role of extracellular vesicles as biomarkers in neurodegenerative diseases. clinical and therapeutic potential in central nervous system pathologies. Int. J. Mol. Sci. 2024, 25, 10068. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, F.; Xia, Y.; Wang, L.; Lin, H.; Zhong, T.; Wang, X. Research progress on astrocyte- derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev. Neurosci. 2024, 35, 855–875. [Google Scholar] [CrossRef] [PubMed]
- Vinaiphat, A.; Sze, S.K. Clinical Implications of extracellular vesicles in neurodegenerative diseases. Expert Rev. Mol. Diagn. 2019, 19, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, I.; Dubey, N.; Goswami, N.; Tanwar, S.S. Berberine can be a potential therapeutic agent in treatment of Huntington’s disease: A proposed mechanistic insight. Mol. Neurobiol. 2025, 62, 14734–14762. [Google Scholar] [CrossRef] [PubMed]
- Burg, T.; Van Den Bosch, L. Glycerophospholipids in ALS: Insights into diseases mechanisms and clinical implication. Mol. Neurodegener. 2025, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; Nistri, R.; Wright, S. Measuring disease progression in multiple sclerosis clinical drug trails and impact on future patient care. CNS Drugs 2025, 39, 55–80. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Meldolesi, J. Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases. Int. J. Mol. Sci. 2026, 27, 159. https://doi.org/10.3390/ijms27010159
Meldolesi J. Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases. International Journal of Molecular Sciences. 2026; 27(1):159. https://doi.org/10.3390/ijms27010159
Chicago/Turabian StyleMeldolesi, Jacopo. 2026. "Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases" International Journal of Molecular Sciences 27, no. 1: 159. https://doi.org/10.3390/ijms27010159
APA StyleMeldolesi, J. (2026). Brain Synapses: Neurons, Astrocytes, and Extracellular Vesicles in Health and Diseases. International Journal of Molecular Sciences, 27(1), 159. https://doi.org/10.3390/ijms27010159

