Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = delamination enhancement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8982 KB  
Article
Tribological Performance of Micro and Nano-Titanium Carbide-Reinforced Copper Composites Manufactured by Powder Metallurgy: Experimental Studies and Modelling
by Anwar Ulla Khan, Sajjad Arif, Muhammed Muaz, Mohammad Shan, Ateyah Alzahrani and Ahmad Alghamdi
Metals 2026, 16(1), 66; https://doi.org/10.3390/met16010066 - 5 Jan 2026
Viewed by 219
Abstract
This study reports the fabrication of copper-based metal matrix composites reinforced with a combination of micro- and nano-sized titanium carbide (TiC) particles using the powder metallurgy route. The micro-TiC content was maintained at 5 wt.%, while the nano-TiC addition was systematically varied between [...] Read more.
This study reports the fabrication of copper-based metal matrix composites reinforced with a combination of micro- and nano-sized titanium carbide (TiC) particles using the powder metallurgy route. The micro-TiC content was maintained at 5 wt.%, while the nano-TiC addition was systematically varied between 1 and 3 wt.% in increments of 1 wt.%. The consolidation of the blends was achieved by uniaxial compaction at 500 MPa, followed by sintering in a nitrogen atmosphere at 750–900 °C for 2 h. Tribological assessment under dry sliding conditions was performed using a pin-on-disk apparatus. Structural and microstructural examinations using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) confirmed a uniform incorporation of the reinforcements within the Cu matrix. The incorporation of nano-TiC up to 2 wt.% significantly enhanced density, hardness, and wear resistance, after which a marginal decline was observed. SEM analysis of worn surfaces revealed that adhesive wear, abrasion, and delamination were the primary wear mechanisms. To better understand the relationship between processing conditions and material responses, response surface methodology (RSM) was employed. The developed models for density, hardness, and wear loss showed good agreement with the experimental results, with confirmatory tests yielding errors of 1.59%, 2.06%, and 2%, respectively, thereby validating the approach’s reliability. Full article
(This article belongs to the Special Issue Powder Metallurgy of Metals and Composites)
Show Figures

Figure 1

16 pages, 6399 KB  
Article
Compared Corrosion Resistance of 430 Ferritic Stainless Steels Produced via Unidirectional and Reversible Rolling
by Liming Yang, Bo Zhang, Ziwei Wang, Hongmei Yin, Xiong Zhao and Shuainan Guo
Coatings 2026, 16(1), 57; https://doi.org/10.3390/coatings16010057 - 4 Jan 2026
Viewed by 213
Abstract
This study investigates the comparative effects of unidirectional (R1) and reversible (R2) rolling processes on the corrosion resistance of 430 stainless steel, specifically evaluating the roles of residual stress versus microstructural stability. The experimental approach involved microstructural characterization of processed samples followed by [...] Read more.
This study investigates the comparative effects of unidirectional (R1) and reversible (R2) rolling processes on the corrosion resistance of 430 stainless steel, specifically evaluating the roles of residual stress versus microstructural stability. The experimental approach involved microstructural characterization of processed samples followed by corrosion performance evaluations, including salt spray testing and post-corrosion morphological analysis. The results indicate that R1 processing produces a dense, aligned microstructure with high residual stress, whereas R2 rolling leads to cyclic stress dissipation but results in extensive carbide delamination and surface porosity. Despite its higher residual stress, the R1 sample demonstrated significantly higher corrosion resilience. In contrast, the R2 sample exhibited pronounced localized degradation, characterized by deep intergranular cavities and intragranular attack. The findings reveal that microstructural voids and interfacial stability, rather than residual stress levels, are the primary factors governing passive film rupture and pit nucleation in these rolling conditions. The study demonstrates that unidirectional rolling preserves microstructural coherence, thereby enhancing the overall corrosion resistance of 430 stainless steels. Full article
Show Figures

Figure 1

23 pages, 9412 KB  
Article
Ballistic Performance of 7A52/7A62 Aluminum Alloy Laminates: A Numerical Investigation of Configuration Effect
by Qunjiao Wang, Meilin Yin, Jiangong Zhou, Xinyu Liu, Hui Zhang, Ruibin Mei, Zejun Chen, Yu Cao, Qiang Wang, Fuguan Cong and Yunlong Zhang
Materials 2026, 19(1), 179; https://doi.org/10.3390/ma19010179 - 3 Jan 2026
Viewed by 286
Abstract
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were [...] Read more.
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were calibrated. Using the calibrated J-C model, a series of numerical simulations were performed on several structural configurations, including single-layer (7A52-A, 7A62-B), double-layer (AB, BA), and four-layer laminates (ABAB, BAAB, ABBA, BABA). The results demonstrate that four-layer laminates exhibit markedly better ballistic performance than monolithic and double-layer plates. Among them, the ABAB stacking sequence—arranged in an alternating soft–hard–soft–hard pattern—shows the optimal performance, yielding a residual projectile velocity of only 256 m/s. This represents an approximately 27% reduction compared to the monolithic high-strength 7A62 plate. The overall ranking of ballistic performance is as follows: ABAB > BAAB > ABBA > BABA. Energy-based analysis further indicates that multi-interface delamination, coupled with plastic deformation and damage evolution, improves the energy-absorption efficiency of the laminated plates and thus enhances their ballistic resistance. This study offers valuable guidance for the lightweight design of laminated 7XXX-series aluminum alloy protective plates. Full article
Show Figures

Figure 1

15 pages, 1916 KB  
Article
Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation
by Shakhboz Sh. Isokjanov, Ainur B. Gilmanov, Yulia S. Vlasova, Alena I. Komayko, Olesia M. Karakulina and Valeriy V. Krivetskiy
J. Compos. Sci. 2026, 10(1), 11; https://doi.org/10.3390/jcs10010011 - 1 Jan 2026
Viewed by 398
Abstract
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. [...] Read more.
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. The matter is currently being addressed in terms of electrolyte components, polymer binders, materials structure and morphology itself, as well as current collector design, which differ greatly in cost and scalability. The present work describes the efficacy of Cu foil perforation—a simple, low-cost, and easily scalable approach—as a means of Si/C composite anode performance stabilization during extensive charge-discharge cycling. The NMC||Si/C pouch-type full cells demonstrated over 90% of initial capacity retention after 100 charge-discharge cycles in the case of a 250 µm perforated Cu foil used as a current collector, compared to only 60% capacity left in the same conditions for plain Cu foil as an anode. The obtained result is related to the prevention of anode material delamination off the foil surface as a result of silicon expansion and contraction, which is achieved through the formation inter-penetrating metal-composite structure and the presence of “stitches”, connecting and holding both sides of the electrode tightly attached to the current collector. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

17 pages, 4199 KB  
Article
Assessing Sugarcane Bagasse Biomethanation After a Pretreatment with Proteus mirabilis KC94
by Kgodiso J. Rabapane, Charles Rashama and Tonderayi S. Matambo
Bioresour. Bioprod. 2026, 2(1), 1; https://doi.org/10.3390/bioresourbioprod2010001 - 27 Dec 2025
Viewed by 208
Abstract
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB [...] Read more.
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB hydrolysis, improve nutrient balance, and increase biomethane potential (BMP). Three treatments were compared: untreated bagasse (UB), sterilized bagasse (SB), and KC94-pretreated bagasse (PB). Glucose release was highest in PB (61.83 ± 0.8 mg/mL), indicating enhanced cellulose degradation in PB relative to UB (53.19 ± 0.9 mg/mL) and SB (44.00 ± 0.5 mg/mL). Elemental analysis revealed a more balanced nutrient profile in PB, characterized by optimal carbon and nitrogen levels, and reduced sulfur content, indicating microbial assimilation and potential biological desulfurization. Scanning electron microscopy revealed pronounced structural disruption, increased porosity, and fiber delamination in PB, confirming the efficacy of KC94-mediated lignocellulosic pretreatment. BMP assays conducted over a 31-day incubation period revealed that PB produced the highest cumulative methane yield (99 ± 0.7 mL CH4/g VS), representing 19% and 25% increases over UB and SB, respectively. PB biomethanation was also faster compared to the other two substrates. These findings demonstrate the novelty of a 5-day bacterial pretreatment strategy, which significantly improves lignocellulosic hydrolysis and methane yield. Specifically, P. mirabilis KC94 pretreatment increased glucose release by 16–40% and cumulative methane yield by 19–25% compared to untreated and sterilized controls. This cost-effective and environmentally friendly approach highlights the potential of P. mirabilis KC94 to valorize sugarcane bagasse, advancing sustainable energy recovery and circular bioeconomy practices. Full article
Show Figures

Figure 1

24 pages, 3135 KB  
Article
Layer-by-Layer Integration of Electrospun Nanofibers in FDM 3D Printing for Hierarchical Composite Fabrication
by Jaymin Vrajlal Sanchaniya, Hilary Smogor, Valters Gobins, Vincent Noël, Inga Lasenko and Simas Rackauskas
Polymers 2026, 18(1), 78; https://doi.org/10.3390/polym18010078 - 27 Dec 2025
Viewed by 338
Abstract
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer [...] Read more.
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer nanofiber deposition directly onto printed PLA layers in a continuous automated process, eliminating the need for prefabricated electrospun nanofiber mats. The influences of nozzle temperature (210–230 °C) and electrospinning time (5–15 min per layer) on mechanical, thermal, and morphological properties were systematically investigated. Optimal performance was achieved at an FDM nozzle temperature of 220 °C with 5 min of electrospinning time (sample E1), showing a 36.5% increase in tensile strength (71 MPa), a 33.3% increase in Young’s modulus (2.8 GPa), and a 62.0% increase in flexural strength (128 MPa) compared with the neat PLA. This enhancement resulted from the complete infiltration of molten PLA into the thin nanofiber mats, creating true fiber–matrix integration. Excessive nanofiber content (15 min ES) caused a 36.5% reduction in strength due to delamination and incomplete infiltration. Thermal analysis revealed a decrease in glass transition temperature (1.2 °C) and onset of thermal degradation (5.3–15.2 °C) with nanofiber integration. Fracture morphology confirmed that to achieve optimal properties, it was critical to balance the nanofiber reinforcement content with the depth of infiltration, as excessive content created poorly bonded interleaved layers. This integrated fabrication platform enables the production of lightweight hierarchical composites with multiscale, custom-made reinforcement for applications in biomedical scaffolds, protective equipment, and structural components. Full article
(This article belongs to the Special Issue Advanced Electrospinning Technology for Polymer Materials)
Show Figures

Graphical abstract

17 pages, 1222 KB  
Article
Investigation into the Reprocessability of Polycarbonate/Organoclay Nanocomposites
by Basak Tuna
Polymers 2026, 18(1), 67; https://doi.org/10.3390/polym18010067 - 26 Dec 2025
Viewed by 339
Abstract
With the rapid expansion in the use of nanomaterials, ensuring their reprocessability has become a critical consideration for the sustainable development of polymer-based nanocomposites. In this study, the effects of repetitive thermo-mechanical processing cycles on the properties of polycarbonate (PC)/organoclay nanocomposites, as well [...] Read more.
With the rapid expansion in the use of nanomaterials, ensuring their reprocessability has become a critical consideration for the sustainable development of polymer-based nanocomposites. In this study, the effects of repetitive thermo-mechanical processing cycles on the properties of polycarbonate (PC)/organoclay nanocomposites, as well as the impact of reactive extrusion of reprocessed PC/organoclay nanocomposites using a chain extender, were investigated for the first time. The nanocomposites were processed three times using a twin-screw extruder, and a multi-anhydride functional chain extender was incorporated to counteract the thermo-mechanical degradation observed after the third extrusion cycle. Morphological analysis indicated that the delamination of clay nanolayers within the polymer matrix was slightly enhanced with increasing extrusion cycles, while the addition of the chain extender further promoted nanoclay exfoliation. Despite the improved clay dispersion in PC, both rheological and tensile measurements revealed the detrimental effects of repeated reprocessing on the nanocomposites. The chain extender effectively mitigated this degradation by relinking cleaved polymer chains; consequently, the complex viscosity and storage modulus at 0.1 Hz of the three-times-extruded nanocomposite increased by 248% and 426%, respectively, following chain extender incorporation. The effectiveness of the chain extender was further evidenced by a 27% enhancement in tensile strength. The glass transition temperatures of the samples were not significantly affected by either the extrusion cycles or the addition of the chain extender. The thermal stability of the nanocomposites decreased with increasing numbers of extrusion cycles; however, the incorporation of the chain extender imparted enhanced resistance to thermal degradation, as confirmed by thermogravimetric analysis. Full article
(This article belongs to the Special Issue Advances in Recycling and Reuse of Polymers)
Show Figures

Figure 1

15 pages, 12323 KB  
Article
Research on Machining Characteristics of C/SiC Composite Material by EDM
by Peng Yu, Ziyang Yu, Lize Wang, Yongcheng Gao, Qiang Li and Yiquan Li
Micromachines 2025, 16(12), 1423; https://doi.org/10.3390/mi16121423 - 18 Dec 2025
Viewed by 279
Abstract
Carbon fiber reinforced silicon carbide (C/SiC) composite material exhibits exceptional properties, including high strength, high stiffness, low density, outstanding high-temperature performance, and corrosion resistance. Consequently, they are widely used in aerospace, defense, and automotive engineering. However, their anisotropic, high hardness, and brittle characteristics [...] Read more.
Carbon fiber reinforced silicon carbide (C/SiC) composite material exhibits exceptional properties, including high strength, high stiffness, low density, outstanding high-temperature performance, and corrosion resistance. Consequently, they are widely used in aerospace, defense, and automotive engineering. However, their anisotropic, high hardness, and brittle characteristics make them a typical difficult-to-machine material. This paper focuses on achieving high-quality micro hole machining of C/SiC composite material via electrical discharge machining. It systematically investigates electrical discharge machining characteristics and innovatively develops a hollow internal flow helical electrode reaming process. Experimental results reveal four typical chip morphologies: spherical, columnar, blocky, and molten. The study uncovers a multi-mechanism cutting process: the EDM ablation of the composite involves material melting and explosive vaporization, the intact extraction and fracture of carbon fibers, and the brittle fracture and spalling of the SiC matrix. Discharge energy correlates closely with surface roughness: higher energy removes more SiC, resulting in greater roughness, while lower energy concentrates on m fibers, yielding higher vaporization rates. C fiber orientation significantly impacts removal rates: processing time is shortest at θ = 90°, longest at θ = 0°, and increases as θ decreases. Typical defects such as delamination were observed between alternating 0° and 90° fiber bundles or at hole entrances. Cracks were also detected at the SiC matrix–C fiber interface. The proposed hole-enlargement process enhances chip removal efficiency through its helical structure and internal flushing, reduces abnormal discharges, mitigates micro hole taper, and thereby improves forming quality. This study provides practical references for the EDM of C/SiC composite material. Full article
Show Figures

Figure 1

21 pages, 4069 KB  
Article
Effect of Notch Depth on Mode II Interlaminar Fracture Toughness of Rubber-Modified Bamboo–Coir Composites
by C. Bhargavi, K S Sreekeshava, Narendra Reddy and Naveen Dyava Naik
J. Compos. Sci. 2025, 9(12), 704; https://doi.org/10.3390/jcs9120704 - 16 Dec 2025
Viewed by 597
Abstract
This study investigates the Mode II fracture behavior of bamboo–coir–rubber (BCR) hybrid composite panels developed as sustainable alternatives for wood-based panels used in structural applications. The composites were fabricated using alternating bamboo and coir layers within a polypropylene (PP) thermoplastic matrix, with styrene–butadiene [...] Read more.
This study investigates the Mode II fracture behavior of bamboo–coir–rubber (BCR) hybrid composite panels developed as sustainable alternatives for wood-based panels used in structural applications. The composites were fabricated using alternating bamboo and coir layers within a polypropylene (PP) thermoplastic matrix, with styrene–butadiene rubber (SBR) incorporated as an additive at 0–30 wt.% to enhance interlaminar toughness. Commercial structural plywood was tested as the benchmark. Mode II interlaminar fracture toughness (GIIc) was evaluated using the ASTM D7905 End-Notched Flexure (ENF) test, supported by optical monitoring to study crack monitoring and Scanning Electron Microscopy (SEM) for microstructural interpretation. Results demonstrated a steady increase in GIIc from 1.26 kJ/m2 for unmodified laminates to a maximum of 1.98 kJ/m2 at 30% SBR, representing a 60% improvement over the baseline and nearly double the toughness of plywood (0.7–0.9 kJ/m2). The optimum performance was obtained at 20–25 wt.% SBR, where the laminated retained approximately 85–90% of their initial flexural modulus while exhibiting enhanced energy absorption. Increasing the initial notch ratio (a0/L) from 0.2 to 0.4 caused a reduction of 20% in GIIc and a twofold rise in compliance, highlighting the geometric sensitivity of shear fracture to the remaining ligament. Analysis of Variance (ANOVA) confirmed that the increase in GIIc for the 20–25% SBR laminates relative to plywood and the unmodified composite is significant at p < 0.05. SEM observations revealed rubber-particle cavitation, matrix shear yielding, and coir–fiber bridging as the dominant toughening mechanisms responsible for the transition from abrupt to stable delamination. The measured toughness levels (1.5–2.0 kJ/m2) position the BCR panels within the functional range required for reusable formwork, interior partitions, and transport flooring. The combination of renewable bamboo and coir with a thermoplastic PP matrix and rubber modification hence offers a formaldehyde-free alternative to conventional plywood for shear-dominated applications. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

19 pages, 10305 KB  
Article
Graphene Nanofiller Type Matters: Comparative Analysis of Static and Fatigue Delamination Resistance in Modified Carbon Fiber Composites
by Konstantina Zafeiropoulou, Christina Kostagiannakopoulou, George Sotiriadis and Vassilis Kostopoulos
Polymers 2025, 17(24), 3299; https://doi.org/10.3390/polym17243299 - 12 Dec 2025
Viewed by 358
Abstract
Delamination remains a critical failure mode in carbon fiber-reinforced polymer (CFRP) composites, particularly under cyclic loading in aerospace and automotive applications. This study explores whether nanoscale reinforcement with graphene-based materials can enhance delamination resistance and identifies the most effective nanofiller type. Two distinct [...] Read more.
Delamination remains a critical failure mode in carbon fiber-reinforced polymer (CFRP) composites, particularly under cyclic loading in aerospace and automotive applications. This study explores whether nanoscale reinforcement with graphene-based materials can enhance delamination resistance and identifies the most effective nanofiller type. Two distinct graphene nanospecies—reduced graphene oxide (rGO) and carboxyl-functionalized graphene nanoplatelets (HDPlas)—were incorporated at 0.5 wt% into CFRP laminates and tested under static and fatigue mode I loading using double cantilever beam (DCB) tests. Both nanofillers enhanced interlaminar fracture toughness compared to the neat composite: rGO improved the energy release rate by 36%, while HDPlas achieved a remarkable 67% enhancement. Fatigue testing showed even stronger effects, with the fatigue threshold energy release rate rising by 24% for rGO and 67% for HDPlas, leading to a fivefold increase in fatigue life for HDPlas-modified laminates. A compliance calibration method enabled continuous monitoring of crack growth over one million cycles. Fractography analysis using scanning electron microscopy revealed that both nanofillers activated crack bifurcation, enhancing energy dissipation. However, the HDPlas system further exhibited extensive nanoparticle pull-out, creating a more tortuous crack path and superior resistance to crack initiation and growth under cyclic loading. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Figure 1

22 pages, 3131 KB  
Article
Evaluating Crumb Rubber Modified (CRM) Asphalt as a Sustainable Binder Alternative for High-Friction Surface Treatments
by Abdallah Aboelela, Alireza Roshan and Magdy Abdelrahman
Sustainability 2025, 17(24), 10940; https://doi.org/10.3390/su172410940 - 7 Dec 2025
Viewed by 364
Abstract
High-friction surface treatments (HFSTs) are widely applied to improve pavement safety by enhancing long-term skid resistance. Although epoxy resins are commonly used due to their strength and durability, their high cost, susceptibility to delamination, incompatibility with substrates of flexible pavements, and adverse environmental [...] Read more.
High-friction surface treatments (HFSTs) are widely applied to improve pavement safety by enhancing long-term skid resistance. Although epoxy resins are commonly used due to their strength and durability, their high cost, susceptibility to delamination, incompatibility with substrates of flexible pavements, and adverse environmental concerns limit their long-term performance. This study presents crumb rubber modified (CRM) asphalt as a sustainable alternative binder for HFST applications. CRM binders offer high performance and compatibility with existing pavement surfaces, cost effectiveness and reduced environmental impacts as compared to epoxy binders. In addition, the binder development utilizes enhanced recycling technologies for interacting with used tire rubber with asphalt. The evaluated CRM binders were prepared under varying interaction temperatures, crumb rubber contents, and types. The developed binders were evaluated for friction performance with two aggregate sources, calcined bauxite (CB) and rhyolite (Rhy). Binder characterization included rheological testing conducted through both frequency sweep and temperature sweep procedures. HFST mixes were evaluated using the British Pendulum Test (BPT), the Dynamic Friction Tester (DFT), and the Circular Track Meter (CTM) in collaboration with the Three-Wheel Polishing Device (TWPD) to simulate the traffic-induced polishing effect. The results showed that CRM content influenced binder performance under polishing. CRM asphalt-based HFST with a relatively high CRM content (15%) maintained a greater coefficient of friction (COF) and exhibited polishing resistance, showing low reduction in the COF after the total number of polishing cycles. In contrast, mean profile depth (MPD) analysis revealed that the most macrotexture efficiency was found in binders with a lower CRM content (10%) after completing the total number of polishing cycles. Analysis of Variance (ANOVA) showed a significant effect of the interaction conditions and rheological properties of CRM binders on the British pendulum number (BPN) loss due to the polishing process. As expected, aggregate source further influenced the resistance to polishing; CB outperformed Rhy with significantly lower aggregate loss under polishing. Overall, the results confirmed that CRM asphalt binders can effectively serve as a sustainable, flexible, and cost-effective alternative binder in HFST. Full article
(This article belongs to the Special Issue Strategies for Improving the Sustainability of Asphalt Pavements)
Show Figures

Figure 1

18 pages, 4558 KB  
Article
Investigation of Friction Enhancement Behavior on Textured U75V Steel Surface and Its Friction Vibration Characteristic
by Jinbo Zhou, Zhiqiang Wang, Linfeng Min, Jingyi Wang, Yongqiang Wang, Zhixiong Bai and Mingxue Shen
Lubricants 2025, 13(12), 532; https://doi.org/10.3390/lubricants13120532 - 7 Dec 2025
Viewed by 379
Abstract
The wheel–rail friction coefficient is a critical factor influencing train traction and braking performance. Low-adhesion conditions not only limit the enhancement of railway transport capacity but are also the primary cause of surface damage such as scratches, delamination, and flat spots. This study [...] Read more.
The wheel–rail friction coefficient is a critical factor influencing train traction and braking performance. Low-adhesion conditions not only limit the enhancement of railway transport capacity but are also the primary cause of surface damage such as scratches, delamination, and flat spots. This study employs femtosecond laser technology to fabricate wavy groove textures on U75V rail surfaces, systematically investigating the effects of the wavy angle and texture area ratio on friction enhancement under various medium conditions. Findings indicate that parameter-optimized textured surfaces not only significantly increase the coefficient of friction but also exhibit superior wear resistance, vibration damping, and noise reduction properties. The optimally designed wavy textured surface achieves significant friction enhancement under water conditions. Among the tested configurations, the surface with parameters θ = 150°@η = 30% demonstrated the most pronounced friction enhancement, achieving a coefficient of friction as high as 0.57—a 42.5% increase compared to the non-textured surface (NTS). This enhancement is attributed to the unique hydrophilic and anisotropic characteristics of the textured surface, where droplets tend to spread perpendicular to the sliding direction, thereby hindering the formation of a continuous lubricating film as a third body. Analysis of friction vibration signals reveals that textured surfaces exhibit lower vibration signal amplitudes and richer frequency components. Furthermore, comparison of Stribeck curves under different lubrication regimes for the θ = 150°@η = 30% specimen and NTS indicated an overall upward shift in the curve for the textured sample. The amplitude, energy, and wear extent of the textured surface consistently decreased across boundary lubrication, hydrodynamic lubrication, and mixed lubrication regimes. These findings provide crucial theoretical insights and technical guidance for addressing low-adhesion issues at the wheel–rail interface, offering significant potential to enhance wheel–rail adhesion characteristics in engineering applications. Full article
(This article belongs to the Special Issue Surface Machining and Tribology)
Show Figures

Figure 1

17 pages, 7491 KB  
Article
Performance Reinforcement of Basalt Fiber–Reinforced Polymer by Guiding Hierarchical Aramid/Zirconia Hybrid Fiber
by Ziteng Zhou, Buerke Yang, Jiaxin He, Xiang Yuan, Fei Cheng, Peng Zhang, Shuying Shi, Evgeny Lomakin, Daria Bondarchuk, Rasuljon Tojiyev, Hao Liu and Xiaozhi Hu
Coatings 2025, 15(11), 1356; https://doi.org/10.3390/coatings15111356 - 20 Nov 2025
Viewed by 543
Abstract
Hierarchical aramid/zirconia hybrid fibers were introduced into the interlayers of basalt fiber–reinforced polymer (BFRP) composites to optimize their interlaminar properties. The reinforcing effect of micro/nano aramid short fiber (MNASF) and zirconia fiber (ZF) on BFRP composites at different mass ratios was investigated through [...] Read more.
Hierarchical aramid/zirconia hybrid fibers were introduced into the interlayers of basalt fiber–reinforced polymer (BFRP) composites to optimize their interlaminar properties. The reinforcing effect of micro/nano aramid short fiber (MNASF) and zirconia fiber (ZF) on BFRP composites at different mass ratios was investigated through three-point bending (3PB) tests and compression tests. The results demonstrated that the BFRP composites incorporating 2 wt.% MNASF and 2 wt.% ZF exhibited the most significant property enhancement. The 3PB tests revealed increases in flexural strength and modulus of 119.2% and 62.6%, respectively, compared to the unreinforced BFRP composites. Compression tests showed that this specific formulation enhanced the compressive strength and modulus by 257.7% and 121.6%, respectively. Scanning electron microscopy and optical microscopy observations indicated that the incorporation of MNASF and ZF effectively reduced the volume fraction of resin-rich regions in the interlaminar regions, and the dominant failure mode transitioned from delamination to shear failure. Overall, the introduction of MNASF and ZF effectively combined the reinforcing effects of the two fibers, improving the mechanical properties of BFRP composites. Full article
Show Figures

Figure 1

16 pages, 4810 KB  
Article
Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates
by Juveriya Sayyed, Prashantha Acharya, Sriharsha Hegde, Gururaj Bolar, Manjunath Shetty, Thara Reshma I. V. and Padmaraj N. H.
J. Compos. Sci. 2025, 9(11), 636; https://doi.org/10.3390/jcs9110636 - 18 Nov 2025
Viewed by 617
Abstract
The present study investigated the tensile behavior, failure mechanisms and deformation characteristics of glass fiber-reinforced polymer (GFRP) composites with symmetric [0°/90°/90°/0°] and asymmetric [0°/90°/0°/90°] stacking sequences across a temperature range of 30–150 °C. Tensile testing revealed superior mechanical performance in the symmetric lay-up, [...] Read more.
The present study investigated the tensile behavior, failure mechanisms and deformation characteristics of glass fiber-reinforced polymer (GFRP) composites with symmetric [0°/90°/90°/0°] and asymmetric [0°/90°/0°/90°] stacking sequences across a temperature range of 30–150 °C. Tensile testing revealed superior mechanical performance in the symmetric lay-up, with higher tensile strength and failure strain sustained across elevated temperatures. Failure mode analysis revealed a transition from ductile failure to brittle failure with increasing temperature, which was more pronounced in the asymmetric lay-up, along with increased delamination and reduced fiber pull-out. Failure surface examination supported these findings, revealing better interfacial bonding and matrix integrity in the symmetric lay-up. Deformation analysis further confirmed a more homogeneous distribution of strain and longer failure time in symmetric laminates. Across all the metrics, including toughness, energy absorption, and strain uniformity, the symmetric configuration outperformed the asymmetric counterpart, underscoring the critical role of balanced stacking in enhancing the thermal durability. The observed temperature-induced degradation and its impact on mechanical and failure behavior emphasize the need for temperature-sensitive design strategies in GFRP-based structures. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

28 pages, 3871 KB  
Review
A Review on Tribological Wear and Corrosion Resistance of Surface Coatings on Steel Substrates
by Xin Wang, Wenqi Zhao, Tingting Shi, Lijuan Cheng, Suwen Hu, Chunxia Zhou, Li Cui, Ning Li and Peter K. Liaw
Coatings 2025, 15(11), 1314; https://doi.org/10.3390/coatings15111314 - 11 Nov 2025
Cited by 1 | Viewed by 1626
Abstract
Surface coatings have proven highly effective in addressing the critical challenges of friction, wear, and corrosion on steel substrates, which are responsible for over 80% of mechanical failures in industrial applications. Recent research highlights that advanced coatings—such as ceramic carbides/nitrides, high-entropy alloys, and [...] Read more.
Surface coatings have proven highly effective in addressing the critical challenges of friction, wear, and corrosion on steel substrates, which are responsible for over 80% of mechanical failures in industrial applications. Recent research highlights that advanced coatings—such as ceramic carbides/nitrides, high-entropy alloys, and metal-matrix composites—significantly enhance hardness, wear resistance, and environmental durability through mechanisms including protective oxide film formation, solid lubrication, and microstructural refinement. Moreover, these coatings exhibit robust performance under combined tribological-corrosive (tribocorrosion) conditions, where synergistic interactions often accelerate material degradation. Key developments include multilayer and composite architectures that balance hardness with toughness, self-lubricating coatings capable of in situ lubricant release, and active or self-healing systems for sustained corrosion inhibition. Despite these advances, challenges remain in predicting coating lifetime under multifield service conditions and optimizing interfacial adhesion to prevent delamination. Future efforts should prioritize multifunctional coating designs, improved tribocorrosion models, and the integration of sustainable materials and AI-driven process optimization. This review consolidates these insights to support the development of next-generation coatings for extending the service life of steel components across demanding sectors such as marine, aerospace, and energy systems. Full article
(This article belongs to the Special Issue Manufacturing and Surface Engineering, 5th Edition)
Show Figures

Figure 1

Back to TopTop