Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = deformation retrieval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12335 KB  
Article
Method for Monitoring the Safety of Urban Subway Infrastructure Along Subway Lines by Fusing Inter-Track InSAR Data
by Guosheng Cai, Xiaoping Lu, Yao Lu, Zhengfang Lou, Baoquan Huang, Yaoyu Lu, Siyi Li and Bing Liu
Sensors 2026, 26(2), 454; https://doi.org/10.3390/s26020454 - 9 Jan 2026
Viewed by 151
Abstract
Urban surface subsidence is primarily induced by intensive above-ground and underground construction activities and excessive groundwater extraction. Integrating InSAR techniques for safety monitoring of urban subway infrastructure is therefore of great significance for urban safety and sustainable development. However, single-track high-spatial-resolution SAR imagery [...] Read more.
Urban surface subsidence is primarily induced by intensive above-ground and underground construction activities and excessive groundwater extraction. Integrating InSAR techniques for safety monitoring of urban subway infrastructure is therefore of great significance for urban safety and sustainable development. However, single-track high-spatial-resolution SAR imagery is insufficient to achieve full coverage over large urban areas, and direct mosaicking of inter-track InSAR results may introduce systematic biases, thereby compromising the continuity and consistency of deformation fields at the regional scale. To address this issue, this study proposes an inter-track InSAR correction and mosaicking approach based on the mean vertical deformation difference within overlapping areas, aiming to mitigate the overall offset between deformation results derived from different tracks and to construct a spatially continuous urban surface deformation field. Based on the fused deformation results, subsidence characteristics along subway lines and in key urban infrastructures were further analyzed. The main urban area and the eastern and western new districts of Zhengzhou, a national central city in China, were selected as the study area. A total of 16 Radarsat-2 SAR scenes acquired from two tracks during 2022–2024, with a spatial resolution of 3 m, were processed using the SBAS-InSAR technique to retrieve surface deformation. The results indicate that the mean deformation rate difference in the overlapping areas between the two SAR tracks is approximately −5.54 mm/a. After applying the difference-constrained correction, the coefficient of determination (R2) between the mosaicked InSAR results and leveling observations increased to 0.739, while the MAE and RMSE decreased to 4.706 and 5.538 mm, respectively, demonstrating good stability in achieving inter-track consistency and continuous regional deformation representation. Analysis of the corrected InSAR results reveals that, during 2022–2024, areas exhibiting uplift and subsidence trends accounted for 37.6% and 62.4% of the study area, respectively, while the proportions of cumulative subsidence and uplift areas were 66.45% and 33.55%. In the main urban area, surface deformation rates are generally stable and predominantly within ±5 mm/a, whereas subsidence rates in the eastern new district are significantly higher than those in the main urban area and the western new district. Along subway lines, deformation rates are mainly within ±5 mm/a, with relatively larger deformation observed only in localized sections of the eastern segment of Line 1. Further analysis of typical zones along the subway corridors shows that densely built areas in the western part of the main urban area remain relatively stable, while building-concentrated areas in the eastern region exhibit a persistent relative subsidence trend. Overall, the results demonstrate that the proposed inter-track InSAR mosaicking method based on the mean deformation difference in overlapping areas can effectively support subsidence monitoring and spatial pattern identification along urban subway lines and key regions under relative calibration conditions, providing reliable remote sensing information for refined urban management and infrastructure risk assessment. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

19 pages, 5832 KB  
Article
Joint PS–SBAS Time-Series InSAR for Sustainable Urban Infrastructure Management: Tunnel Subsidence Mechanisms in Sanya, China
by Jun Hu, Zihan Song, Yamin Zhao, Kai Wei, Bing Liu and Qiong Liu
Sustainability 2026, 18(2), 688; https://doi.org/10.3390/su18020688 - 9 Jan 2026
Viewed by 166
Abstract
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation [...] Read more.
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation along the Sanya Estuary Channel tunnel (China) using Permanent Scatterer InSAR (PS-InSAR) and Small Baseline Subset InSAR (SBAS-InSAR). The two approaches reveal a consistent subsidence hotspot at Tunnel Section D (DK0+000–DK0+330), while most of the corridor remains within ±5 mm/a. The line-of-sight deformation rates range from −24 to 17.7 mm/year (PS-InSAR) and −29.9 to 18.7 mm/a (SBAS-InSAR). Time-series analysis at representative points in Section D indicates a maximum cumulative settlement of −75.7 mm and a clear acceleration after May 2023. By integrating the deformation results with geological reports, construction logs and rainfall records, we infer that compressible marine clays and interbedded sand/aquifer zones control the hotspot, whereas excavation/dewatering and rainfall-related groundwater fluctuations further promote consolidation. The results provide a practical basis for subsidence risk screening and monitoring prioritization for estuary-crossing infrastructure in coastal soft-soil settings. From a sustainability perspective, the proposed joint PS–SBAS InSAR framework provides a scalable and cost-effective tool for continuous deformation surveillance, supporting preventive maintenance and risk-informed management of urban underground infrastructure. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

22 pages, 14855 KB  
Article
An Improved SBAS-InSAR Processing Method Considering Phase Consistency: Application to Landslide Monitoring in Hualong County, Qinghai Province, China
by Wulinhong Luo, Bo Liu, Guangcai Feng, Zhiqiang Xiong, Wei Yin, Haiyan Wang, You Yu, Peiyu Chen and Jixiong Yang
Sensors 2026, 26(2), 420; https://doi.org/10.3390/s26020420 - 8 Jan 2026
Viewed by 154
Abstract
Phase consistency is a critical prerequisite for achieving high-precision time-series InSAR deformation retrieval. However, conventional SBAS-InSAR methods provide only limited consideration of phase consistency during the inversion process. Within the SBAS-InSAR workflow, two principal categories of error sources are primarily responsible for phase [...] Read more.
Phase consistency is a critical prerequisite for achieving high-precision time-series InSAR deformation retrieval. However, conventional SBAS-InSAR methods provide only limited consideration of phase consistency during the inversion process. Within the SBAS-InSAR workflow, two principal categories of error sources are primarily responsible for phase inconsistency, manifested as non-zero closure phase (NCP): (1) fading biases introduced during multilooking and filtering prior to phase unwrapping; and (2) unwrapping errors caused by large deformation gradients, low coherence, or inappropriate selection of unwrapping algorithms. To address these issues, this study introduces an improved SBAS-InSAR processing workflow, termed NCP-SBAS, designed to improve the accuracy of deformation field estimation and thereby enhance its applicability to geological hazard monitoring. The key idea of the method is to enforce phase consistency as a constraint, jointly accounting for the spatiotemporal characteristics of fading biases and the valid deformation signals, thereby enabling effective correction of NCP. To evaluate the effectiveness of NCP-SBAS, this study conducted a detailed analysis of deformation differences in Hualong County, Qinghai Province, before and after NCP correction, highlighting the significant advantages of the proposed approach. The results indicate that the influence of fading biases on deformation estimates depends on both the magnitude and direction of deformation, while unwrapping errors primarily lead to an underestimation of deformation. In addition, the study provides an in-depth discussion of how fading biases and unwrapping errors affect landslide monitoring and identification. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

25 pages, 2944 KB  
Systematic Review
Tips and Pitfalls of Surgical Techniques for Scoliotic Deformities in Neurofibromatosis Type 1
by Angelos Kaspiris, Ioanna Lianou, Vasileios Marouglianis, Roberta-Spyridoula Afrati, Evangelos Sakellariou, Andreas Morakis, Panagiotis Karampinas, Elias S. Vasilisadis and Spiros G. Pneumaticos
J. Clin. Med. 2026, 15(1), 104; https://doi.org/10.3390/jcm15010104 - 23 Dec 2025
Viewed by 291
Abstract
Background: Neurofibromatosis 1 is an autosomal dominant disorder accompanied by extensive early-onset spinal manifestations, with or without dystrophic scoliotic features. While non-dystrophic subtypes can often be treated similarly to idiopathic scoliosis, dystrophic scoliosis typically requires more aggressive intervention, often involving instrumentation in [...] Read more.
Background: Neurofibromatosis 1 is an autosomal dominant disorder accompanied by extensive early-onset spinal manifestations, with or without dystrophic scoliotic features. While non-dystrophic subtypes can often be treated similarly to idiopathic scoliosis, dystrophic scoliosis typically requires more aggressive intervention, often involving instrumentation in severely compromised pedicles or vertebrae. Purpose: This review aims to present recent advances in the surgical treatment of Neurofibromatosis 1-associated scoliosis, including surgical techniques and emerging guidance methods. Methods: An electronic literature search was conducted in Web of Science and PubMed to identify surgical techniques for scoliosis in patients with Neurofibromatosis 1. Results: Forty-one studies on the operative treatment of dystrophic scoliosis or both subtypes were retrieved. Although aggressive treatment with combined anterior and posterior fusion are widely used, posterior-only methods, which avoid plexiform tumours, present encouraging results. Recent studies highlight the effectiveness of growing rod systems in early-onset cases, enabling delayed fusion while preserving T1-S1 growth. Promising results from sectional or segmented correction techniques demonstrate better sagittal balance and Cobb angle correction, respectively. Preoperative use of halo-gravity traction, which has been extensively studied, is associated with reduced neurological impairment and encourages better correction results, avoiding autofusion. Various studies have also reported more precise pedicle screw placement with guidance of O-arm and triggered electromyography (t-EMG). Conclusions: The correction of spinal scoliotic deformities presents a significant challenge. However, recent advances in surgical techniques and intraoperative guidance offer promising strategies for more effective management. Full article
Show Figures

Figure 1

20 pages, 4545 KB  
Article
SRE-FMaps: A Sinkhorn-Regularized Elastic Functional Map Framework for Non-Isometric 3D Shape Matching
by Dan Zhang, Yue Zhang, Ning Wang and Dong Zhao
J. Imaging 2025, 11(12), 452; https://doi.org/10.3390/jimaging11120452 - 16 Dec 2025
Viewed by 325
Abstract
Precise 3D shape correspondence is a fundamental prerequisite for critical applications ranging from medical anatomical modeling to visual recognition. However, non-isometric 3D shape matching remains a challenging task due to the limited sensitivity of traditional Laplace–Beltrami (LB) bases to local geometric deformations such [...] Read more.
Precise 3D shape correspondence is a fundamental prerequisite for critical applications ranging from medical anatomical modeling to visual recognition. However, non-isometric 3D shape matching remains a challenging task due to the limited sensitivity of traditional Laplace–Beltrami (LB) bases to local geometric deformations such as stretching and bending. To address these limitations, this paper proposes a Sinkhorn-Regularized Elastic Functional Map framework (SRE-FMaps) that integrates entropy-regularized optimal transport with an elastic thin-shell energy basis. First, a sparse Sinkhorn transport plan is adopted to initialize a bijective correspondence with linear computational complexity. Then, a non-orthogonal elastic basis, derived from the Hessian of thin-shell deformation energy, is introduced to enhance high-frequency feature perception. Finally, correspondence stability is quantified through a cosine-based elastic distance metric, enabling retrieval and classification. Experiments on the SHREC2015, McGill, and Face datasets demonstrate that SRE-FMaps reduces the correspondence error by a maximum of 32% and achieves an average of 92.3% classification accuracy (with a peak of 94.74% on the Face dataset). Moreover, the framework exhibits superior robustness, yielding a recall of up to 91.67% and an F1-score of 0.94, effectively handling bending, stretching, and folding deformations compared with conventional LB-based functional map pipelines. The proposed framework provides a scalable solution for non-isometric shape correspondence in medical modeling, 3D reconstruction, and visual recognition. Full article
Show Figures

Figure 1

28 pages, 31846 KB  
Article
A Two-Dimensional InSAR-Based Framework for Landslide Identification and Movement Pattern Classification
by Xuhao Li, Qianyou Fan, Yufen Niu, Shuangcheng Zhang, Jinqi Zhao, Jinzhao Si, Zixuan Wang, Ziheng Ju and Zhong Lu
Remote Sens. 2025, 17(23), 3889; https://doi.org/10.3390/rs17233889 - 30 Nov 2025
Viewed by 560
Abstract
Frequent extreme climate events have intensified landslide hazards in mountainous regions, necessitating efficient identification and classification to understand movement mechanisms and mitigate risks. This study develops a novel, non-contact InSAR framework that seamlessly integrates three key steps—Identification, Inversion, and Classification—to address this challenge. [...] Read more.
Frequent extreme climate events have intensified landslide hazards in mountainous regions, necessitating efficient identification and classification to understand movement mechanisms and mitigate risks. This study develops a novel, non-contact InSAR framework that seamlessly integrates three key steps—Identification, Inversion, and Classification—to address this challenge. By applying this framework to ascending and descending Sentinel-1 data in the complex terrain of the Jishi Mountain region, we first introduce geometric distortion masking and a C-Index deformation consistency check, which enables the reliable identification of 530 active landslides, with 154 detected in both orbits. Second, we employ a local parallel flow model to invert the landslide movement geometry without relying on DEM-derived prior assumptions, successfully retrieving the two-dimensional (sliding and normal direction) deformation fields for all 154 consistent landslides. Finally, by synthesizing these 2D deformation patterns with geomorphological features, we achieve a systematic classification of movement types, categorizing them into retrogressive translational (31), progressive translational (66), rotational (19), composite (24), and earthflows (14). This integrated methodology provides a validated, transferable solution for deciphering landslide mechanisms and assessing risks in remote, complex mountainous areas. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

28 pages, 3784 KB  
Review
Does Preliminary Chest Shape Assessment Improve the Prognostic Risk Stratification of Symptomatic Individuals with Primary Mitral Regurgitation? A Narrative Review of Traditional and Innovative Prognostic Indicators
by Andrea Sonaglioni, Gian Luigi Nicolosi, Michele Lombardo and Massimo Baravelli
J. Clin. Med. 2025, 14(23), 8297; https://doi.org/10.3390/jcm14238297 - 22 Nov 2025
Viewed by 560
Abstract
Primary mitral regurgitation (PMR) is the most common mitral valve disorder in clinical practice. Although several prognostic indicators derived from resting transthoracic echocardiography (TTE) and exercise stress echocardiography (ESE) are available, patient outcomes remain highly variable, with substantial differences in complication rates and [...] Read more.
Primary mitral regurgitation (PMR) is the most common mitral valve disorder in clinical practice. Although several prognostic indicators derived from resting transthoracic echocardiography (TTE) and exercise stress echocardiography (ESE) are available, patient outcomes remain highly variable, with substantial differences in complication rates and mortality. Identifying individuals at lower cardiovascular risk is therefore clinically relevant, as they represent a large proportion of cases. Current guidelines recommend an integrative approach—combining qualitative, semi-quantitative, and quantitative indices—to determine the timing of intervention, but they do not specifically address risk stratification in low-risk PMR populations. Recent studies have highlighted the potential prognostic value of chest wall configuration, assessed noninvasively using the Modified Haller Index (MHI). Defined as the ratio of latero-lateral thoracic diameter to the antero-posterior (A-P) sternum–spine distance, MHI appears to influence myocardial deformation indices obtained by speckle-tracking echocardiography (STE). Patients with PMR due to mitral valve prolapse (MVP) often show a reduced A-P thoracic diameter caused by sternal depression. Among these, those with an MHI > 2.5 or A-P diameter ≤ 13.5 cm display greater impairment in global and basal strain, particularly in longitudinal and circumferential directions. These abnormalities likely reflect extrinsic geometric constraints and cardiac displacement leading to apparent dyssynchrony rather than intrinsic myocardial dysfunction. A reduced A-P diameter was also independently associated with mitral annular disjunction (MAD) in MVP and emerged as a determinant of impaired strain in this subgroup. In a retrospective cohort of 424 symptomatic MVP patients with moderate MR undergoing ESE, positive tests and exercise-induced severe MR were uncommon. Importantly, an MHI > 2.5 or an A-P diameter ≤ 13.5 cm was associated with a favorable medium-term prognosis, with few adverse cardiovascular events. This narrative, non-systematic review, based on a structured but non-PRISMA literature search, summarizes current evidence on conventional and novel echocardiographic prognostic markers and their implications for risk stratification in PMR. As such, it carries inherent limitations, including potential selection bias, incomplete retrieval of unpublished or negative studies, and reliance on single-center observational data. The findings should therefore be interpreted cautiously and validated through larger, independent, multicenter investigations. Full article
(This article belongs to the Special Issue Clinical Applications of Cardiac Imaging: 2nd Edition)
Show Figures

Figure 1

19 pages, 4476 KB  
Article
Unveiling Let-7a’s Therapeutic Role in Ewing Sarcoma Through Molecular Docking and Deformation Energy Analysis
by Mubashir Hassan, Amal Malik, Saba Shahzadi and Andrzej Kloczkowski
Curr. Issues Mol. Biol. 2025, 47(11), 948; https://doi.org/10.3390/cimb47110948 - 14 Nov 2025
Viewed by 521
Abstract
Ewing sarcoma is a pediatric malignant cancer that usually develops in bones and soft tissues. The current study investigates the function of hsa-let-7a as a target molecule in the pathophysiology of Ewing sarcoma using computational approaches. To anticipate complementary sites, miRNA and mRNA [...] Read more.
Ewing sarcoma is a pediatric malignant cancer that usually develops in bones and soft tissues. The current study investigates the function of hsa-let-7a as a target molecule in the pathophysiology of Ewing sarcoma using computational approaches. To anticipate complementary sites, miRNA and mRNA sequences were retrieved from the miRBase and NCBI databases. The three-dimensional structures of both hsa-let-7a and mRNA_EWSR1 were predicted through MC-Fold and RNAComposer, respectively. Furthermore, online HNADOCK and PatchDock docking servers were utilized to check the docking energy values and interactive behavior between miRNA and mRNA. The generated docked results showed good binding score values and interaction profiles between nucleotides of hsa-let-7a and mRNA of EWSR1. Moreover, both docking complexes were also studied using anisotropic network model analysis, which involved plotting correlation, inter-nucleotide distance fluctuations, and deformation energy graphs. The predicted heatmap graph also highlighted the significance of hsa-let-7a in various cellular signaling pathways, which may be interconnected with Ewing sarcoma, making it a potential therapeutic target. Together, this study offers computational insights that highlight hsa-let-7a as a promising therapeutic candidate for Ewing sarcoma, based on miRNA-driven predictive modeling. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

13 pages, 47202 KB  
Article
Coseismic Deformation, Fault Slip Distribution, and Stress Changes of the 2025 MS 6.8 Dingri Earthquake from Sentinel-1A InSAR Observations
by Junwen Zhu, Bo Zhang, Saisai Yao and Yimeng Cai
Geosciences 2025, 15(11), 421; https://doi.org/10.3390/geosciences15110421 - 5 Nov 2025
Viewed by 738
Abstract
On 7 January 2025, a MS 6.8 earthquake struck Dingri County, southern Tibet, within the extensional regime of the central Himalaya–southern Tibetan Plateau. Using ascending and descending Sentinel-1A SAR data, we applied a two-pass Differential InSAR (D-InSAR) approach with SRTM DEM data [...] Read more.
On 7 January 2025, a MS 6.8 earthquake struck Dingri County, southern Tibet, within the extensional regime of the central Himalaya–southern Tibetan Plateau. Using ascending and descending Sentinel-1A SAR data, we applied a two-pass Differential InSAR (D-InSAR) approach with SRTM DEM data to retrieve high-precision coseismic deformation fields. We observed significant LOS deformation, revealing peak displacements of −1.06 m and +0.76 m, with deformation concentrated along the Denmo Co graben and clear offsets along its western boundary fault. Nonlinear inversion using the Okada elastic dislocation model and a quadtree down-sampled dataset yields a rupture plane 28.42 km long and 12.81 km wide, striking 183.51°, dipping 55.41°, and raking −71.95°, consistent with a predominantly normal-faulting mechanism with a minor left-lateral component. Distributed-slip inversion reveals that peak slip (4.79 m) was concentrated in the upper ~10 km of the fault, with the main asperity located in the central fault segment. The seismic moment is estimated to be 4.24 × 1019 Nm, which corresponds to a magnitude of MW 7.05. Coulomb failure stress (ΔCFS) calculations indicate stress increases (>0.01 MPa) at the northern and southern rupture terminations (5–10 km depth) and the flanks at 15–20 km depth, suggesting elevated seismic potential in these regions. This integrated InSAR–modeling–stress analysis provides new constraints on the source parameters, slip distribution, and tectonic implications of the 2025 Dingri earthquake, offering important insights for regional seismic hazard assessment. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

11 pages, 776 KB  
Article
How Common Is Femoroacetabular Impingement Morphology in Asymptomatic Adults? A 3D CT-Based Insight into Hidden Risk
by Pelin İsmailoğlu, Cengiz Kazdal, Emrehan Uysal and Alp Bayramoğlu
J. Clin. Med. 2025, 14(20), 7220; https://doi.org/10.3390/jcm14207220 - 13 Oct 2025
Viewed by 609
Abstract
Background and Objectives: Femoroacetabular impingement (FAI) morphology refers to structural abnormalities that can alter normal joint mechanics and potentially lead to early onset osteoarthritis. Although commonly diagnosed in symptomatic individuals, such morphological features are also found in asymptomatic adults, underlining their relevance [...] Read more.
Background and Objectives: Femoroacetabular impingement (FAI) morphology refers to structural abnormalities that can alter normal joint mechanics and potentially lead to early onset osteoarthritis. Although commonly diagnosed in symptomatic individuals, such morphological features are also found in asymptomatic adults, underlining their relevance for early detection and preventive management. This study aimed to evaluate the three-dimensional congruence of hip joint surfaces in relation to FAI and the morphology of asymptomatic hips with potential FAI features. Materials and Methods: Retrospective three-dimensional reconstructions of 86 hip joints were created using Mimics software from computed tomography (CT) scans of the lower abdomen and pelvis retrieved from the radiology archive. CT scans belonged to individuals with preserved anatomical integrity (20 females, 23 males, bilateral hips), aged 24–76 years. Lateral center-edge angle (LCEA) and alpha angle measurements were obtained from reconstructions to assess the risk of asymptomatic FAI. Results: Significant gender differences were found in alpha angles. The mean right alpha angle was 46.57 ± 3.12° in females and 49.28 ± 6.66° in males p = 0.046, while the mean left alpha angle was 43.75 ± 5.53° in females and 47.37 ± 5.77° in males p = 0.021. An alpha angle >50°, suggestive of cam type FAI, was present in 25.6% of right hips and 13.9% of left hips. LCEA values showed no significant gender or side differences, with a mean of 30.21 ± 8.96° across the cohort. Conclusions: Three-dimensional evaluation of asymptomatic hips revealed FAI-consistent morphology in a notable proportion of individuals, particularly males. Cam-type deformities tended to occur bilaterally, whereas pincer-type morphologies were more sporadic and often unilateral. Increased alpha and LCEA measurements in asymptomatic individuals suggest that FAI morphology may exist subclinically without always indicating disease. Future studies incorporating longitudinal imaging and clinical follow-up are needed to clarify the prognostic significance of these findings. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

18 pages, 4722 KB  
Article
Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach
by Andrea Barone, Pietro Tizzani, Antonio Pepe, Maurizio Fedi and Raffaele Castaldo
Remote Sens. 2025, 17(18), 3237; https://doi.org/10.3390/rs17183237 - 19 Sep 2025
Viewed by 717
Abstract
Parametric optimization/inversion of Interferometric Synthetic Aperture Radar (InSAR) measurements enables the modeling of the volcanic deformation source by considering the approximation of the analytic formulations or by defining refined scenarios within a Finite Element (FE) framework. However, the geodetic data modeling can lead [...] Read more.
Parametric optimization/inversion of Interferometric Synthetic Aperture Radar (InSAR) measurements enables the modeling of the volcanic deformation source by considering the approximation of the analytic formulations or by defining refined scenarios within a Finite Element (FE) framework. However, the geodetic data modeling can lead to ambiguous solutions when constraints are unavailable, turning out to be time-consuming. In this work, we use an integrated multiscale approach for retrieving the geometric parameters of volcanic deformation sources and then constraining a Monte Carlo optimization of FE parametric modeling. This approach allows for contemplating more physically complex scenarios and more robust statistical solutions, and significantly decreasing computing time. We propose the Campi Flegrei caldera (CFc) case study, considering the 2019–2022 uplift phenomenon observed using Sentinel-1 satellite images. The workflow firstly consists of applying the Multiridge and ScalFun methods, and Total Horizontal Derivative (THD) technique to determine the position and horizontal sizes of the deformation source. We then perform two independent cycles of parametric FE optimization by keeping (I) all the parameters unconstrained and (II) constraining the source geometric parameters. The results show that the innovative application of the integrated multiscale approach improves the performance of the FE parametric optimization in proposing a reliable interpretation of volcanic deformations, revealing that (II) yields statistically more reliable solutions than (I) in an extraordinary tenfold reduction in computing time. Finally, the retrieved solution at CFc is an oblate-like source at approximately 3 km b.s.l. embedded in a heterogeneous crust. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

30 pages, 26397 KB  
Article
Dynamic Landslide Susceptibility Assessment in the Yalong River Alpine Gorge Region Integrating InSAR-Derived Deformation Velocity
by Zhoujiang Li, Jianming Xiang, Guanchen Zhuo, Hongyuan Zhang, Keren Dai and Xianlin Shi
Remote Sens. 2025, 17(18), 3210; https://doi.org/10.3390/rs17183210 - 17 Sep 2025
Viewed by 1156
Abstract
Dynamic susceptibility assessment is essential for mitigating evolving landslide risks in alpine gorge regions. To address the static limitations and unit mismatch issues in conventional landslide susceptibility assessments in alpine gorge regions, this study proposes a dynamic framework integrating time-series InSAR-derived deformation. Applied [...] Read more.
Dynamic susceptibility assessment is essential for mitigating evolving landslide risks in alpine gorge regions. To address the static limitations and unit mismatch issues in conventional landslide susceptibility assessments in alpine gorge regions, this study proposes a dynamic framework integrating time-series InSAR-derived deformation. Applied to the Xinlong–Kangding section of the Yalong River, annual surface deformation velocities were retrieved using SBAS-InSAR with Sentinel-1 data, identifying 24 active landslide zones (>25 mm/a). The Geodetector model quantified the spatial influence of 18 conditioning factors, highlighting deformation velocity as the second most significant (q = 0.21), following soil type. Incorporating historical landslide data and InSAR deformation zones, slope unit delineation was optimized to construct a refined sample dataset. A Random Forest model was then used to assess the contribution of deformation factors. Results show that integrating InSAR data substantially improved model performance: “Very High” risk landslides increased from 67.21% to 87.01%, the AUC score improved from 0.9530 to 0.9798, and the Kappa coefficient increased from 0.7316 to 0.8870. These results demonstrate the value of InSAR-based dynamic monitoring in enhancing landslide susceptibility mapping, particularly for spatial clustering, classification precision, and model robustness. This approach offers a more efficient dynamic evaluation pathway for dynamic assessment and early warning of landslide hazards in mountainous regions. Full article
(This article belongs to the Special Issue Role of SAR/InSAR Techniques in Investigating Ground Deformation)
Show Figures

Figure 1

27 pages, 18931 KB  
Article
Improving Atmospheric Noise Correction from InSAR Time Series Using Variational Autoencoder with Clustering (VAE-Clustering) Method
by Binayak Ghosh, Mahdi Motagh, Mohammad Ali Anvari and Setareh Maghsudi
Remote Sens. 2025, 17(18), 3189; https://doi.org/10.3390/rs17183189 - 15 Sep 2025
Cited by 1 | Viewed by 1873
Abstract
Accurate ground deformation monitoring with interferometric synthetic aperture radar (InSAR) is often hindered by tropospheric delays caused by atmospheric pressure, temperature, and water vapor variations. While models such as ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis v5) provide first-order corrections, they often [...] Read more.
Accurate ground deformation monitoring with interferometric synthetic aperture radar (InSAR) is often hindered by tropospheric delays caused by atmospheric pressure, temperature, and water vapor variations. While models such as ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis v5) provide first-order corrections, they often leave residual errors dominated by small-scale turbulent effects. To address this, we present a novel variational autoencoder with clustering (VAE-clustering) approach that performs unsupervised separation of atmospheric and deformation signals, followed by noise component removal via density-based clustering. The method is integrated into the MintPy pipeline for automated velocity and displacement time-series retrieval. We evaluate our approach on Sentinel-1 interferograms from three case studies: (1) land subsidence in Mashhad, Iran (2015–2022), (2) land subsidence in Tehran, Iran (2018–2021), and (3) postseismic deformation after the 2021 Acapulco earthquake. Across all cases, the method reduced the velocity standard deviation by approximately 70% compared to the ERA5 corrections, leading to more reliable displacement estimates. These results demonstrate that VAE-clustering can effectively mitigate residual tropospheric noise, improving the accuracy of large-scale InSAR time-series analyses for geohazard monitoring and related applications. Full article
Show Figures

Figure 1

20 pages, 5202 KB  
Article
On the Localization Accuracy of Deformation Zones Retrieved from SAR-Based Sea Ice Drift Vector Fields
by Anja Frost, Christoph Schnupfhagn, Christoph Pegel and Sindhu Ramanath
Remote Sens. 2025, 17(16), 2801; https://doi.org/10.3390/rs17162801 - 13 Aug 2025
Viewed by 720
Abstract
Sea ice is highly dynamic. Differences in the sea ice drift velocity and direction can cause deformations such as ridges and rubble fields or open up leads. These and other deformations have a major impact on the interaction between the atmosphere, sea ice [...] Read more.
Sea ice is highly dynamic. Differences in the sea ice drift velocity and direction can cause deformations such as ridges and rubble fields or open up leads. These and other deformations have a major impact on the interaction between the atmosphere, sea ice and the ocean, and strongly influence ship navigability in polar waters. Spaceborne Synthetic Aperture Radar (SAR) data is well suited to observing the sea ice and retrieving sea ice drift vector fields at a small scale (<1 km), revealing deformation zones. This paper introduces a software processor designed to retrieve high-resolution sea ice drift vector fields from pairs of subsequent SAR acquisitions using phase correlation embedded in a multiscale Gaussian image pyramid. We assess the accuracy of the algorithm by using drift buoys and landfast ice boundaries manually outlined from large series of TerraSAR-X acquisitions taken during winter and spring sea ice break up. In particular, we provide a first analysis of the localization accuracy in deformation zones. Overall, our experiments show that deformation zones are well detected, but can be misplaced by up to 1.1 km. An additional interferometric analysis narrows down the location of the landfast ice boundary. Full article
Show Figures

Graphical abstract

20 pages, 3609 KB  
Article
Beyond the Grid: GLRT-Based TomoSAR Fast Detection for Retrieving Height and Thermal Dilation
by Nabil Haddad, Karima Hadj-Rabah, Alessandra Budillon and Gilda Schirinzi
Remote Sens. 2025, 17(14), 2334; https://doi.org/10.3390/rs17142334 - 8 Jul 2025
Viewed by 834
Abstract
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building [...] Read more.
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building management and maintenance. Nevertheless, accurately extracting it from TomoSAR data poses several challenges, particularly the presence of outliers due to uneven and limited baseline distributions. One way to address these issues is through statistical detection approaches such as the Generalized Likelihood Ratio Test, which ensures a Constant False Alarm Rate. While effective, these methods face two primary limitations: high computational complexity and the off-grid problem caused by the discretization of the search space. To overcome these drawbacks, we propose an approach that combines a quick initialization process using Fast-Sup GLRT with local descent optimization. This method operates directly in the continuous domain, bypassing the limitations of grid-based search while significantly reducing computational costs. Experiments conducted on both simulated and real datasets acquired with the TerraSAR-X satellite over the Spanish city of Barcelona demonstrate the ability of the proposed approach to maintain computational efficiency while improving scatterer localization accuracy in the third and fourth dimensions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop