Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach
Abstract
Highlights
- The integrated multiscale approach improves the performance of FE source parametric optimization, providing more reliable solutions while drastically reducing the computing time.
- Unconstrained and constrained modeling approaches identify an overpressurized oblate-like source at ~3 km b.s.l. embedded in a heterogeneous crust for unrest at Campi Flegrei caldera that occurred during 2019–2022.
- The integrated multiscale approach makes FE parametric optimization a viable and efficient tool for modelling more accurate and realistic volcanic scenarios.
- The improved performance of the proposed modeling workflow enables a more reliable evaluation of the volcanic hazard, supporting the monitoring networks in risk mitigation tasks.
Abstract
1. Introduction
2. Materials and Methods
2.1. InSAR Data at CFc from 2019 to 2022
2.2. Integrated Multiscale Approach
- (i)
- Data interpolation on a regular grid and transformation from an uneven measurement surface (topographical surface) to a flat one, since the Multiridge is based on a level-to-level algorithm. The output of this transformation is a numerically processed dataset that could have been measured in the case of a constant distance between the source and measurement surface. This is performed using a draped-to-flat upward continuation filter [62], which employs the Continuous Wavelet Transform (CWT) applied to the ground deformation data to relocate it onto the constant reduction level, as proposed and validated in [60].
- (ii)
- Forming a 3D multiscale dataset using upward continuation to a set of altitudes (or scales) to compute deformations at different distances from the investigated source. This is performed through the Fast Fourier Transform (FFT)-based algorithm.
- (iii)
- Identification of the zeros of the vertical (Multiridge subset I) and horizontal (Multiridge subset II) derivatives of the 3D deformation field at a set of scales. Horizontal derivatives are computed using finite difference relationships, while vertical ones are evaluated with an FFT-based algorithm, as proposed and validated for the ground deformation field in [61].
- (iv)
- Ridge definition through linear regression of the single Multiridge subsets. Each defined ridge is characterized by the intercept and slope coefficient, and the determination coefficient, in order to quantify how well ridges predict the subsets.
- (v)
- Estimating the ridges’ intersections, representing the position (East-North position, depth) of the source. This is performed by solving the linear system with the considered ridge equations. The retrieved intersections are then physically validated using the ScalFun method [36], as explained below.
- (vi)
- Retrieving the bounds solutions for each ridge, considering the best-fit linear regression errors within the 95% confidence interval on the estimates of the intercept and slope parameters.
2.3. FE Modeling and Parametric Optimization Procedure
3. Results
3.1. Retrieval of Source Geometric Parameters from the Integrated Multiscale Approach
3.2. Unconstrained Parametric Optimization Procedure (I)
3.3. Constrained Parametric Optimization Procedure (II)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zhao, D.; Shan, X. Asymmetric Interseismic Strain across the Western Altyn Tagh Fault from InSAR. Remote Sens. 2022, 14, 2112. [Google Scholar] [CrossRef]
- Salmanian, M.; Rastbood, A.; Hossainali, M.M. Evaluating interseismic deformation patterns in the North Tabriz Fault (Iran) using enhanced fitting of velocity field and analysis of surface deformation. J. Asian Earth Sci. 2025, 277, 106376. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Tapponnier, P.; Xu, X.; Li, D.; He, Z. Joint InSAR and Field constraints on Faulting during the mw 6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. JGR Solid Earth 2021, 126, e2021JB022212. [Google Scholar] [CrossRef]
- Barone, A.; Fedi, M.; Pepe, S.; Solaro, G.; Tizzani, P.; Castaldo, R. Modeling the deformation sources in volcanic environments through Multi-scale Analysis of DInSAR measurements. Front. Earth Sci. 2022, 10, 859479. [Google Scholar] [CrossRef]
- Eiden, E.; MacQueen, P.; Henderson, S.; Pritchard, M. Multiple spatial and temporal scales of deformation from geodetic monitoring point to active transcrustal magma system at Uturuncu volcano, Bolivia. Geosphere 2023, 19, 370–382. [Google Scholar] [CrossRef]
- Liu, F.; Elliott, J.R.; Ebmeier, S.K.; Craig, T.J.; Hooper, A.; Novoa Lizama, C.; Delgado, F. First Onset of Unrest Captured at Socompa: A Recent Geodetic Survey at Central Andean Volcanoes in Northern Chile. Geophys. Res. Lett. 2023, 50, e2022GL102480. [Google Scholar] [CrossRef]
- Famiglietti, N.A.; Miele, P.; Defilippi, M.; Cantone, A.; Riccardi, P.; Tessari, G.; Vicari, A. Landslide Mapping in Calitri (Southern Italy) Using New Multi-Temporal InSAR Algorithms Based on Permanent and Distributed Scatterers. Remote Sens. 2024, 16, 1610. [Google Scholar] [CrossRef]
- Zhao, R.; Du, S.; Zheng, M.; Guo, Q.; Wang, L.; Wang, T.; Guo, X.; Fernández, J. Advances and Future Directions in Monitoring and Predicting Secondary Surface Subsidence in Abandoned Mines. Remote Sens. 2025, 17, 379. [Google Scholar] [CrossRef]
- Klees, R.; Massonnet, D. Deformation measurements using SAR interferometry: Potential and limitations. Geol. Mijnbouw. 1998, 77, 161–176. [Google Scholar] [CrossRef]
- Vasco, D.W.; Wicks, C.; Karasaki, K.; Marques, O. Geodetic imaging: Reservoir monitoring using satellite interferometry. Geoph. J. Int. 2002, 149, 555–571. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.S.; Lu, Z. Ground surface displacement measurement from SAR imagery using deep learning. Remote. Sens. Environ. 2025, 318, 114577. [Google Scholar] [CrossRef]
- Battaglia, M.; Cervelli, P.F.; Murray, J.R. dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers. J. Volcanol. Geotherm. Res. 2013, 254, 1–4. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Camacho, A.G.; Fernández, J.; Cannavò, F. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data. Comput. Geosci. 2018, 111, 235–243. [Google Scholar] [CrossRef]
- Camacho, A.G.; Fernández, J. Modeling 3D Free-geometry Volumetric Sources Associated to Geological and Anthropogenic Hazards from Space and Terrestrial Geodetic Data. Remote. Sens. 2019, 11, 2042. [Google Scholar] [CrossRef]
- De Natale, G.; Petrazzuoli, S.M.; Pingue, F. The effect of collapse structures on ground deformations in calderas. Geophys. Res. Lett. 1997, 24, 1555–1558. [Google Scholar] [CrossRef]
- Masterlark, T. Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions. J. Geophys. Res. 2007, 112, B6. [Google Scholar] [CrossRef]
- Manconi, A.; Walter, T.R.; Manzo, M.; Zeni, G.; Tizzani, P.; Sansosti, E.; Lanari, R. On the effects of 3-D mechanical heterogeneities at Campi Flegrei caldera, southern Italy. J. Geophys. Res. Solid Earth 2010, 115, B8. [Google Scholar] [CrossRef]
- Grandin, R.; Klein, E.; Métois, M.; Vigny, C. Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2016, 43, 2552–2561. [Google Scholar] [CrossRef]
- Delgado, F.; Grandin, R. Dynamics of episodic magma injection and migration at Yellowstone caldera: Revisiting the 2004–2009 episode of caldera uplift with INSAR and GPS data. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022341. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, Z.; Aoki, Y.; Liu, J.; Yue, D.; Hu, J.; Zhou, C.; Li, Z. Refining slip distribution in moderate earthquakes using Sentinel-1 burst overlap interferometry: A case study over 2020 May 15 Mw 6.5 Monte Cristo Range Earthquake. Geophys. J. Int. 2022, 229, 472–486. [Google Scholar] [CrossRef]
- Barone, A.; Fedi, M.; Pepe, A.; Mastro, P.; Tizzani, P.; Castaldo, R. Inferring 3D displacement time series through InSAR measurements and potential field theory in volcanic areas. Sci. Rep. 2025, 15, 4719. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Tizzani, P.; Solaro, G. Inflating Source Imaging and Stress/Strain Field Analysis at Campi Flegrei Caldera: The 2009–2013 Unrest Episode. Remote Sens. 2021, 13, 2298. [Google Scholar] [CrossRef]
- Przeor, M.; D’Auria, L.; Pepe, S.; Tizzani, P.; Barone, A.; Vitale, A.; Pérez, N.M.; Castaldo, R. Independent component analysis and finite element modelling of the 2004–2005 ground deformation in Tenerife (Canary Islands). Front. Earth Sci. 2024, 12, 2024. [Google Scholar] [CrossRef]
- Charco, M.; Galán del Sastre, P. Efficient inversion of three-dimensional finite element models of volcano deformation. Geophys. J. Int. 2014, 196, 1441–1454. [Google Scholar] [CrossRef]
- Hickey, J.; Gottsmann, J. Benchmarking and developing numerical Finite Element models of volcanic deformation. J. Volcanol. Geotherm. Res. 2014, 280, 126–130. [Google Scholar] [CrossRef]
- Milano, M.; Fedi, M.; Fairhead, J.D. The deep crust beneath the Trans-European Suture Zone from a multiscale magnetic model. J. Geophys. Res. Solid Earth 2016, 121, 6276–6292. [Google Scholar] [CrossRef]
- Milano, M.; Fedi, M. Surface Gravity Response of CO2 Storage in the Johansen Deep Reservoir. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5922014. [Google Scholar] [CrossRef]
- Abbas, M.A.; Speranza, L.; Fedi, M.; Garcea, B.; Bianco, L. Magnetic data modelling of salt domes in Eastern Mediterranean, offshore Egypt. Acta Geophys. 2024, 72, 1293–1303. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G.; Quarta, T.A.M. Multiridge analysis of potential fields: Geometric method and reduced Euler deconvolution. Geophysics 2009, 74, L53–L65. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. SCALFUN: 3D analysis of potential field scaling function to determine independently or simultaneously Structural Index and depth to source. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2006. [Google Scholar] [CrossRef]
- Blakely, J.R. Potential Theory in Gravity and Magnetic Applications, Revised ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Barone, A.; Pepe, A.; Tizzani, P.; Fedi, M.; Castaldo, R. New advances of the Multiscale Approach for the analyses of InSAR Ground measurements: The Yellowstone caldera case-study. Remote Sens. 2022, 14, 5328. [Google Scholar] [CrossRef]
- Carlino, S.; Mirabile, M.; Troise, C.; Sacchi, M.; Zeni, L.; Minardo, A.; Caccavale, M.; Darányi, V.; De Natale, G. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sens. 2016, 8, 674. [Google Scholar] [CrossRef]
- Petrillo, Z.; Tripaldi, S.; Mangiacapra, A.; Scippacercola, S.; Caliro, S.; Chiodini, G. Principal component analysis on twenty years (2000–2020) of geochemical and geophysical observations at Campi Flegrei active caldera. Sci. Rep. 2023, 13, 18445. [Google Scholar] [CrossRef]
- Marotta, E.; Peluso, R.; Avino, R.; Avvisati, G.; Bellucci Sessa, E.; Belviso, P.; Caputo, T.; Carandente, A.; Cirillo, F.; Pescione, R.A. Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera. Remote Sens. 2024, 16, 1102. [Google Scholar] [CrossRef]
- Danesi, S.; Pino, N.A.; Carlino, S.; Kilburn, C.R.J. Evolution in unrest processes at Campi Flegrei caldera as inferred from local seismicity. Earth Planet. Sci. Lett. 2024, 626, 118530. [Google Scholar] [CrossRef]
- Giacomuzzi, G.; Chiarabba, C.; Bianco, F.; De Gori, P.; Piana Agostinetti, N. Tracking transient changes in the plumbing system at Campi Flegrei Caldera. Earth Planet. Sci. Lett. 2024, 637, 118744. [Google Scholar] [CrossRef]
- Tizzani, P.; Fernández, J.; Vitale, A.; Escayo, J.; Barone, A.; Castaldo, R.; Pepe, S.; De Novellis, V.; Solaro, G.; Pepe, A.; et al. 4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera. Remote Sens. Environ. 2024, 315, 114480. [Google Scholar] [CrossRef]
- Mercogliano, F.; Barone, A.; D’Auria, L.; Castaldo, R.; Silvestri, M.; Bellucci Sessa, E.; Caputo, T.; Stroppiana, D.; Caliro, S.; Minopoli, C.; et al. Thermal Patterns at the Campi Flegrei Caldera Inferred from Satellite Data and Independent Component Analysis. Remote Sens. 2024, 16, 4615. [Google Scholar] [CrossRef]
- Barone, A.; Gola, G.; Caliro, S.; Chiodini, G.; Tizzani, P.; Castaldo, R. Long-term thermo-fluid dynamic modeling of Solfatara hydrothermal system, Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 2025, 459, 108277. [Google Scholar] [CrossRef]
- Giacomuzzi, G.; Fonzetti, R.; Govoni, A.; De Gori, P.; Chiarabba, C. Causal processes of shallow and deep seismicity at Campi Flegrei caldera. Commun. Earth Environ. 2025, 6, 70. [Google Scholar] [CrossRef]
- Patanè, D.; Barberi, G.; Martino, C. Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024. GeoHazards 2025, 6, 19. [Google Scholar] [CrossRef]
- Convertito, V.; Godano, C.; Petrillo, G.; Tramelli, A. Insights from b value analysis of Campi Flegrei unrests. Sci. Rep. 2025, 15, 14974. [Google Scholar] [CrossRef] [PubMed]
- Trasatti, E.; Polcari, M.; Bonafede, M.; Stramondo, S. Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geophys. Res. Lett. 2015, 42, 3847–3854. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Sabbetta, I.; De Martino, P.; Obrizzo, F.; Tammaro, U. Clues to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophys. Res. Lett. 2014, 41, 3081–3088. [Google Scholar] [CrossRef]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [Google Scholar] [CrossRef] [PubMed]
- Amoruso, A.; Crescentini, L. Clues of Ongoing Deep Magma Inflation at Campi Flegrei Caldera (Italy) from Empirical Orthogonal Function Analysis of SAR Data. Remote Sens. 2022, 14, 5698. [Google Scholar] [CrossRef]
- Astort, A.; Trasatti, E.; Caricchi, L.; Polcari, M.; De Martino, P.; Acocella, V.; Di Vito, M.A. Tracking the 2007–2023 magma-driven unrest at Campi Flegrei caldera (Italy). Commun. Earth Environ. 2024, 5, 506. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R. Synthetic aperture radar interferometry. IEEE Proc. 2000, 88, 333–376. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Florio, G.; Fedi, M. Multiridge Euler deconvolution. Geophys. Prospect. 2014, 62, 333–351. [Google Scholar] [CrossRef]
- Ferrara, G.; Ferraccioli, F.; Fedi, M. Potential fields as a tool to characterize the inaccessible areas of the earth: The case of Pine Island–Ellsworth Mountains area, West Antarctica. Lead. Edge 2024, 43, 218–226. [Google Scholar] [CrossRef]
- Castaldo, R.; Barone, A.; Fedi, M.; Tizzani, P. Multiridge Method for studying ground-deformation sources: Application to volcanic environments. Sci. Rep. 2018, 8, 13420. [Google Scholar] [CrossRef]
- Barone, A.; Fedi, M.; Tizzani, P.; Castaldo, R. Multiscale Analysis of DInSAR measurements for Multi-source Investigation at Uturuncu Volcano (Bolivia). Remote Sens. 2019, 11, 703. [Google Scholar] [CrossRef]
- Ridsdill-Smith, T.A.; Dentith, M.C. The wavelet transform in aeromagnetic processing. Geophysics 1999, 64, 1003–1013. [Google Scholar] [CrossRef]
- Pepe, S.; De Siena, L.; Barone, A.; Castaldo, R.; D’Auria, L.; Manzo, M.; Casu, F.; Fedi, M.; Lanari, R.; Bianco, F.; et al. Volcanic structures investigation through SAR and seismic interferometric methods: The 2011–2013 Campi Flegrei unrest episode. Remote Sens. Environ. 2019, 234, 111440. [Google Scholar] [CrossRef]
- Florio, G.; Fedi, M.; Cella, F.; Rapolla, A. The Campanian Plain and Phlegrean Fields: Structural setting from potential field data. J. Volcanol. Geotherm. Res. 1999, 91, 361–379. [Google Scholar] [CrossRef]
- Paoletti, V.; Fedi, M.; Florio, G. Magnetic Structure of the Ischia volcanic island, Southern Italy. Ann. Geophys. 2017, 60, GM674. [Google Scholar] [CrossRef]
- Gola, G.; Barone, A.; Castaldo, R.; Chiodini, G.; D’Auria, L.; García-Hernández, R.; Pepe, S.; Solaro, G.; Tizzani, P. A Novel Multidisciplinary Approach for the Thermo-Rheological Study of Volcanic Areas: The Case Study of Long Valley Caldera. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020331. [Google Scholar] [CrossRef]
- Fagan, M. Finite Element Analysis. Theory and Practice; Longman Pub Group: New York, NY, USA; Wiley: Hoboken, NJ, USA, 1992; 344p, ISBN 0470218177. [Google Scholar]
- Chiarabba, C.; Moretti, M. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 2006, 18, 373–379. [Google Scholar] [CrossRef]
- Wang, Z. Dynamic versus static elastic properties of reservoir rocks. In Seismic and Acoustic Velocities in Reservoir Rocks; Society of Exploration Geophysicists: Tusla, OK, USA, 2000; pp. 531–539. ISBN 0931830001, 9780931830006. [Google Scholar]
- Brocher, T.M. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G.; Cascone, L. Multiscale analysis of potential fields by a ridge consistency criterion: The reconstruction of the Bishop basement. Geophys. J. Int. 2012, 188, 103–114. [Google Scholar] [CrossRef]
PARAMETER | LOWER BOUND | UPPER BOUND | BEST-FIT |
x0 (UTM) | 425,500 | 427,000 | 426,100 |
y0 (UTM) | 4,518,000 | 4,520,000 | 4,519,100 |
z0 (m) | −4500 | −2000 | −3100 |
Rx (m) | 400 | 1500 | 920 |
Ry (m) | 400 | 1500 | 800 |
Rz (m) | 50 | 600 | 390 |
Dip (rad) | −0.26 | 0.26 | −0.052 |
Strike (rad) | −0.5 | 0.5 | −0.279 |
ΔP (MPa) | −8 | −4 | −6.15 |
PARAMETER | LOWER BOUND | UPPER BOUND | BEST-FIT |
---|---|---|---|
x0 (UTM) * | - | - | 426,350 |
y0 (UTM) * | - | - | 4,519,350 |
z0 (m) * | - | - | −3100 |
Rx (m) * | 400 | 1200 | 960 |
Ry (m) * | 400 | 1000 | 840 |
Rz (m) | 50 | 600 | 390 |
Dip (rad) | −0.26 | 0.26 | −0.061 |
Strike (rad) | −0.5 | 0.5 | −0.43 |
ΔP (MPa) | −8 | −4 | −5.8 |
(UTM) | (UTM) | (m b.s.l.) | (m) | (m) | ||
---|---|---|---|---|---|---|
(I) | 426,100 | 4,519,100 | −3100 | 920 | 800 | 390 |
(II) | 426,350 | 4,519,350 | −3100 | 960 | 840 | 390 |
ΔP (MPa) | Strike (°) | Dip (°) | Models (-) | Time (day) * | RMSE (cm/yr) | |
(I) | −6.2 | −16 | −3 | 21,000 | 20.8 | 0.66 |
(II) | −5.8 | −25 | −4 | 2600 | 2.3 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barone, A.; Tizzani, P.; Pepe, A.; Fedi, M.; Castaldo, R. Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach. Remote Sens. 2025, 17, 3237. https://doi.org/10.3390/rs17183237
Barone A, Tizzani P, Pepe A, Fedi M, Castaldo R. Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach. Remote Sensing. 2025; 17(18):3237. https://doi.org/10.3390/rs17183237
Chicago/Turabian StyleBarone, Andrea, Pietro Tizzani, Antonio Pepe, Maurizio Fedi, and Raffaele Castaldo. 2025. "Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach" Remote Sensing 17, no. 18: 3237. https://doi.org/10.3390/rs17183237
APA StyleBarone, A., Tizzani, P., Pepe, A., Fedi, M., & Castaldo, R. (2025). Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach. Remote Sensing, 17(18), 3237. https://doi.org/10.3390/rs17183237