Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = decoupled clock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1936 KB  
Article
OpenSync: Enabling Software-Defined Clock Synchronization in Deterministic Ethernet
by Yinhan Sun, Jinli Yan, Zheng Wang and Zhigang Sun
Electronics 2025, 14(6), 1145; https://doi.org/10.3390/electronics14061145 - 14 Mar 2025
Cited by 1 | Viewed by 866
Abstract
Deterministic Ethernet (DetEth) is widely used in real-time distributed systems, such as avionics and in-vehicle control. Clock synchronization protocols (CSPs) establish global time, which is a critical foundation for deterministic communication in DetEth. However, existing protocols often lack flexibility, making customization and adaptation [...] Read more.
Deterministic Ethernet (DetEth) is widely used in real-time distributed systems, such as avionics and in-vehicle control. Clock synchronization protocols (CSPs) establish global time, which is a critical foundation for deterministic communication in DetEth. However, existing protocols often lack flexibility, making customization and adaptation to specific scenarios difficult and time consuming. We propose OpenSync, which is a software-defined clock synchronization architecture that decouples the synchronization control plane from the data plane. OpenSync includes a programmable time data injector and a fine-grained calibrated timer in the data plane, enabling easy implementation with standard DetEth hardware and support for various CSPs. The control plane provides a synchronization library to configure local clocks and retrieve accurate time data for different methods. To validate OpenSync’s generality and efficiency, we develop an FPGA-based prototype and implement three CSPs through software programming. A fully functional testbed demonstrates that these CSPs meet the accuracy and protocol consistency requirements of their respective application scenarios. Full article
Show Figures

Figure 1

23 pages, 4907 KB  
Article
A Cybernetic Delay Analysis of the Energy–Economy–Emission Nexus in India via a Bistage Operational Amplifier Network
by Soumya Basu and Keiichi Ishihara
Electronics 2024, 13(22), 4434; https://doi.org/10.3390/electronics13224434 - 12 Nov 2024
Viewed by 1287
Abstract
In analyzing the decoupling of emissions from economic growth, current literature foregoes the nonlinear complexities of macroeconomic systems, leading to ineffective energy transition policies, specifically for developing countries. This study focuses on the Indian energy–economy–emission nexus to establish a control system that internalizes [...] Read more.
In analyzing the decoupling of emissions from economic growth, current literature foregoes the nonlinear complexities of macroeconomic systems, leading to ineffective energy transition policies, specifically for developing countries. This study focuses on the Indian energy–economy–emission nexus to establish a control system that internalizes inflation, trade openness, and fossil fuel imports with economic growth and macro-emissions to visualize the complex pathways of decoupling. Through long-term cointegration and vector error correction modeling, it was found that GDP and energy affect capital, inflation and energy imports, which are locked in a long-run negative feedback loop that ultimately increases emissions. Capital growth enables decoupling at 0.7% CO2 emissions reduction for every 1% capital growth, while 1% inflation growth inhibits decoupling by increasing CO2 emissions by 0.8%. A cybernetic fractional circuit of R-C elements and operational amplifiers was utilized to examine the delay of pulses from GDP to the loop elements, which revealed that capital is periodic with GDP pulses. However, inflation, being aperiodic with the clock pulses of GDP, causes the pulse-width of capital to decrease and fossil fuel imports to increase. Through the circuital model, it was possible to determine the exact policy intervention schedule in business cycle growth and recession phases that could build clean energy capital and limit inflation-induced recoupling. Full article
Show Figures

Figure 1

24 pages, 3810 KB  
Article
Study on the Feasibility and Performance Evaluation of High-Orbit Spacecraft Orbit Determination Based on GNSS/SLR/VLBI
by Zhengcheng Wu, Shaojie Ni, Wei Xiao, Zongnan Li and Huicui Liu
Remote Sens. 2024, 16(22), 4214; https://doi.org/10.3390/rs16224214 - 12 Nov 2024
Cited by 4 | Viewed by 1945
Abstract
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. [...] Read more.
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. Currently, research on orbit determination for high-orbit spacecraft predominantly focuses on single observation methods, error characteristics, multi-source fusion techniques, and algorithms. However, these approaches often suffer from low observation accuracy and increased costs. This paper advocates for the comprehensive utilization of existing multi-source observation methods, such as GNSS (Global Navigation Satellite System), SLR (Satellite Laser Ranging), and VLBI (Very Long Baseline Interferometry), in research. The decoupled Kalman filter reveals a positive correlation between measurement positioning accuracy and orbit determination accuracy, and it derives a simple orbit performance evaluation model that considers the influence of observation value types and geometric configurations, without the need to introduce complex dynamic models. Simulations are then employed to verify and analyze antenna gain, observation values, and performance evaluation. The results indicate the following: (1) Under simulated conditions, the optimal strategy involves employing the SLR/VLBI dual system during periods when VLBI orbit determination is feasible, yielding an average Weighted Position Dilution of Precision (WPDOP) of 26.79. (2) For periods when VLBI orbit determination is not feasible, the optimal approach is to utilize the GNSS/SLR/VLBI triple system, resulting in an average WPDOP of 16.32. (3) The orbit determination performance of the triple system is not significantly impacted by the use of global SLR stations compared to using only Chinese SLR stations. However, the global network enables continuous, round-the-clock orbit determination capabilities. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

37 pages, 4566 KB  
Article
Aperiodic Optimal Chronotherapy in Simple Compartment Tumour Growth Models Under Circadian Drug Toxicity Conditions
by Byron D. E. Tzamarias, Annabelle Ballesta and Nigel John Burroughs
Mathematics 2024, 12(22), 3516; https://doi.org/10.3390/math12223516 - 11 Nov 2024
Viewed by 1046
Abstract
Cancer cells typically divide with weaker synchronisation with the circadian clock than normal cells, with the degree of decoupling increasing with tumour maturity. Chronotherapy exploits this loss of synchronisation, using drugs with circadian-clock-dependent activity and timed infusion to balance the competing demands of [...] Read more.
Cancer cells typically divide with weaker synchronisation with the circadian clock than normal cells, with the degree of decoupling increasing with tumour maturity. Chronotherapy exploits this loss of synchronisation, using drugs with circadian-clock-dependent activity and timed infusion to balance the competing demands of reducing toxicity toward normal cells that display physiological circadian rhythms and of efficacy against the tumour. We analysed optimal chronotherapy for one-compartment nonlinear tumour growth models that were no longer synchronised with the circadian clock, minimising a cost function with a periodically driven running cost accounting for the circadian drug tolerability of normal cells. Using Pontryagin’s Minimum Principle (PMP), we show, for drugs that either increase the cell death rate or kill dividing cells, that optimal solutions are aperiodic bang–bang solutions with two switches per day, with the duration of the daily drug administration increasing as treatment progresses; for large tumours, optimal therapy can in fact switch mid treatment from aperiodic to continuous treatment. We illustrate this with tumours grown under logistic and Gompertz dynamics conditions; for logistic growth, we categorise the different types of solutions. Singular solutions can be applicable for some nonlinear tumour growth models if the per capita growth rate is convex. Direct comparison of the optimal aperiodic solution with the optimal periodic solution shows the former presents reduced toxicity whilst retaining similar efficacy against the tumour. We only found periodic solutions with a daily period in one-compartment exponential growth models, whilst models incorporating nonlinear growth had generic aperiodic solutions, and linear multi-compartments appeared to have long-period (weeks) periodic solutions. Our results suggest that chronotherapy-based optimal solutions under a harmonic running cost are not typically periodic infusion schedules with a 24 h period. Full article
(This article belongs to the Section E3: Mathematical Biology)
Show Figures

Figure 1

18 pages, 7119 KB  
Article
Multi-GNSS Precise Point Positioning with Ambiguity Resolution Based on the Decoupled Clock Model
by Shuai Liu, Yunbin Yuan, Xiaosong Guo, Kezhi Wang and Gongwei Xiao
Remote Sens. 2024, 16(16), 2999; https://doi.org/10.3390/rs16162999 - 15 Aug 2024
Cited by 2 | Viewed by 2056
Abstract
Ambiguity resolution (AR) can markedly enhance the precision of precise point positioning (PPP) and accelerate the convergence process. The decoupled clock model represents a pivotal approach for ambiguity resolution, yet current research on this topic is largely confined to GPS. Consequently, in this [...] Read more.
Ambiguity resolution (AR) can markedly enhance the precision of precise point positioning (PPP) and accelerate the convergence process. The decoupled clock model represents a pivotal approach for ambiguity resolution, yet current research on this topic is largely confined to GPS. Consequently, in this study, we extend the investigation of the decoupled clock model to multi-GNSS. Firstly, based on the conventional model, we derive the multi-GNSS decoupled clock estimation model and the precise point positioning with ambiguity resolution (PPP-AR) model. Secondly, we provide a detailed explanation of the estimation process for the multi-GNSS decoupled clock estimation. To validate the efficacy of the proposed model, we conduct multi-GNSS decoupled clock estimation and PPP-AR experiments using six days of observation data. The results demonstrate that the decoupled clocks of GPS, Galileo, and BDS-3 can all achieve high accuracy, thus fully meeting the requirement of ambiguity resolution. In terms of positioning performance, the joint three systems have higher positioning accuracy, reaching 3.10 cm and 6.13 cm in horizontal and vertical directions, respectively. Furthermore, the convergence time (CT) and time to first fix (TTFF) are shortened, to 23.13 min and 13.65 min, respectively. The experimental findings indicate that the proposed multi-GNSS decoupled clock model exhibits high precision and rapid positioning service capabilities. Full article
Show Figures

Figure 1

13 pages, 4096 KB  
Technical Note
Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution
by Shuai Liu, Yunbin Yuan, Xiaosong Guo, Kezhi Wang and Gongwei Xiao
Remote Sens. 2024, 16(15), 2739; https://doi.org/10.3390/rs16152739 - 26 Jul 2024
Viewed by 1519
Abstract
Precise point positioning (PPP) is a prevalent, high-precision spatial absolution positioning method, and its performance can be enhanced by ambiguity resolution (AR). To fulfill the growing need for high-precision positioning, we developed an open-source GNSS data processing package based on the decoupled clock [...] Read more.
Precise point positioning (PPP) is a prevalent, high-precision spatial absolution positioning method, and its performance can be enhanced by ambiguity resolution (AR). To fulfill the growing need for high-precision positioning, we developed an open-source GNSS data processing package based on the decoupled clock model called Cube, which integrates decoupled clock offset estimation and precise point positioning with ambiguity resolution (PPP-AR). Cube is a secondary development based on RTKLIB. Besides the decoupled clock model, Cube can also estimate legacy clocks for the International GNSS Service (IGS), as well as clocks with satellite code bias extraction, and perform PPP-AR using the integer-recovered clock model. In this work, we designed satellite clock estimation and PPP-AR experiments with one week of GPS data to validate Cube’s performance. Results show that the software can produce high-precision satellite clock products and positioning results that are adequate for daily scientific study. With Cube, researchers do not need to rely on public PPP-AR products, and they can estimate decoupled clock products and implement PPP-AR anytime. Full article
Show Figures

Graphical abstract

22 pages, 15672 KB  
Article
Non-Intrusive Reduced-Order Modeling Based on Parametrized Proper Orthogonal Decomposition
by Teng Li, Tianyu Pan, Xiangxin Zhou, Kun Zhang and Jianyao Yao
Energies 2024, 17(1), 146; https://doi.org/10.3390/en17010146 - 27 Dec 2023
Cited by 9 | Viewed by 2408
Abstract
A new non-intrusive reduced-order modeling method based on space-time parameter decoupling for parametrized time-dependent problems is proposed. This method requires the preparation of a database comprising high-fidelity solutions. The spatial bases are extracted from the database through first-level proper orthogonal decomposition (POD). The [...] Read more.
A new non-intrusive reduced-order modeling method based on space-time parameter decoupling for parametrized time-dependent problems is proposed. This method requires the preparation of a database comprising high-fidelity solutions. The spatial bases are extracted from the database through first-level proper orthogonal decomposition (POD). The algebraic relationship between the time trajectory/parameter positions and the projection coefficient is described by the linear superposition of the second-level POD bases (temporal bases) and the second-level projection coefficients (parameter-dependent coefficients). This decomposition strategy decouples the space-time parameter effects, providing a stable foundation for fast predictions of parametrized time-dependent problems. The mappings between the parameter locations and the parameter-dependent coefficients are approximated as Gaussian process regression (GPR) models. The accuracy and efficiency of the PPOD-ROM are demonstrated through two numerical examples: flows past a cylinder and turbine flows with a clocking effect. Full article
(This article belongs to the Special Issue Latest Research of Turbomachinery and Gas Turbines)
Show Figures

Figure 1

13 pages, 3515 KB  
Article
A 10-Bit 400 MS/s Dual-Channel Time-Interleaved SAR ADC Based on Comparator Multiplexing
by Cheng Wang, Zhanpeng Yang, Xinpeng Xing, Quanzhen Duan, Xinfa Zheng and Georges Gielen
Electronics 2023, 12(19), 4062; https://doi.org/10.3390/electronics12194062 - 27 Sep 2023
Cited by 1 | Viewed by 2312
Abstract
This paper proposes a 10-bit 400 MS/s dual-channel time-interleaved (TI) successive approximation register (SAR) analog-to-digital converter (ADC) immune to offset mismatch between channels. A novel comparator multiplexing structure is proposed in our design to mitigate comparator offset mismatch between channels and improve ADC [...] Read more.
This paper proposes a 10-bit 400 MS/s dual-channel time-interleaved (TI) successive approximation register (SAR) analog-to-digital converter (ADC) immune to offset mismatch between channels. A novel comparator multiplexing structure is proposed in our design to mitigate comparator offset mismatch between channels and improve ADC dynamic performance. Compared to traditional TI-SAR ADC utilizing offset calibration technique, hardware and power consumption overhead are minimized in our design. In addition, a split capacitive digital-to-analog converter (CDAC) and a double-tail dynamic comparator using the clock decoupling technique were applied to eliminate comparator common mode input voltage shift, ensuring conversion accuracy and boosting speed. A 400 MS/s 10-bit dual-channel TI-SAR ADC with comparator multiplexing was designed in 40 nm CMOS and compared to the conventional one. The simulated ADC ENOB and SFDR with 6σ offset mismatch were improved from 5.0-bit and 32.2 dB to 9.7-bit and 77.2 dB, respectively, confirming the merits of the proposed design compared to current state-of-the-art works. Full article
(This article belongs to the Special Issue Advances in Analog and Mixed-Signal Integrated Circuits)
Show Figures

Figure 1

22 pages, 6624 KB  
Article
CCDS-YOLO: Multi-Category Synthetic Aperture Radar Image Object Detection Model Based on YOLOv5s
by Min Huang, Zexu Liu, Tianen Liu and Jingyang Wang
Electronics 2023, 12(16), 3497; https://doi.org/10.3390/electronics12163497 - 18 Aug 2023
Cited by 11 | Viewed by 2469
Abstract
Synthetic Aperture Radar (SAR) is an active microwave sensor that has attracted widespread attention due to its ability to observe the ground around the clock. Research on multi-scale and multi-category target detection methods holds great significance in the fields of maritime resource management [...] Read more.
Synthetic Aperture Radar (SAR) is an active microwave sensor that has attracted widespread attention due to its ability to observe the ground around the clock. Research on multi-scale and multi-category target detection methods holds great significance in the fields of maritime resource management and wartime reconnaissance. However, complex scenes often influence SAR object detection, and the diversity of target scales also brings challenges to research. This paper proposes a multi-category SAR image object detection model, CCDS-YOLO, based on YOLOv5s, to address these issues. Embedding the Convolutional Block Attention Module (CBAM) in the feature extraction part of the backbone network enables the model’s ability to extract and fuse spatial information and channel information. The 1 × 1 convolution in the feature pyramid network and the first layer convolution of the detection head are replaced with the expanded convolution, Coordinate Conventional (CoordConv), forming a CRD-FPN module. This module more accurately perceives the spatial details of the feature map, enhancing the model’s ability to handle regression tasks compared to traditional convolution. In the detector segment, a decoupled head is utilized for feature extraction, offering optimal and effective feature information for the classification and regression branches separately. The traditional Non-Maximum Suppression (NMS) is substituted with the Soft Non-Maximum Suppression (Soft-NMS), successfully reducing the model’s duplicate detection rate for compact objects. Based on the experimental findings, the approach presented in this paper demonstrates excellent results in multi-category target recognition for SAR images. Empirical comparisons are conducted on the filtered MSAR dataset. Compared with YOLOv5s, the performance of CCDS-YOLO has been significantly improved. The mAP@0.5 value increases by 3.3% to 92.3%, the precision increases by 3.4%, and the mAP@0.5:0.95 increases by 6.7%. Furthermore, in comparison with other mainstream detection models, CCDS-YOLO stands out in overall performance and anti-interference ability. Full article
(This article belongs to the Special Issue New Insights in Radar Imaging)
Show Figures

Figure 1

20 pages, 10311 KB  
Article
Concurrent Sub-Region Collaborative Method for Static and Dynamic Coupled Layout Optimization of Stiffened Plates
by Chuan Xie, Weixing Yao, Danfa Zhou and Caijun Xue
Aerospace 2023, 10(3), 263; https://doi.org/10.3390/aerospace10030263 - 9 Mar 2023
Viewed by 1515
Abstract
The main concern of the paper is the concurrent treatment of size and layout variables in the static–dynamic coupled layout optimization of stiffened plates. As compared to size optimization alone, layout optimization is a more challenging task, and the problem will become more [...] Read more.
The main concern of the paper is the concurrent treatment of size and layout variables in the static–dynamic coupled layout optimization of stiffened plates. As compared to size optimization alone, layout optimization is a more challenging task, and the problem will become more difficult and complex if the coupling of statics and dynamics is then considered simultaneously. A concurrent sub-region collaborative (CSRC) optimization strategy is proposed in this paper based on the idea of concurrency in multidisciplinary design optimization. The core idea is to decompose the original complex problem into multiple sub-problems by decoupling twice and maintaining the connection with the original problem by sub-region coordination and consistency constraints. A dynamic driving function is added to the CSRC method to solve the problem of iteration difficulty in the feasible region of the collaborative optimization (CO) method, and the performance of the driving function is illustrated by a numerical test. Furthermore, an adaptive surrogate model (ASM) based on the benchmark sub-region is modeled, which improves the prediction accuracy and optimization speed. Finally, a static–dynamic coupled layout optimization of a metal stiffened plate is performed, and the result indicates that the CSRC method performs well on the given case, and its concurrency property makes it possible to not only enlarge the search space but also reduce a significant “wall-clock time” compared to the sequential strategy. Full article
Show Figures

Figure 1

14 pages, 1025 KB  
Article
A Single-Event Transient Radiation Hardened Low-Dropout Regulator for LC Voltage-Controlled Oscillator
by Xi Chen, Qiancheng Guo, Hengzhou Yuan and Yang Guo
Symmetry 2022, 14(4), 788; https://doi.org/10.3390/sym14040788 - 10 Apr 2022
Cited by 3 | Viewed by 2531
Abstract
A voltage-controlled oscillator (VCO) is an essential part of the clock circuitry in satellite communication systems. Low-dropout regulators (LDO) provide stable voltage supply to the VCO and inevitably bring in new radiation-sensitive nodes. In this paper, by conducting single-event transient (SET) sensitivity analysis [...] Read more.
A voltage-controlled oscillator (VCO) is an essential part of the clock circuitry in satellite communication systems. Low-dropout regulators (LDO) provide stable voltage supply to the VCO and inevitably bring in new radiation-sensitive nodes. In this paper, by conducting single-event transient (SET) sensitivity analysis of LDO in voltage-regulated VCO, we find the sensitive nodes of LDO in oscillation circuits located on the relevant transistors that determine the bias voltage of the tail transistor in the error amplifier (EA). To immunize SET, a symmetrical hardening method combining sensitive node splitting and resistive-decoupling is proposed for the sensitive nodes. This method achieves 80.8% analog single-event transient (ASET) mitigation. This study was conducted in 28-nm CMOS process. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 6985 KB  
Article
Parallel Optimisation and Implementation of a Real-Time Back Projection (BP) Algorithm for SAR Based on FPGA
by Yue Cao, Shuchen Guo, Shuai Jiang, Xuan Zhou, Xiaobei Wang, Yunhua Luo, Zhongjun Yu, Zhimin Zhang and Yunkai Deng
Sensors 2022, 22(6), 2292; https://doi.org/10.3390/s22062292 - 16 Mar 2022
Cited by 19 | Viewed by 3759
Abstract
This study conducts an in-depth evaluation of imaging algorithms and software and hardware architectures to meet the capability requirements of real-time image acquisition systems, such as spaceborne and airborne synthetic aperture radar (SAR) systems. By analysing the principles and models of SAR imaging, [...] Read more.
This study conducts an in-depth evaluation of imaging algorithms and software and hardware architectures to meet the capability requirements of real-time image acquisition systems, such as spaceborne and airborne synthetic aperture radar (SAR) systems. By analysing the principles and models of SAR imaging, this research creatively puts forward the fully parallel processing architecture for the back projection (BP) algorithm based on Field-Programmable Gate Array (FPGA). The processing time consumption has significant advantages compared with existing methods. This article describes the BP imaging algorithm, which stands out with its high processing accuracy and two-dimensional decoupling of distance and azimuth, and analyses the algorithmic flow, operation, and storage requirements. The algorithm is divided into five core operations: range pulse compression, upsampling, oblique distance calculation, data reading, and phase accumulation. The architecture and optimisation of the algorithm are presented, and the optimisation methods are described in detail from the perspective of algorithm flow, fixed-point operation, parallel processing, and distributed storage. Next, the maximum resource utilisation rate of the hardware platform in this study is found to be more than 80%, the system power consumption is 21.073 W, and the processing time efficiency is better than designs with other FPGA, DSP, GPU, and CPU. Finally, the correctness of the processing results is verified using actual data. The experimental results showed that 1.1 s were required to generate an image with a size of 900 × 900 pixels at a 200 MHz clock rate. This technology can solve the multi-mode, multi-resolution, and multi-geometry signal processing problems in an integrated manner, thus laying a foundation for the development of a new, high-performance, SAR system for real-time imaging processing. Full article
(This article belongs to the Collection Radar, Sonar and Navigation)
Show Figures

Figure 1

19 pages, 4615 KB  
Article
Approaching Global Instantaneous Precise Positioning with the Dual- and Triple-Frequency Multi-GNSS Decoupled Clock Model
by Nacer Naciri and Sunil Bisnath
Remote Sens. 2021, 13(18), 3768; https://doi.org/10.3390/rs13183768 - 20 Sep 2021
Cited by 9 | Viewed by 3199
Abstract
Precise Point Positioning (PPP), as a global precise positioning technique, suffers from relatively long convergence times, hindering its ability to be the default precise positioning technique. Reducing the PPP convergence time is a must to reach global precise positions, and doing so in [...] Read more.
Precise Point Positioning (PPP), as a global precise positioning technique, suffers from relatively long convergence times, hindering its ability to be the default precise positioning technique. Reducing the PPP convergence time is a must to reach global precise positions, and doing so in a few minutes to seconds can be achieved thanks to the additional frequencies that are being broadcast by the modernized GNSS constellations. Due to discrepancies in the number of signals broadcast by each satellite/constellation, it is necessary to have a model that can process a mix of signals, depending on availability, and perform ambiguity resolution (AR), a technique that proved necessary for rapid convergence. This manuscript does so by expanding the uncombined Decoupled Clock Model to process and fix ambiguities on up to three frequencies depending on availability for GPS, Galileo, and BeiDou. GLONASS is included as well, without carrier-phase ambiguity fixing. Results show the possibility of consistent quasi-instantaneous global precise positioning through an assessment of the algorithm on a network of global stations, as the 67th percentile solution converges below 10 cm horizontal error within 2 min, compared to 8 min with a triple-frequency solution, showing the importance of having a flexible PPP-AR model frequency-wise. In terms of individual datasets, 14% of datasets converge instantaneously when mixing dual- and triple-frequency measurements, compared to just 0.1% in that of dual-frequency mode without ambiguity resolution. Two kinematic car datasets were also processed, and it was shown that instantaneous centimetre-level positioning with a moving receiver is possible. These results are promising as they only rely on ultra-rapid global satellite products, allowing for instantaneous real-time precise positioning without the need for any local infrastructure or prior knowledge of the receiver’s environment. Full article
Show Figures

Figure 1

25 pages, 13542 KB  
Article
Mitigation of Short-Term Temporal Variations of Receiver Code Bias to Achieve Increased Success Rate of Ambiguity Resolution in PPP
by Jin Wang, Guanwen Huang, Yuanxi Yang, Qin Zhang, Yang Gao and Peiyuan Zhou
Remote Sens. 2020, 12(5), 796; https://doi.org/10.3390/rs12050796 - 2 Mar 2020
Cited by 9 | Viewed by 3239
Abstract
Ambiguity resolution (AR) is critical for achieving a fast, high-precision solution in precise point positioning (PPP). In the standard uncombined PPP (S-UPPP) method, ionosphere-free code biases are superimposed by ambiguity and receiver clock offsets to be estimated. However, besides the time-constant part of [...] Read more.
Ambiguity resolution (AR) is critical for achieving a fast, high-precision solution in precise point positioning (PPP). In the standard uncombined PPP (S-UPPP) method, ionosphere-free code biases are superimposed by ambiguity and receiver clock offsets to be estimated. However, besides the time-constant part of the receiver code bias, the complex and time-varying term in receivers destroy the stability of ambiguities and degrade the performance of the UPPP AR. The variation of receiver code bias can be confirmed by the analysis in terms of ionospheric observables, code multipath (MP) of the Melbourne–Wübbena (MW) combination and the ionosphere-free combination. Therefore, the effect of receiver code biases should be rigorously mitigated. We introduce a modified UPPP (M-UPPP) method to reduce the effects of receiver code biases in ambiguities and to decouple the correlation between receiver clock parameters, code biases, and ambiguities parameters. An extra receiver code bias is set to isolate the code biases from ambiguities. The more stable ambiguities without code biases are expected to achieve a higher success rate of ambiguity resolution and a shortened convergence time. The variations of the receiver code biases, which are the unmodeled errors in measurement residuals of the S-UPPP method, can be estimated in the M-UPPP method. The maximum variation of the code biases is up to 16 ns within two-hour data. In the M-UPPP method, the averaged epoch residuals for code and phase measurements recover their zero-mean features. For the ambiguity-fixed solutions in the M-UPPP method, the convergence times are 14 and 43 min with 17.7% and 69.2% improvements compared to that in the S-UPPP method which are 17 and 90 min under the 68% and 95% confidence levels. Full article
Show Figures

Figure 1

13 pages, 2460 KB  
Article
Adaptive Coherent Receiver Settings for Optimum Channel Spacing in Gridless Optical Networks
by Ahmad Abdo, Sadok Aouini, Bilal Riaz, Naim Ben-Hamida and Claude D’Amours
Future Internet 2019, 11(10), 206; https://doi.org/10.3390/fi11100206 - 25 Sep 2019
Cited by 7 | Viewed by 3962
Abstract
In this paper, we propose a novel circuit and system to optimize the spacing between optical channels in gridless (also called flexible-grid or elastic) networking. The method will exploit the beginning-of-life link margin by enabling the channel to operate in super-Nyquist dense wavelength [...] Read more.
In this paper, we propose a novel circuit and system to optimize the spacing between optical channels in gridless (also called flexible-grid or elastic) networking. The method will exploit the beginning-of-life link margin by enabling the channel to operate in super-Nyquist dense wavelength division multiplexing mode. We present the work in the context of software-defined networking and high-speed optical flexible-rate transponders. The clock recovery scheme allows the mitigation of jitter by decoupling the contribution of high-jitter noise sources from the clock recovery loop. The method and associated algorithm are experimentally verified where a spectrum gain of up to 2 GHz in spacing between two channels in the Media Channel (MC) is obtained compared to conventional clocking strategies. We showed that the improvement is equivalent to increasing throughput, in a data-center interconnect scenario, by up to 300 giga-bits per second per route. Full article
Show Figures

Figure 1

Back to TopTop