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Abstract: A new non-intrusive reduced-order modeling method based on space-time parameter
decoupling for parametrized time-dependent problems is proposed. This method requires the
preparation of a database comprising high-fidelity solutions. The spatial bases are extracted from
the database through first-level proper orthogonal decomposition (POD). The algebraic relationship
between the time trajectory/parameter positions and the projection coefficient is described by the
linear superposition of the second-level POD bases (temporal bases) and the second-level projection
coefficients (parameter-dependent coefficients). This decomposition strategy decouples the space-
time parameter effects, providing a stable foundation for fast predictions of parametrized time-
dependent problems. The mappings between the parameter locations and the parameter-dependent
coefficients are approximated as Gaussian process regression (GPR) models. The accuracy and
efficiency of the PPOD-ROM are demonstrated through two numerical examples: flows past a
cylinder and turbine flows with a clocking effect.

Keywords: non-intrusive reduced-order modeling; parametrized time-dependent problems; proper
orthogonal decomposition; Gaussian process regression

1. Introduction

In science and engineering, many time-dependent problems are governed by parametrized
partial differential equations (PPDEs) [1,2], in which the parameters characterize the material
properties, underlying geometry, source terms, boundary conditions, etc. [3]. It is often too
expensive to run such high-fidelity, large-scale simulations with varying parameters. However,
the intrinsic similarities among the parameter-dependent solutions can often be used to estimate
the results for new parameters without repeated full-order solutions. Therefore, it is of great
interest to derive parametrized reduced-order models (PROMs), which are more efficient but
approximate the underlying high-resolution numerical simulations well [4,5].

PROMs aim to generate a low-rank approximation model that characterizes dynam-
ical system responses with varying parameters [3]. Implemented in an offline–online
paradigm [6], the reduced basis (RB) method has shown its ability to construct PROMs [2,7].
In the offline stage, a set of reduced bases is solved from a collection of full-order solutions
(snapshots). Then, these RBs span a reduced subspace with a significantly smaller rank
compared to high-fidelity dynamical systems. The greedy algorithm [8–10] and some
modal decompositions, such as dynamic mode decomposition (DMD) [11–13] and proper
orthogonal decomposition (POD) [14–20], are popular approaches for extracting the RBs.
In the greedy algorithm, a set of snapshots is selected as the bases by utilizing an error
estimator and an optimal criterion [21–23]. In the POD approach, the proper low-rank
manifold is obtained by solving the eigenvectors from the database of full-order solutions.
The DMD method attempts to find a low-dimensional approximation of the Koopman
operator. Modal decomposition methods achieve a projection of complex systems onto a
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dynamical system with fewer degrees of freedom, although the principles for finding the
low-dimensional space are different.

RB-based ROMs can generally be classified into two categories: intrusive and non-
intrusive reduced-order models (NIROMs). For the intrusive models, the critical point is
to fully decouple the online stage and the high-fidelity method, which is often tricky for
non-linear problems with a non-affine dependence on parameters. Some methods, such as
the empirical interpolation method [24,25], discrete empirical interpolation method [26],
and function sampling method [27,28], have been proposed to address this issue. However,
the application of intrusive ROMs is limited since modifications of the CFD source code
are often required during the formation, which can be very complex for high-fidelity
models. The modifications are only possible if the source code is available [29], especially
for multi-parameter problems. The non-intrusive RB method is data-driven and enables
flexibility for parametrized problems. Since evaluating a surrogate model involves only
limited dimensions, the efficiency of the online stage can be ensured. The non-intrusive
ROM approach has attracted significant attention recently, accompanied by the explosive
development of machine learning. However, there are still some burning issues in NIROMs
for parametrized time-dependent problems.

Yu et al. [30] pointed out that two critical issues must be addressed to model parametrized
time-dependent problems. Firstly, the snapshot matrix becomes very large for problems with
many time steps and parameter samples, leading to expensive singular-value decomposition
(SVD). For this issue, methods such as the randomized SVD algorithm [31], fast adaptive
cross-approximation [32], and local bases solutions method [33] have been used for large-scale
problems. Beyond this, Wang et al. [34] applied POD twice to reduce the cost of global spatial
bases for unsteady flow problems in the parameter domain. The second issue arises from the
unsteadiness, which requires the regression models to predict the projection coefficients at an
arbitrary time and with physical/geometrical parameters.

In recent years, there have been two strategies used to decouple space, time, and pa-
rameters in parametrized time-dependent problems. Most works try to extract spatial
features based on POD offline and generate prediction models to map time/parameters
with projection coefficients online. The parametric and temporal variables also need to
be predicted online. Guo and Hesthaven [35] initially compressed snapshots with POD
and separately decomposed the time and parameters with tensor decomposition based
on SVD. The GPR models were used to map the parameters with time and parameter
bases. Li et al. [36] extracted spatial bases with POD, and then the time trajectory was
converted to a frequency-domain signal using a discrete Fourier transform (FFT). Artificial
neural network (ANN) models in the frequency domain established the mappings between
the parameters and projection coefficients. Xiao [37] applied POD along each trajectory,
and then a two-level RBF interpolation method was employed. For new parameters,
snapshots and POD bases were generated through first-level RBF interpolation. Then, a
set of hypersurfaces corresponding to the POD bases along each trajectory was obtained
through second-level RBF interpolation. In a recent work, the authors also demonstrated
the ability of the DMD method to predict the temporal evolution of complex systems.
Lukashevich et al. [38] predicted the evolution of the aggregation kinetics system using a
small number of snapshots based on DMD. Duan [39] employed DMD technology to learn
temporal features, enabling the prediction of full-order solutions at new time points.

Another approach is to extract spatial and temporal features from high-fidelity solu-
tions with POD offline; regression models are only needed to map the relations between
the projection coefficients and parameter input. Audouze et al. [33] proposed a two-level
POD method to extract temporal and spatial bases from snapshots of dynamical systems
offline. Then, the projection coefficients only depend on the flow parameters, leading to
fewer requests for stability for regression models online. However, an auxiliary parabolic
linear partial differential equation needs to be solved to enforce time-dependent boundary
conditions, which are intrusive.
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To further overcome these two issues, a parametrized, non-intrusive reduced-order
model based on the parametric POD (PPOD) is proposed in this paper. The spatial bases
are obtained from high-fidelity solutions using first-level POD, which is known as spatial
decomposition. Then, the temporal bases are extracted from the first-level POD projec-
tion coefficients via second-level POD. This process is called temporal decomposition.
The reduction is performed orderly through spatial and temporal decomposition, leading
to high execution efficiency and a stable foundation for the predictions. The Gaussian
process regression (GPR) [40,41] models are trained to map the second-level POD projec-
tion coefficients (parameter-dependent coefficients) to the flow parameters. In addition,
the efficiency of the base extraction is further improved by using eigenvalue decomposition
(EVD) instead of SVD in this work.

The remainder of this paper is organized as follows. Section 2 presents the parametrized
reduction method for time-dependent problems, including the combination of the database,
the EVD-based POD, and the PPOD theory. The GPR method and the framework of the PPOD-
ROM are introduced in Section 3. Section 4 presents the numerical results and an efficiency
analysis. Some conclusions are drawn in the Section 5.

2. Theory of Parametrized Reduction

The parametrized Navier–Stokes equations, governing unsteady flows, can be ex-
pressed in the conservative form:

∂u(x, t; α)

∂t
+∇ f (u(x, t; α); α) = o(x, t, u(x, t; α); α), ∀(x, t, α) ∈ S × T × P (1)

with some properly defined initial and boundary conditions. Here, u, f , o, α are the vectors
of the conserved variables, flux, source term, and parameters, respectively. S ⊂ R3,
T ⊂ R+,P ⊂ Rc represent the physical space, time, and parameter domains, respectively.
c is the dimension of the parameters. The scale of such a dynamical system for each
given parameter set depends on the underlying mesh and the polynomial order of the
discretization scheme. The full-order solutions for complex time-dependent problems often
require immense numbers of cells, time steps, and iterations to guarantee the accuracy of
the results, which limits the application in practical engineering. The intrinsic similarities
among the parameter/time-dependent solutions can be used to estimate the solutions for
new parameters without repeating high-fidelity evaluations.

The RB method is widely used for the reduction of complex parametrized problems.
A reduced space is constructed by spanning a set of RB functions, and then an approximate
solution to the parametrized problems can be sought efficiently in the reduced space. The
greedy algorithm and POD are popular approaches for extracting RB functions from the
database. However, the greedy procedure is unavailable for time-dependent problems
with multi-parameters because there are no suitable error estimators or indicators for such
problems [35]. Thus, this work uses the POD method to solve the RBs.

2.1. The Database of High-Fidelity Solutions

The solutions of Equation (1) with the variation of the parameters can be represented
by a manifold M, i.e., M = {u(x, t; α)}, and its discrete counterpart MNs = {uNs(x, t; α)},
in which Ns is the degrees of freedom of the physical space. Given a parameter set
Pd =

{
α(1), α(2), · · · , α(Np)

}
, where Np is the number of parameter samples. The discrete

high-fidelity solutions for the dynamical system in Equation (1) can be determined by
running the solver with different parameters in Pd. The full-order solutions with parameter
α(k) at time step j ∈ [1, · · · , Nt] can be denoted as u(x, tj; α(k)) ⊂ RNs , where Nt is the
number of time steps. Then, a matrix collecting snapshots with parameter α(k) at all time
steps is denoted as

U(k) =
[
u(x, t1; α(k)), u(x, t2; α(k)), · · · , u(x, tNt ; α(k))

]
⊂ RNs×Nt , (2)
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and the database of all Np parameter sets can be collected as

U =
[
U(1), U(2), · · · , U(Np)

]
⊂ RNs×Ntp , (3)

where Ntp = Nt × Np.

2.2. The Improved Proper Orthogonal Decomposition

If the samples in Pd are proper, a subspace MPd spanned by database U contains
sufficient information to characterize MNs . The intrinsic similarities among the snapshots
lead to the rank-deficient database U, which is the prerequisite for the RB method to work
well. To construct a low-rank approximation for MPd with rank I ≪ min

{
Ns, Ntp

}
, the

POD is employed to extract a set of orthogonal bases Φ = [ϕ1, ϕ2, . . . , ϕI ] ∈ RNs×I from
database U. There are two methods for solving POD bases: SVD and EVD. SVD, which
can extract the POD bases conveniently, is widely used [33,35,41]. The SVD formula is
denoted as

U = WΛZT (4)

with W ∈ RNs×Ns and Z ∈ RNtp×Ntp being orthogonal matrices, and the diagonal matrix Λ

contains the singular values λ1 ≥ λ2 ≥ · · · ≥ λNtp . Let V ∈ RNs×I represent the set of all I
orthogonal bases. POD bases minimize the projection error of U onto the orthogonal bases

V , and the projection error can be expressed as ∑
Ntp
i=1 ∥ui − VVTui∥2. The Schmidt–Eckart–

Young theorem points out that the projection error can be evaluated using the (I + 1)-th to
the Ntp-th singular values as

Ntp

∑
i=1

∥ui − ΦΦTui∥2 =
Ntp

∑
i=1

∥ui − VVTui∥2 =
Ntp

∑
i=I+1

λ2
i . (5)

Some studies define energy E as describing the reconstruction accuracy of the first I-th
bases [37,42], and E can be expressed as:

E =
∑I

i=1 λ2
i

∑
Ntp
i=1 λ2

i

. (6)

The columns in W corresponding to the top I singular values are the POD bases Φ.
In many engineering problems, the database is often very high-dimensional in one

direction, i.e., Ns ≫ Ntp, leading to profoundly inefficient SVD. EVD shows a better ability
to deal with such issues. In fact, EVD and SVD are closely related. The left and right
singular vectors in W and Z are also the orthonormal eigenvectors of UUT and UTU,
respectively [43]. The non-zero singular values of U are the square roots of UUT and UTU.
Therefore, we can choose the smaller square matrices between UUT and UTU to efficiently
perform EVD instead of SVD.

Considering that the dimension of UTU ∈ RNtp×Ntp is far less than that of UUT ∈
RNs×Ns in many actual engineering scenarios, the EVD is performed as

UTUΓ = ΣΓ, (7)

where Γ is equivalent to the right singular vectors Z in Equation (4), and the diagonal matrix
Σ contains the eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σNtp . Let S = diag{sqrt(σ1), sqrt(σ2), · · · ,

sqrt
(

σNtp

)
}, so S is equal to the singular-value matrix Λ. The approximate left singular

vector matrix Ŵ can be solved using the inverse operations of Equation (4) as

Ŵ = U
(

ΓT
)−1

S−1 = UΓS−1, (8)
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where Γ is an orthogonal matrix and S is a diagonal matrix, so the inverse operation in
Equation (8) is easy to run. The POD bases Φ ∈ RNs×I are taken from the first I columns of
Ŵ , and the projection coefficients are defined as A = ΦTU. Due to its high efficiency, EVD
is used to extract the POD bases in this work.

2.3. Reduction Based on Parametric POD

For parametrized time-dependent problems, the projection coefficients of the clas-
sical POD method evolve substantially over time, often leading to difficulties in regres-
sions [30,41]. In this work, a new reduction approach for parametrized time-dependent
problems, namely parametric POD (PPOD), is proposed to ensure reliable and efficient
prediction results in regression.

The approximation for parametrized time-dependent problems is denoted as

u(x, t, α(k)) =
I

∑
i=1

ai(t, α(k))ϕi(x)

=
I

∑
i=1

J

∑
j=1

cij(α
(k))ψij(t)ϕi(x),

(9)

where I is the truncation rank, ϕi(x) is the i-th spatial basis, and ai(t, α(k)) is the first-level
projection coefficient. σi is the i-th eigenvalue corresponding to the i-th basis, which is used
to represent the reduction accuracy below. Since the high-fidelity data are decomposed into
a linear superposition of spatial bases and first-level projection coefficients, this reduction
is named spatial decomposition. In the next process, POD can be performed again to de-
couple the algebraic correlation of the parameter locations and time trajectory in ai(t, α(k)).
ai(t, α(k)) can be decomposed using the temporal bases and the second-level projection
coefficients (parameter-dependent coefficients). J is the second truncation rank, ψij(t) is the
j-th temporal basis, and cij(α

(k)) is the j-th parameter-dependent coefficients corresponding
to the i-th spatial basis. ϵij is the eigenvalue corresponding to the i-th spatial basis and the
j-th temporal basis, which is used in the assessment of the second-level truncation error.

By transforming the high-fidelity solutions into parameter-dependent coefficients,
the complexity of establishing regression models between flow parameters and coefficients
has been significantly reduced. A discussion on implementing the decompositions of
Equation (9) in a matrix operation can be found below. The matrix of first-level projection
coefficients A, obtained by projecting U onto the space spanned by spatial bases Φ, is
denoted as

A = ΦTU ⊂ RI×Ntp . (10)

The i-th coefficients of the spatial decomposition, i.e., the i-th row vector in A, is
denoted as

A(i, :) =
[

ai(t1 : tNt ; α(1)) | ai(t1 : tNt ; α(2)) | · · · | ai(t1 : tNt ; α(Np))
]
. (11)

A characterizes the time trajectory of dynamic system responses with varying param-
eters. The intrinsic similarity between the row vectors in A can be used to estimate the
time trajectory corresponding to the parameters. A database of the i-th first-level projection
coefficients can be combined as

Bi =
[

ai(t1 : tNt ; α(1))T | ai(t1 : tNt ; α(2))T | · · · | ai(t1 : tNt ; α(Np))T
]
⊂ RNt×Np . (12)

The algebraic effects of parameters on the time trajectory in Bi can be reduced by
seeking a more appropriate subspace using POD. The reduction can be described as
Bi = ΨiCi, where the j-th column in Ψi ⊂ RNt×J is ψij(t) and the j-th row in Ci ⊂ RJ×Np is
cij(α

(k)), corresponding to the characters in Equation (9). The temporal decomposition is
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achieved by performing the above procedure for all Bi, i ∈ [1, I]. Figure 1 gives a visual
description of the PPOD process.

Figure 1. The procedure of PPOD.

The relative error of spatial and temporal decompositions in PPOD is estimated
using error estimation based on eigenvalues. Following the two truncations in the PPOD,
the relative error for the recovery of spatial decomposition for database U is expressed as

e2
1st =

∑Nt
m=1 ∑

Np
k=1 ∥u(tm, α(k))− ∑I

i=1 ai(tm, α(k))ϕi∥2

∑
u∈U

∥u∥2

=

∑
u∈U

∥u − ΦΦTu∥2

∑
u∈U

∥u∥2 =
∑

Ntp
i=I+1 σi

∑
Ntp
i=1 σi

.

(13)

For temporal decomposition of Bi, i ∈ [1, I], the truncation error can be defined as

e2
2nd,i =

∑
Np
k=1 ∥b(α(k))− ∑J

j=1 cj(α
(k))ψij∥2

∑
b∈Bi

∥b∥2

=

∑
b∈Bi

∥b − ΨiΨ
T
i b∥2

∑
b∈Bi

∥b∥2 =
∑

Np
j=J+1 ϵij

∑
Np
j=1 ϵij

,

(14)

thus, the total truncation relative error e of PPOD for the recovery can be denoted as

e = 1 −
I

∑
i=1

 σi

∑
Ntp
k=1 σk

×
∑J

j=1 ϵij

∑
Np
j=1 ϵij

. (15)

3. Parametrized ROMs Based on PPOD

This paper aims to efficiently and thoroughly reduce system dimensions (compressing
both space and time) by predicting a minimal set of decoupled variables (parameter-
dependent) to enhance the framework’s operational efficiency and accuracy. PPOD meets
these requirements, eliminating the need for overly complex prediction models. This
extreme dimensionality reduction-prediction framework makes it convenient for engineers
to replace different prediction models according to practical needs. In this work, a simple
GPR model was chosen to validate the accuracy and application potential of the proposed
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framework. This section focuses on the framework based on the PPOD-GPR models and
briefly introduces GPR.

3.1. Gaussian Process Regression Models

Regression is concerned with the prediction of a continuous variable of interest through
the construction of a model from a set of observational data [40,44]. Define Ptr = {(xi, yi):
i = 1, 2, . . . , N} as the training set of N observations, where input xi ∈ Ptr ⊂ Rc consists of
c entries, and yi ∈ R is the output corresponding to xi. In GPR models, we assume that the
observed input-output pairs follow some regression function f : P → R, which is defined
as a Gaussian process (GP). When given a new input, the corresponding output can be
predicted by this GPR model.

GPR models are non-parametrized kernel-based probabilistic models, and the linear
regression model is of the form

y = xT β + ϵ (16)

where ϵ ∼ N (0, σ2). GPR models can describe a response by introducing latent functions
f (x) from a Gaussian process and basis function h. A GP is a set of random variables,
and any finite number of them obeys a joint Gaussian distribution. It can be defined
by its mean function m(x) and covariance function, k(x, x

′
), where m(x) = E( f (x)) and

k(x, x
′
) = Cov( f (x), f (x)

′
). Then, the regression model is of the form

y = h(x)T β + f (x) (17)

where f (x) ∼ GP(0, k(x, x
′
)) and h(x) are a collection of basis functions defined in P , and β

represents the corresponding combination coefficients. Generally, there are many options
for k(x, x

′
). In this work, an automatic relevance determination (ARD) squared exponential

(SE) kernel is used for the solution of the covariance function:

k(x, x
′
) = s2

f exp

(
−1

2

d

∑
n=1

(xm − x
′
m)

2

l2
m

)
(18)

where s2
f represents the width coefficients, and lm is the individual correlated length scale

for each input. For a number of points of input, the joint Gaussian can be defined as follows,

y|X ∼ N (m(X), K) (19)

where K = cov(y|X) = k(X, X) + σ2 IN , y = [y1, y2, . . . , yn]
T , and X = [x1, x2, . . . , xn]. IN

is the N-dimensional unit matrix.
To predict the noise-free output ˆf (α) for a new input α using this regression model,

we combine the information of the training set with the predictions of test samples to
form the joint density of observations y and noiseless test output ˆf (α). Then, the posterior
predictive distribution, in the form of a new GP, can be obtained through the standard rules
for conditioning Gaussians:

ˆf (α)|α, X, y ∼ GP
(

m̂(α), ẑ(α, α
′
)
)

(20)

where
m̂(α) = m(α) + k(α, X)K−1(y − m(X)) (21)

and
ẑ(α, α

′
) = k(α, α

′
)− k(α, X)K−1k(X, α

′
) (22)

The required parameters can be solved using an empirical Bayesian approach that max-
imizes the likelihood. By setting the hyperparameters θ = [β1, β2, . . . , βm, l1, l2, . . . , ld, s f , σs],
the optimal θ can be determined by solving this maximization problem using a standard
gradient-based optimizer:
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θ = arg max
θ

log p(y|X, θ)

= arg max
{
−1

2
(y − βT H(X))TK−1(θ)(y − βT H(X))− 1

2
log|K(θ)| − N

2
log(2π)

} (23)

where p(y|X, θ) is the conditional density function of y given X with θ, which can be
obtained through the marginal likelihood,

p(y|X, θ) =
∫

p(y| f , X, θ)p( f |X, θ)d f (24)

In this work, the GPR model simply uses H(x) = 1 as the basis function.

3.2. Framework of PPOD-ROMs

In non-intrusive ROMs, the approximate solutions of a new parameter value α∗ are
determined by evaluating a regression model online. For parameter time-dependent
problems, the input of the regression model is the parameter α∗, and the outputs are
the projection coefficients online. We assume that an ideal regression π maps the input
α to the projections coefficients Ci, i ∈ [1, I], described as α → Ci. A GPR model is
generated to act as an approximation π̂PPOD of the map π for Ci. Given a new parameter
α∗, the projection coefficients are obtained by evaluating π̂PPOD, i.e., C∗

i = π̂PPODα∗, and
the coefficients B∗

i can be obtained by B∗
i = ΨiC∗

i . By combining the matrix B∗
i , i ∈ [1, I]

to A∗, the approximated solution can be determined by U∗ = ΦA∗. The PPOD-ROM
algorithms are described in Algorithm 1.

Algorithm 1 ROM based on PPOD and GPR for parametrized time-dependent problems

1: procedure PPOD-OFFLINE(U, α, e2
1st, e2

2nd)
2: Solving the spatial bases [Φ, I] = POD(U, e2

1st)

3: Determining the first-level projection coefficients by A = ΦTU
4: Assembling Bi =

[
ai(t1 : tNt ; α(1))T|ai(t1 : tNt ; α(2))T| · · · |ai(t1 : tNt ; α(Np))T

]
, i ∈

[1, I], where ai is the i-th-order projection coefficient of A
5: Solving the temporal bases [Ψi, J] = POD(Bi, e2

2nd)

6: Determining the parameter-dependent coefficients by Ci = ΨT
i Bi

7: Training the mapping relationship π̂ between α and Ci using a GPR model
8: return [Φ, Ψi, Ci, π̂]
9: end procedure
1: procedure ROM-ONLINE(Φ, Ψi, Ci, α∗, i ∈ [1, I])
2: Evaluating outputs C∗

i = π̂α∗ of the GPR for new inputs α∗

3: Computing approximate coefficients B∗
i = ΨC∗

i
4: Assembling A∗ from B∗

i
5: Solving the approximate solution U∗ = ΦA∗

6: return U∗

7: end procedure

4. Numerical Examples

In this section, two numerical results are presented to validate the effectiveness of
the proposed parametrized ROM. In the first numerical case, incompressible flows past a
cylinder are solved. The predictive power of transient static pressure is demonstrated as
the boundary condition (inlet velocity), and model parameter (density) vary. The second
case involves two stages of compressible turbine flows with varying geometric boundaries
(clocking positions). The unsteady static pressure and Mach number are considered in
this case.
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4.1. Flows Past a Cylinder

Flows past a cylinder are numerically simulated in the first example. The left boundary
of the domain is the inlet, and an inlet velocity drives the fluid dynamics of the flow. The
flow is allowed to pass through the right boundary of the domain with zero gradient for
variables in the outflow. The periodic boundary conditions are applied to the lower and
upper edges, and the no-slip boundary conditions are applied to the wall of the cylinder.
The k-ω SST turbulence model is chosen to close the time-averaged Navier–Stokes equations.
The COUPLED algorithm is utilized for the coupling of pressure and velocity during the
solution of the momentum and pressure-based continuity equations. The QUICK scheme
for discretizing convective terms is utilized to enhance solution accuracy. The second-order
implicit method is chosen for transient formulation. The time step is determined based on
the estimated periodic of the Karman vortex, as outlined in Equation (26).

The Reynolds number is an important parameter used to characterize turbulence. For
credible 2D simulations, the Reynolds number is varied from 100 to 1500 in this example.
The Reynolds number is defined as

Re =
Uvel Dρ

µ
. (25)

The diameter of the cylinder is set as D = 1, the viscosity of the fluid is set as µ = 1,
and the inlet velocity and density are set in the following range,

Uvel ∈ [1, 5], ρ ∈ [100, 300].

In this case, Latin hypercube sampling (LHS) is used to design the experiment for the
inlet velocity and density. The total number of samples is split into training and testing
sets to meet the requirements of randomness and mutual exclusivity. There are 51 samples
selected by LHS, of which 45 are treated as training samples, and the others are testing
samples. The training and testing samples are shown in Figure 2. The solution snapshots at
the training and testing parameter instances were obtained by running the CFD model.

For classic flows past a cylinder, the temporal period can be determined approxi-
mately by the Stourhal number Sr. The vortex-shedding period T or frequency f can be
approximated by Sr and inlet velocity Uvel as follows:

T =
1
f
=

D
SrUvel

, (26)

where Sr is usually 0.21 at a low Re for the flows past a cylinder example. The a priori
vortex-shedding period helps to determine the correct time-sampling steps with varying
inlet velocities. In these CFD simulations, the vortex-shedding periods are divided into
42 steps to extract the flow structures.

Figure 2. The training and testing samples based on the LHS experiment.

The spatial and temporal POD energy, defined in Equation (6), is presented in Figure 3.
Sharp drops in the first few eigenvalues, which reflect the bases associated with larger eigen-
values, can capture more information in the space spanned by U and B = [B1, B2, · · · , BI ].
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The results reflect that the linear superposition by a few bases can approximate the features
included in U and Bi, i ∈ [1, I]. The above findings show that the flow characteristic is not
converted dramatically with variations in the inlet velocity and density of flows past a
cylinder. Some spatial bases are shown in Figure 4. To demonstrate reduction effectiveness,
the relative truncation error, defined in Equation (15), with varying truncation orders, is
shown in Table 1. It indicates that the relative truncation error could decrease to critically
low levels with only a limited increase in the bases. The first four temporal bases, corre-
sponding to the first four spatial bases, are shown in Figure 5. It can be seen that most
temporal bases corresponding to all four spatial bases are periodic, which reflects the time
history of the vortex-shedding period.

Figure 3. The energy of some spatial and temporal bases of flows past a cylinder.

(a) The 1st spatial basis (b) The 5th spatial basis (c) The 10th spatial basis

(d) The 15th spatial basis (e) The 20th spatial basis (f) The 30th spatial basis

Figure 4. Some spatial bases of flows past a cylinder.

Table 1. The relative truncation error by the PPOD-ROM for flows past a cylinder.

Truncation Orders e2
1st e2

2nd e

I = 1, J = 1 0.101 0.003 0.103
I = 3, J = 3 0.003 0.001 0.004

I = 10, J = 10 0.001 0.000 0.001
I = 30, J = 30 0.000 0.000 0.000
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(a) The 1st temporal basis (b) The 2nd temporal basis

(c) The 3rd temporal basis (d) The 4th temporal basis

Figure 5. The first four temporal bases corresponding to the first four spatial bases (ψij, i ∈ [1, 4],
j ∈ [1, 4]).

In this example, the PPOD-ROMs with 3 × 3 (3 spatial bases and 3 temporal bases),
10 × 10, and 30 × 30 bases are constructed to predict the static pressure in the domain. The
unsteady flow fields with testing parameters (Uvel = 2.5, ρ = 240) at time t = 0.25 T and
t = T are presented in Figure 6. It can be seen that the 3 × 3 PPOD-ROM can still capture
the dominant flow structure, while there are some visual differences between the results of
the CFD and the PPOD-ROM. With the increasing number of spatial and temporal bases,
more details of the flow structures can be captured. This can be confirmed by observing
the absolute pressure errors shown in Figure 7. For predicting transient field problems,
the relative error might be amplified due to the true values approaching zero being in the
denominator. Therefore, the use of absolute error and assessing predictive performance
based on the maximum error in comparison with the location of maximum oscillations in
the high-fidelity numerical field is reasonable.

To evaluate the maximum error of the PPOD-ROM throughout the whole vortex-
shedding cycle, monitors A and B are arranged at positions with poor prediction in the
field. The monitor locations are shown in Figure 7f. Figure 8 reveals that the results of the
PPOD-ROM agree with those of CFD for peak and variation trends in the domain where
the maximum error occurs, and only slight differences are observed in phase. The subtle
differences in phase are the primary reason for the transient field errors observed in Figure 7.

A global error factor encompassing all testing samples in the full-time cycle is proposed
to validate the generalization ability of the PPOD-ROM, which is defined as

rp =
1

Nt

Nt

∑
t=1

√
1

Ns
∑Ns

n=1(u
′
n,t,p − un,t,p)2√

1
Ns

∑Ns
n=1(un,t,p − ūn)2

, (27)

where un,t,p and u
′
n,t,p are the solutions at the n-th cell, t time, and p parameter location

solved by the PPOD-ROMs and CFD model, respectively. ū = 1
Nt Np

∑
Np
p=1 ∑Nt

t=1 ut,p denotes
the average snapshot of the database, and ūn is the value on the n-th cell of ū. This is also
a critical metric for assessing the temporal integration prediction accuracy of the model
at different parameter locations. As shown in Figure 9, rp for all test samples is less than
0.03. The relatively small differences in rp among the prediction points suggest that the
model can achieve accuracy similar to what is shown in Figures 6 and 8 at other parameter
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points as well. Additionally, the scattering of test points in space indicates the stability of
the model across the entire parameter domain.

(a) Obtained by CFD model, t = 0.25 T (b) Obtained by CFD model, t = T

(c) Obtained by PPOD-ROM, 3 × 3, t =
0.25 T

(d) Obtained by PPOD-ROM, 3 × 3, t = T

(e) Obtained by PPOD-ROM, 10 × 10, t =
0.25 T

(f) Obtained by PPOD-ROM, 10 × 10, t = T

(g) Obtained by PPOD-ROM, 30 × 30, t =
0.25 T

(h) Obtained by PPOD-ROM, 30 × 30, t = T

Figure 6. The static pressures obtained by the CFD model and the PPOD-ROM with 3, 10, and
30 spatial and temporal bases at time instances 0.25 T and T (Uvel = 2.5, ρ = 240).
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(a) Obtained by PPOD-ROM, 3 × 3, t = 0.25 T (b) Obtained by PPOD-ROM, 3 × 3, t = T

(c) Obtained by PPOD-ROM, 10 × 10, t = 0.25 T (d) Obtained by PPOD-ROM, 10 × 10, t = T

(e) Obtained by PPOD-ROM, 30 × 30, t = 0.25 T (f) Obtained by PPOD-ROM, 30 × 30, t = T

Figure 7. The absolute pressure errors between the CFD model and the PPOD-ROMs with 3, 10, and
30 spatial and temporal bases at time t = 0.25 T and t = T(Uvel = 2.5, ρ = 240).

Figure 8. Comparison of the pressure results from the CFD model and the PPOD-ROM using 30 bases
at monitoring points A and B.
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Figure 9. The global error factor rp of the PPOD-ROM for the testing samples for flows past a cylinder.

4.2. Turbine Flows with Clocking Effect

The interaction between rotors and stators causes an inherently unsteady flow in
multistage turbo-machines, which is the primary source of unsteady excitation on the
blades. The circumferential phase difference between adjacent stators or rotors in turbo-
machines causes the mixing loss and energy change variation, intensifying the unsteady
characteristics of the flow field. This phenomenon was named the clocking effect in previous
studies [45–48].

A two-stage turbine considering the clocking effect is shown in Figure 10. The clocking
position of stators and rotors (the relative clocking position between the first-stage stator
and second-stage stator, as well as the first-stage rotor and second-stage rotor), i.e., CS0–CS3
(relative position of stators) and CR0–CR3 (relative position of rotors), will cause variations
in unsteady flow structure. In this example, a PPOD-ROM is constructed to describe the
non-linear relation between the clocking positions and unsteady fields.

Figure 10. Schematic diagram of clocking effect.

The turbulence model and the spatial-temporal discretization method utilized in this
simulation case are consistent with case 1. The difference lies in enabling the energy
equation for compressible flow calculations, with the working fluid assumed to be an ideal
gas. The time step is set to one percent of the rotor passing through one stator channel
period, which is 4.18 × 10−6. The necessary flow parameters and boundary conditions
are listed in Table 2. α1 and α2 denote the clocking positions of the stators and rotors,
respectively. Since the pitch between adjacent blades is 0.0418 m, the clocking positions
of the stator blades as variable α1 and the rotor blades as variable α2 are within the range
[0, 0.0418]. Unlike case 1, a total of 30 parameter sets are used to train and test the PPOD-
ROM for turbine flows, which are generated using the Sobol sampling technique [49].
The distribution of samples is shown in Figure 11. The Sobol method ensures that the
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sampled points are uniform across the parameter space. The use of different sampling
methods here aims to observe the applicability of the present prediction framework to
sampling variations.

Table 2. Boundary conditions of the two-stage turbine.

CFD Settings Value

The pitch of blade (m) 0.0418
Speed of rotors (m/s) 100
The total pressure of inlet (Pa) 166,600
The temperature of inlet (K) 309
The pressure of outlet (Pa) 101,325
The temperature of outlet (K) 309

Figure 11. Samples of stator/rotor clocking positions.

Generally, the source of unsteady excitations on turbine blades is the wakes from
upstream and potential flows from downstream. The variations in pressure in the R1 or S2
region would be more violent compared to other regions by adjusting the circumferential
positions of the rotor and stator blades. Thus, the unsteady static pressure field in the S2
region is used to evaluate the prediction accuracy of the PPOD-ROMs. For the flow in
a compressor, the static pressure of the flow remains relatively stable, i.e., the unsteady
pressure caused by wake flows and potential flows is often several orders less than the time-
averaged flow. However, the time-varying pressure oscillation is the primary unsteady
excitation of blade dynamics, which can cause blade fracture. Thus, it is essential to
accurately predict unsteady pressure for aerodynamic optimization and mechanical design
problems. In terms of numerical calculation, the change in the clocking positions can be
reflected by the parametrization of the wall boundary. Predicting unsteady pressure is an
appropriate but challenging test for the PPOD-ROM.

The time-averaged flow ū can be represented as

ū =
1

NtNp

Np

∑
p=1

Nt

∑
t=1

ut,p (28)

where Nt is the number of time steps, and Np is the number of parameter locations. The
contour of ū in space is shown in Figure 12. The time-varying variables at an arbitrary time
with clocking positions can be expressed as

ũ(1 : Ns, t, p) = u(1 : Ns, t, p)− ū, t = 1, 2, · · · , Nt; p = 1, 2, · · · , Np (29)
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The unsteady pressures of the turbine with clocking positions (α1 = 0.0105,
α2 = 0.0314) and (α1 = 0.0300, α2 = 0.0144) are shown in Figure 13, respectively. These
figures show that the distribution and peak of the unsteady pressure change radically with
varying clocking positions. Since enough sensitivity and stability are required in the whole
parameter domain, the PPOD-ROM can be tested rigorously.

Figure 12. The time-averaged static pressure in the S2 domain.

The energy defined by the eigenvalues of the spatial and temporal decomposition of
the turbine flow is shown in Figure 14. The reduction in the first eight eigenvalues is fast,
which means that the bases corresponding to these eigenvalues capture most of the energy
in the original dynamic system. Some of the first 30 spatial bases are shown in Figure 15,
indicating that the first few bases capture the pressure pattern, whereas the last few only
capture minor details of the pressure structures. Some of the first seven temporal bases
corresponding to the first four spatial bases are shown in Figure 16.

To prove the reduction effectiveness of the PPOD-ROM, the relative truncation error,
as defined in Equation (15), with varying truncation orders, is listed in Table 3, showing
that increased bases could decrease the relative truncation error to critically low levels. This
example chooses 30 spatial and 25 temporal bases to generate the PPOD-ROM.

Table 3. The energy of the PPOD-ROM for turbine flows.

Truncation Rank e2
1st e2

2nd e

I = 1, J = 1 0.498 0.357 0.677
I = 3, J = 3 0.170 0.116 0.266

I = 10, J = 10 0.005 0.002 0.006
I = 30, J = 25 0.000 0.000 0.000
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(a) (α1 = 0.0105, α2 = 0.0314)

(b) (α1 = 0.0300, α2 = 0.0144)

Figure 13. Unsteady pressure distributions of the turbine with clocking positions (α1 = 0.0105,
α2 = 0.0314) and (α1 = 0.0300, α2 = 0.0144).

Figure 14. The energy of spatial and temporal bases for turbine flows.

To verify that the PPOD-ROM has good time-varying predictions, a detailed compari-
son of the spatial distribution and time trajectory of the predicted results for the testing
sample (α1 = 0.0105, α2 = 0.0341) is presented in Figure 17. The PPOD-ROM accurately
captured the flow characteristics of the oscillating pressure field and predicted the variation
of the pressure peak over time. The absolute error of most cells in the domain was smaller
than 40 Pa. These results show that the PPOD-ROM can predict the flow pattern very
well, with larger errors only being found around the leading and trailing edges. As shown
in Figure 17c, the monitoring points were set at a location that is prone to large errors.
Figure 18 provides a comparison of the time histories of the pressure solutions obtained by
the CFD model with the PPOD-ROM at these monitoring points. Points A and B were set
to monitor the pressure fluctuations at the leading and trailing edges, respectively. Point
C was set to monitor the results of the CFD and ROM in the area where large errors are
more likely to appear. The comparison shows that the PPOD-ROM solutions are in perfect
agreement with the CFD results.
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Figure 15. Some spatial bases of the S2 domain.

(a) The 1st temporal basis (b) The 3rd temporal basis

(c) The 5th temporal basis (d) The 7th temporal basis

Figure 16. Some temporal bases corresponding to the first four spatial bases in the S2 domain.

As shown in Figure 19, the accuracy of the PPOD-ROM across all testing samples was
similar to that of the example (0.0105, 0.0314). In addition, the accuracy of the ROMs for
turbine flows was lower compared to that of flows past a cylinder, which may have been
caused by the more complex flow structure and fewer training samples in the second case.
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(a) Results of the CFD model

(b) The predictions of the PPOD-ROM

(c) The absolute error of the predictions

Figure 17. The unsteady static pressure fields obtained by the CFD model and the PPOD-ROM,
and the absolute error between the CFD and ROM results at time instances of 0.25 T, 0.5 T, 0.75 T,
and T (α1 = 0.0105, α2 = 0.0341).

Figure 18. Comparison of the pressure solutions obtained by the CFD model and the PPOD-ROM at
the three monitoring points.



Energies 2024, 17, 146 20 of 22

Figure 19. rp of the PPOD-ROM for unsteady pressure for the testing samples.

4.3. The Efficiency of the PPOD-ROM

All the computations were carried out on a computer with 6 cores (AMD Ryzen 5
1600, 3.2 GHz) and 16 GB of memory. Table 4 lists the computational costs required for the
predictions at key steps in the two examples. The time cost of ROM generation includes the
base extraction during the offline stage and the regression model training online. Due to
the use of the EVD method introduced earlier, the efficiency of solving the spatial basis is
independent of the spatial resolution but related to the product of temporal efficiency and
the number of parameter samples. The efficiency of solving the temporal basis is related to
the number of parameter samples. Therefore, the PPOD method is more advantageous for
cases involving a large number of spatial sampling points. In addition, the time-consuming
extraction of reduced bases is only carried out once, and only a highly efficient online
prediction is required for the flow field with new parameters. For the two validation cases
used in this paper, the times required to solve the new case using CFD were 640 s and
2045 s, respectively. In contrast, the prediction time for the PPOD-ROM was less than
0.1 s. This demonstrates that the efficiency of recomputing the transient field under a new
parameter set using the PPOD-ROM has been improved by at least four to five orders
of magnitude.

Table 4. The computational costs (CPU time in seconds) required by the CFD and the PPOD-ROM.

Method Extraction of Bases GPR Training Prediction/Solution

PPOD-ROM for case 1 42.71 39.76 0.02
CFD model for case 1 0 0 640.72
PPOD-ROM for case 2 13.24 18.12s 0.06
CFD model for case 2 0 0 2045.16

5. Conclusions

This paper presents a data-driven reduced-order modeling approach for parametrized
time-dependent problems. A database of high-fidelity solutions is prepared, and the
decomposition of the dynamical response is achieved using the PPOD method. The PPOD
method accomplishes two consecutive dimensionality reductions of high-fidelity data in
both space and time, ultimately decoupling the parameters of interest. This enhances not
only the stability of the GPR model at the algebraic level but also significantly improves
the efficiency of dimensionality reduction for complex large-scale dynamic problems.
The EVD method is used instead of SVD to extract the POD bases, which improves the
solving efficiency. The PPOD-ROM method is tested through cases involving flows past a
cylinder and turbine flows, highlighting the accuracy and efficiency of the present work in
parametrized time-dependent problems.
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