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Abstract: Synthetic Aperture Radar (SAR) is an active microwave sensor that has attracted widespread
attention due to its ability to observe the ground around the clock. Research on multi-scale and
multi-category target detection methods holds great significance in the fields of maritime resource
management and wartime reconnaissance. However, complex scenes often influence SAR object
detection, and the diversity of target scales also brings challenges to research. This paper proposes
a multi-category SAR image object detection model, CCDS-YOLO, based on YOLOv5s, to address
these issues. Embedding the Convolutional Block Attention Module (CBAM) in the feature extraction
part of the backbone network enables the model’s ability to extract and fuse spatial information and
channel information. The 1 × 1 convolution in the feature pyramid network and the first layer convo-
lution of the detection head are replaced with the expanded convolution, Coordinate Conventional
(CoordConv), forming a CRD-FPN module. This module more accurately perceives the spatial details
of the feature map, enhancing the model’s ability to handle regression tasks compared to traditional
convolution. In the detector segment, a decoupled head is utilized for feature extraction, offering
optimal and effective feature information for the classification and regression branches separately.
The traditional Non-Maximum Suppression (NMS) is substituted with the Soft Non-Maximum Sup-
pression (Soft-NMS), successfully reducing the model’s duplicate detection rate for compact objects.
Based on the experimental findings, the approach presented in this paper demonstrates excellent
results in multi-category target recognition for SAR images. Empirical comparisons are conducted on
the filtered MSAR dataset. Compared with YOLOv5s, the performance of CCDS-YOLO has been
significantly improved. The mAP@0.5 value increases by 3.3% to 92.3%, the precision increases by
3.4%, and the mAP@0.5:0.95 increases by 6.7%. Furthermore, in comparison with other mainstream
detection models, CCDS-YOLO stands out in overall performance and anti-interference ability.

Keywords: target recognition; SAR; YOLOv5; multi-category; deep learning

1. Introduction

Known for its ability to observe with high resolution in any weather conditions and
continuously, SAR is extensively applied in various domains, including earth observa-
tion, object detection, and classification [1–3]. Because of these characteristics, SAR is
suitable for the military, disaster monitoring, and marine resource exploration, among
other fields. With the rapid update of tools, information, and techniques, many SAR images
have been acquired. SAR image object detection aims to realize automatic positioning
and the recognition of specific targets. It provides a wide range of practical application
prospects for various fields. Precisely obtaining the geographical coordinates of designated
military objectives is significant in optimizing coastal defense early warning capabilities
and facilitating strategic deployment in military scenarios. On the civilian side, detecting
smuggling and illegal fishing vessels contributes to monitoring and managing maritime
transportation [4,5]. In some special cases, detection goes beyond common ships or planes.
It can involve the simultaneous detection of various strategic targets like ships, planes,
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bridges, and oilcans in an area; site searching; real-time monitoring; and early warning.
The SAR application scenarios are shown in Figure 1.
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With the increase in SAR image data, SAR image object detection is still facing many
difficulties. First of all, the gray value of neighboring pixel points will have some random
changes by correlation. This stochastic change operates around a particular average,
producing spots of image noise. The generation of speckle noise [6] is due to defects caused
by the coherence principle of SAR imaging, so it needs manual resolution. Secondly, there
are often significant differences in the sizes of targets in SAR images, especially in some
scenes, posing challenges to current object detection techniques.

The Constant False Alarm Rate (CFAR) [7] is a technique based on measuring contrast
while minimizing the occurrence of false alarms. A key benefit of the CFAR algorithm is
its ability to maintain a constant false alarm rate under varying background conditions.
The CFAR algorithm is robust and can achieve reliable object detection in tough marine
environments. There are many ways to implement the CFAR algorithm, such as Cell
Average CFAR (CA-CFAR), Sequence Average CFAR (SA-CFAR), and Training Cell Average
CFAR (TCA-CFAR). The appropriate implementation strategy can be chosen according
to specific application requirements. However, when dealing with complex backgrounds
with multi-scale and multi-directional structures, the CFAR algorithm is susceptible to
the influence of noise speckles. It might struggle to adapt to these changes effectively,
which could result in a decrease in detection performance and may not meet the needs
of current SAR target recognition. Traditional detection methods, which rely on prior
information, can be easily affected by complex environments or background noise and
have low calculation speeds.
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The complex texture features of SAR images and the similarity between targets bring
great challenges to object detection and recognition [8]. Recently, Convolutional Neural
Networks (CNN) have been applied to computer vision, such as image detection [9],
semantic classification, and other tasks [10]. However, a simple CNN cannot meet the
detection tasks of SAR images. The size and scale of objects in SAR images vary widely,
which may make it difficult for a simple CNN model to adjust to different scales and
lead to the degradation of object detection performance. And SAR images are usually
affected by noise and other disturbances, which may interfere with the visualization and
analysis of targets. As CNNs can be sensitive to noise and interference, these factors
can affect object detection accuracy. Therefore, they have great potential to apply deep
learning methods to SAR image object detection and recognition. Currently, convolutional-
neural-network-based algorithms mainly used for SAR image detection include a two-stage
detection modus delegated by Region-CNN (R-CNN), Fast R-CNN, Faster R-CNN [11],
and DETR [12]. The basic process of these two-stage algorithms includes candidate box
generation, classification, and the refinement of candidate boxes. R-CNN first brings many
candidate regions and then inputs these regions into the CNN for feature extraction. The
extracted features are utilized by a Support Vector Machine (SVM) to perform classification
while bounding box regression adjusts the predicted boxes. In addition, Fast R-CNN unifies
the classification and bounding box regression tasks into one network to achieve end-to-end
training. However, the two-stage algorithm also brings a lot of computational overhead
while obtaining high precision. In comparison, the single-stage algorithm maintains a
faster speed. SSD [13], FCOS [14], and the YOLO [15] series of single-stage algorithms
directly predict bounding box coordinates and class labels rather than using a two-step
process or employing an additional stage, where object location and class information
need to be regressed. YOLO is the mainstream single-stage object detection algorithm
at present. YOLO is simple and efficient and can perform object detection faster, with
real-time performance [16]. Each generation of the YOLO algorithm has its outstanding
advantages. Overall, the YOLO series algorithm is more suitable for processing SAR image
detection tasks due to YOLO’s high real-time performance, simple algorithm design, and
lightweight model [17].

Based on these studies, this paper further improves the YOLOv5 model to meet
the needs of multi-category SAR image target recognition tasks. As the fields of deep
learning and object detection rapidly progress, the technology to tackle object detection
and recognition problems in common scenarios is nearing perfection. However, since SAR
images are very different from general natural scene pictures, several issues persist, such
as the model being sensitive to the speckle noise specific to SAR images and insufficient
adaptability to target deformation and occlusion. For multi-category SAR image datasets,
the oilcans are usually closely clustered together, which is likely to cause a large problem
of missed detection. Additionally, the large-scale gap between oilcans and bridges within
the target category underlines the importance of multi-scale target recognition capabilities.
To advance the detection technology of SAR images and make the model achieve better
results in detecting multi-category objects, we must solve the above problems.

This paper addresses the task of multi-category SAR image object detection by re-
fining the lightweight YOLOv5s algorithm and studying feature extraction methods to
further enhance the detection performance. Compared with other related techniques, exper-
imental results show that the proposed model excels in multi-category SAR image object
recognition tasks.

To sum up, the main contributions of this paper are the following four points:

(1) This paper proposes a new multi-category SAR image detection model named CCDS-
YOLO. The model exhibits robust detection capabilities for multi-scale and multi-
category objects in complex backgrounds. Aiming at the compact aggregation of
some targets in SAR images and the large gap between the scales of different types
of targets, this paper embeds the CBAM in the backbone network. The attention
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mechanism layer can better integrate each layer’s feature information and improve
the model’s detection effect on targets of different scales.

(2) To tackle the challenges of significant target scale variance in SAR images and environ-
mental disturbances, this paper proposes a CRD-FPN module. The feature extraction
part and part of the ordinary convolution in the detection network are replaced by
CoordConv. On the basis of ordinary convolution, CoordConv adds two coordinate
channels to obtain the spatial information of the graph of features, which improves
the model’s processing ability for regression tasks.

(3) To improve the comprehensive ability of model detection and classification, the
original detection head part is replaced by the decoupled head. This provides two
distinct computation channels for classification and regression tasks, enabling the
model to acquire appropriate feature information. Consequently, the model achieves
superior results in classification and regression tasks.

(4) We replaced NMS in the detection network with the Soft-NMS algorithm. This
mitigates traditional NMS methods’ struggles with overlapping bounding boxes
effectively and reduces the false detection rate and missed detection rate due to
compact goals.

2. Related Work

The traditional SAR image object detection methods are as follows. The feature-based
process mainly extracts some features of the target in the SAR image, such as shape, size,
and texture. These features are manually designed and may be affected by factors like target
scale, rotation, and noise. Tan et al. proposed a new SAR image adaptive aircraft target
detection algorithm. The algorithm first detects the airport candidate area, then obtains the
gradient texture saliency map, and finally uses CFAR to segment the saliency map to obtain
the target. Template matching methods usually require high computational complexity and
are affected by object rotation, scale change, and noise. Regarding SAR object detection,
Hong et al. [18] advocated a method based on anchor box matching. Statistical-learning-
based methods achieve object detection by learning the statistical properties between objects
and backgrounds. These methods usually need a lot of training data and may be affected
by the target class imbalance. Marti et al. [19] proposed a statistical-learning-based SAR
object detection approach.

Deep learning has been widely employed in SAR image object detection in recent
years. Among the two-stage object detection algorithms in deep learning are R-CNN,
Fast R-CNN, and Faster R-CNN. Wang et al. [20] introduced a ship detection method
suitable for SAR images. Traditional approaches are limited by factors such as weather,
and their robustness needs improvement. In this study, a deep learning model, RetinaNet,
is employed. It utilizes a Feature Pyramid Network (FPN) to extract multi-scale features
and addresses class imbalance using focal loss, thereby enhancing the training weight of
hard examples. Liao et al. [21] applied R-CNN to object detection in SAR images. Fast
R-CNN is an enhanced version of R-CNN that incorporates improvements. By introducing
the pooling layer, the features of multiple candidate regions are mapped to a feature graph
with a fixed size, thus reducing the computational complexity. Li et al. [22] proposed an
SAR image object detection method based on Faster R-CNN to balance detection accuracy
and speed. Its innovative lightweight backbone network integrates feature amplification
using relay and multi-scale feature skip connections, facilitating the recognition of objects at
various scales and thereby improving accuracy. The use of RoIAlign instead of traditional
Region of Interest pooling reduces quantization errors in localization.

Some scholars have attempted to apply the YOLO series models to SAR image object
detection. For example, Chen et al. [23] developed a ship detection method for SAR
images using YOLOv3. Acknowledging the need for both accuracy and speed, they
leverage the efficient YOLOv3 architecture for its rapid detection. To improve small
ship detection, a lightweight Dilated Attention Module (DAM) is introduced, aiding in
discriminative feature extraction. DAM suppresses irrelevant regions and highlights ship-
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related features. However, this approach’s focus on detecting small-sized ships might
impact its suitability for multi-scale object detection scenarios. Lin et al. [24] discussed
the significance of ship target detection for preserving marine interests and introduced
an SAR image ship detection algorithm based on an enhanced YOLOv4 model. This
study employed K-means [25] clustering to adjust the anchor boxes of YOLOv4 in order
to address the reduction in detection accuracy caused by mismatches between anchor
boxes and ship target sizes. The algorithm’s effectiveness is validated on SSDD datasets,
exhibiting a 2.87% detection accuracy improvement over the original YOLOv4 while
maintaining detection efficiency. A limitation of this algorithm lies in its dependency
on k-means clustering, which might not optimally handle complex ship shapes in some
cases. Luo et al. [26] introduced an Efficient Bidirectional Path Aggregation Attention
Network (EBPA2N) for detecting aircraft in SAR images. To address challenges related
to shattered features, size heterogeneity, and complex backgrounds, YOLOv5s serves
as the base network, complemented by the integration of the Involution Enhanced Path
Aggregation (IEPA) and Effective Residual Shuffle Attention (ERSA) modules. IEPA extracts
semantic and spatial information from multi-scale scattering features, while ERSA enhances
features to mitigate background interference and false alarms. Luo et al. [27] proposed an
explainable AI (XAI) framework to enhance the interpretability of Deep Neural Networks
(DNNs) for aircraft detection in SAR images. The framework includes Hybrid Global
Attribution Mapping (HGAM) for network selection, Path Aggregation Network (PANet)
for feature fusion, and Class-specific Confidence Scores Mapping (CCSM) for visualization.
It improves DNN comprehension but may have implementation complexity. Overall, it
is a valuable contribution to enhancing transparency in SAR image analytics. However,
a potential drawback of this framework could be its complexity in implementation as it
combines multiple techniques. Additionally, the scalability of this framework to other
target detection tasks beyond aircraft detection might require further investigation.

3. Models
3.1. YOLOv5s

Considering the specific characteristics of SAR object detection, we chose YOLOv5
to construct the feature extraction network to ensure appropriate parameters and meet
real-time detection requirements. The YOLO series is currently the most popular single-
stage object detection model. YOLOv5 [28] includes four versions: YOLOv5l, YOLOv5m,
YOLOv5x, and YOLOv5s. YOLOv5s not only has high precision and relatively fast speed
but also has fewer parameters. YOLOv5s can be applied to real-time detection tasks for
space-borne satellites with limited hardware resources. It is suitable for target detection in
SAR images.

YOLOv5s usually comprises four components: the input, backbone network, network
layer, and output prediction. On the input side, YOLOv5s uses a data augmentation
operation to process the input image; randomly selects four training images for random
cropping, zooming and other functions; and then generates a more diverse set of training
samples. Before YOLOv5s training, the k-means clustering method is used to calculate the
prior bounding box best suited for the current dataset. k-means makes YOLOv5 better
adaptable to object detection tasks of different scales and aspect ratios.

The backbone network of YOLOv5 includes focus processing [29], rearranging the
channels of the input feature map into four parts to obtain a new feature map. Focus
processing aims to extract feature information with different scales and receptive fields to
enhance object detection performance. Following this, Convolution, Batch Normalization,
and Leaky ReLU (CBL) [30] processing is conducted. First, use convolution to extract
features from the feature map in the previous step, and use Batch Normalization (BN) to
normalize the input data of each batch to improve the model’s adaptability to changes in the
input distribution. Finally, the Leaky ReLU activation function processes the resultant data.

YOLOv5s adopts Cross Stage Partial (CSP) [31], which has fewer parameters and
calculations while maintaining high performance. The Spatial Pyramid Pooling Feature
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(SPPF) [32] in YOLOv5s pools the input feature of different sizes to generate fixed-length
feature vectors. This approach can handle objects of different sizes and extract contextual
information on distinct regions of the input image, thereby improving the function and
robustness of the model.

The neck network structure mainly uses the Feature Pyramid Network (FPN) [33] and
the Pyramid Attention Network (PAN) [34]. FPN adopts the top-down paths and lateral
connections and fuses the underlying high-resolution features with the top-level semantic
information. By aggregating features from different levels of the FPN, the PAN enables
features at various levels to influence and interact with each other. FPN and PAN structures
strengthen the understanding of context information and improve the network feature
fusion ability.

The prediction model is equipped with three feature maps of different scales and
filters the prediction frame using NMS [35]. It also employs Generalized Intersection Over
Union (GIOU) [36] as the loss function, considering the location and size variations of the
target box. This approach more accurately measures the overlap degree of the target box.
GIOU helps the model improve the object localization and boundary regression capabilities
of object boxes. The original model of YOLOv5s is shown in Figure 2. Since this paper does
not make enhancements to the SPPF pooling layer, the SPPF module is not prominently
depicted in the figure.
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3.2. CCDS-YOLO

This paper proposes a detection model, CCDS-YOLO, for multi-category targets in
complex sets. The model not only achieves efficient detection results but also maintains
a lightweight structure. Compared to the single-object SAR image object detection stud-
ies mentioned in the referenced literature, CCDS-YOLO is designed to detect four target
categories. This approach presents a more challenging problem and carries higher signifi-
cance for practical applications. Firstly, this paper chooses the appropriate anchor using
k-means++ [37] clustering calculation on the dataset. SAR images are preprocessed and
fed into the backbone network of the model. Due to the embedded CBAM, the backbone
network can extract more useful messages, and this feature information will enter the
CRD-FPN module for feature fusion, yielding better spatial and semantic information. The
CRD-FPN module and the decoupled head can provide effective information for the model.
Finally, the results are optimized by using Soft-NMS. Figure 3 illustrates the CCDS-YOLO
model structure.
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3.2.1. CBAM Block

In the down-sampling stage, this paper integrates the CBAM, which significantly
enhances the connection between the channel and the space of the model and increases the
feature extraction ability. The CBAM block [38] is a simple and effective attention block for
feed-forward convolutional neural networks. The CBAM can enhance the network’s per-
ceptual and expressive capabilities, thereby improving its performance and generalization
ability. Additionally, the CBAM can seamlessly integrate into existing CNN architectures,
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introducing minimal additional computational burden and thus achieving enhanced net-
work performance without sacrificing computational efficiency. This module performs
inference on the intermediate feature map to generate two distinct attention maps—one
for channel and another for space. The input feature map is enhanced by multiplying the
input feature map with the generated attention map.

The CBAM is different from Squeeze-and-Excitation Network (SE-Net) or Efficient
Channel Attention Network (ECA-Net). It integrates the spatial attention module fol-
lowing the channel attention module and realizes the dual mechanism of channel and
spatial attention. The choice of SE-Net or ECA-Net is typically contingent on whether the
channel attention’s connection utilizes Multi-Layer Perceptron (MLP) or one-dimensional
convolution. Figure 4 describes the structure of the CBAM.
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The Channel Attention Module (CAM) structure is shown in Figure 5. It performs
global maximum pooling and average pooling on the input feature layer, adds the results
obtained by a MLP, uses the sigmoid activation function to process, and then obtains the
weight (ranging from 0 to 1) for each channel within the input feature layer. Finally, the
consequence is the weighted channel-by-channel multiplication of the input feature layer.
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Figure 5. CAM structure.

To minimize parameter overhead, the CBAM sets the dimension of the closet activation
to r × C/r × 1 × 1, where r represents the reduction ratio. After each descriptor, we apply
the shared network and output a feature vector by element-wise summation. In simple
terms, channel attention is calculated using the following formula:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (1)

where σ represents the sigmoid function, W0 is a matrix with dimension C/r × C, and
W1 is a matrix with size C × C/r. It should be noted that the weights W0 and W1 of MLP
are shared, and the ReLU function acts after W0. Figure 6 illustrates the Spatial Attention
Module (SAM) structure.
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As depicted, the channel submodule encompasses the outputs of max-pooling and
average-pooling from the shared network. The spatial submodule leverages these two
comparable outcomes, effectively diminishing redundancy by pooling them into the convo-
lutional layers. The spatial attention mechanism formula is as follows:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) (2)

where σ represents the sigmoid function, and f 7×7 represents the convolution operation
with a filter size of 7 × 7.

Unlike the channel attention module, the spatial attention module focuses on the
pivotal information parts of the input image, which is a supplement to the channel atten-
tion module.

3.2.2. CRD-FPN

To better solve the classification task in the detection task, this paper combines Co-
ordConv [39] into the model network to construct the CRD-FPN module. CoordConv is a
convolutional neural network technique for processing image data, which has some ad-
vantages in processing SAR image classification recognition tasks. Compared with optical
images, given the low resolution of SAR images and their susceptibility to noise, traditional
convolutional networks can encounter challenges. These challenges include geometric
distortion, intense speckle noise, alterations in scattering centers, etc.

CoordConv not only maintains a reduced parameter count and exceptional computa-
tional efficiency but also provides the flexibility for the network model to either retain or
discard the transformation invariance, which is meaningful for our research. Coordconv
can be run as an extension of simple convolutional conv and improves the performance of
convolutional neural networks by adding position coordinate information to feature maps.
CoordConv adds the coordinate information of the feature map to the input as an extra
channel, so the network can use this position information to understand better and process
the image. This paper proposes to replace the 1 × 1 convolution in the feature pyramid
network and the first layer convolution of the detection head part with the expanded
convolution of CoordConv to construct the CRD-FPN module. The CRD-FPN module
introduces positional information within the convolutional layers, enabling the network
to more accurately comprehend changes in object position and size. CRD-FPN assists the
network in effectively localizing and recognizing objects of different scales, which proves
particularly beneficial for addressing scenarios with various scale objects, such as small and
large targets. The structure of CoordConv is shown in Figure 7. It describes the operation
of two coordinates i and j. Fundamentally speaking, the i-coordinate channel is an h × w
matrix based on a rank of −1. The value of its first row is 0, the second row has a value of 1,
and the third row has a value of 2. During the calculation, the values of i and j are linearly
scaled so that their results fall in [−1, 1]. For two-dimensional convolution, the two (i, j)
coordinates can specify an input pixel. Under further conditions, an extra channel can be
integrated into the model to achieve specific results. The r coordinate of CoordConv uses
the third channel, and the specific calculation formula is as follows:

r =
√
(i − h/2)2 + (j − w/2)2 (3)

In the SAR image classification and recognition task, CoordConv has the following advantages:
Dealing with geometric distortion. Due to factors like platform movement or terrain

variations, SAR images might exhibit object shape distortions. By introducing location
information, CoordConv enables the network to perceive better and capture the geometric
shape of objects, thereby improving the accuracy of classification and recognition.
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Figure 7. CoordConv structure.

Counter speckle noise. Speckle noise often exists in SAR images due to the superposi-
tion of multiple radar echoes. The location information of CoordConv can provide more
contextual information, which enables the network to suppress noise better during the
learning process, thus improving the quality of classification results.

3.2.3. Decoupled Head

The research in this paper includes both regression tasks and classification tasks. At
present, the feature information for the network’s regression and classification is derived
from a singular head, leading to identical feature details. After simple calculation, it is
applied to handling objectness, classification, and regression tasks, but it turns out that
information suitable for classification tasks is not necessarily ideal for regression tasks.
The concept of a decoupled detection head involves separating the prediction of object
categories and object positions, carrying out these predictions on distinct channels. This
approach enhances the model’s prediction accuracy in multi-category scenarios and avoids
interference between different categories.

The features of classification tasks and regression tasks satisfy different output forms.
This paper proposes using the decoupled head [40] for feature extraction to obtain the
optimal solution for classification and regression. For each layer of FPN features, an initial
1 × 1 conv layer reduces the feature channels to 256. Subsequently, two parallel branches
are introduced, and each branch has two 3 × 3 conv layers for classification and regression
tasks. Figure 8 illustrates the structure of a decoupled head.

Distinct network structures are designed for the classification task branch and the
regression task branch for calculation so that the classification branch focuses on more local
information and performs fine-grained recognition. The regression branch focuses on global
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communication and strengthens spatial connections, thus enhancing the performance of
both tasks.
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3.2.4. Soft-NMS

Soft-NMS [41] is an algorithm for NMS in object detection, which is designed to
improve the traditional hard NMS approach to handle large overlapping target boxes better.

In object detection, the model usually uses a bounding box to represent the detected
object location. When an object detector detects multiple overlapping bounding boxes in
an image, it usually needs to use the NMS algorithm to select the most accurate object box
to avoid repeatedly catching the same object. Traditional hard NMS methods select the
object box with the high confidence score according to a predefined threshold and suppress
other bounding boxes that highly overlap with this bounding box. However, this approach
may cause some problems, especially when dealing with object boxes with large overlaps,
leading to large errors. The working processes of NMS and Soft-NMS are shown in Figure 9.
This paper replaces the traditional NMS algorithm with Soft-NMS. Soft-NMS retains the
target box that overlaps the most with the maximum scoring box and then calculates and
judges whether to keep the overlapping box using Formula (5).

The pruning algorithm in the NMS algorithm step is shown in Formula (4):

Si =

{
Si , iou(M,bi) < Nt

0, iou(M,bi) ≥ Nt
(4)

M represents the detection frame with the highest confidence level at present, Nt is
the manually set threshold, and bi refers to the detection frame to be processed. Si is the
confidence score during processing.
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Soft-NMS improves the traditional hard NMS method by introducing a soft suppres-
sion mechanism. The basic idea is that, instead of directly removing the overlapping
frame when calculating the overlapping area, the method decays its confidence. This
approach preserves some overlapping object boxes, adjusting their importance based on
their confidence levels. The Soft-NMS rescoring function is shown in Formula (5):

Si =

{
Si , iou(M,bi) < Nt

Si (1− iou(M, bi)), iou(M,bi) ≥ Nt
(5)

The above function uses the score of the detection box above the threshold value Nt to
attenuate the linear function of M overlap. Considering that the penalty function should be
continuous, update the pruning step using the Gaussian function as the following formula:

Si = Sie−
iou(M,bi)

2

σ , ∀bi /∈ D (6)

With Soft-NMS, the target frame with higher confidence can still retain a certain
weight when calculating the overlap. This reduces the competition between overlapping
target frames, thereby improving object detection accuracy. Soft-NMS has shown good
performance and robustness in some object detection tasks.

Complex-shaped objects might exhibit significant overlap along their boundaries,
rendering traditional NMS less effective. Soft-NMS adjusts confidence scores by considering
distances, making it more suitable for handling these complex shapes.
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4. Experiments
4.1. Experiment Settings

To ensure the rigor and credibility of the research, all the experiments are carried out
under the same experimental environment. Table 1 shows the detailed configuration of the
environment in this paper.

Table 1. Experimental environment.

Environment Argument

Operating system Ubuntu 18.04
CPU AMD EPYC 7601
RAM 50 G
GPU RTX 3070-8 G

PyTorch 1.11.0
Cuda 11.3

This study trains and tests all models on the same dataset, ensuring that each model is
trained to convergence and obtains the most valuable evaluation metrics. All models utilize
the same training dataset and undergo standard data augmentation. We set the learning
rate to 0.001 and utilized the Stochastic Gradient Descent (SGD) optimizer along with the
cosine annealing scheduler. Table 2 shows the parameter configuration used in this paper.

Table 2. Parameter configuration.

Parameter Configuration Value

epoch 1000
lr 0.001

image 256 × 256
batch size 128
optimizer SGD

4.2. Experiment Dataset

In this paper, the performance of the models is verified by the filtered MSAR dataset.
The polarization modes of the MSAR [42] dataset include horizontal sending and horizontal
receiving (HH), horizontal sending and vertical receiving (HV), vertical sending and
horizontal receiving (VH), and vertical sending and vertical receiving (VV). The dataset
scenarios include airports, ports, near the shore, islets, open seas, urban areas, etc., and
the objects include four types of targets: planes, oilcans, bridges, and ships. First of all,
the image resolution in the original MSAR dataset is inconsistent, which will affect the
experiment. Given that the images in this dataset mainly possess a resolution of 256 pixels,
we filter out images with varying resolutions. This approach standardizes the image format
across the dataset. Secondly, the dataset comprises 39,858 samples of ship targets and only
1851 samples of bridge targets, leading to a significant imbalance in the sample quantities
across different categories of targets, which could potentially affect the detection outcomes.
This study aims to minimize the disparity in sample quantities among different categories
of objects by reducing the number of samples for certain targets. This paper conducts a
filtering procedure on the dataset, mitigating the impact of disparate sample quantities
and non-uniform image resolutions on the model evaluation. The filtered dataset is better
suited for research in the field of object detection. While increasing the number of images
in the training set may enhance the model’s performance, quantity alone is not the sole
critical factor. Equally significant are the dataset’s quality and diversity. Furthermore, we
maintain consistent experimental conditions for all tests, including the use of the same
dataset. Finally, the dataset includes a total of 4818 pictures of 256 × 256, in which the
gap in the number of planes, bridges, oilcans, and ships is reduced, and the distribution
of the number of different types of targets tends to be balanced. Table 3 is the detailed
information before and after the dataset modification.
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The dataset images in this research paper are divided into three subsets: the training
set, validation set, and test set, with a distribution ratio of 6:2:2. The model uses mosaic
data augmentation for data preprocessing during training.

Table 3. Comparison of MSAR original dataset and filtered dataset parameters.

Datasets MSAR MSAR Change

Total number 28,449 4818
Plane number 6368 5699
Bridge number 1851 1190
Oilcan number 12,319 8108
Ship number 39,858 3773

This paper uses Precision (P), Recall (R), Average Precision (AP), mean Average
Precision (mAP), parameters, GFLOPS (Giga Floating-point Operations Per Second), and
training time as comprehensive evaluation indicators to represent the effect of SAR image
object detection. These indicators are defined as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

mAP =
1
N

N

∑
i=1

AP(i) (10)

4.3. Experiment Results
4.3.1. Ablation Experiments

This paper selected YOLOv5 as the benchmark and used the filtered MSAR dataset.
The ablation experiment was carried out under the same environment and parameter
settings to assess the impact of various improvements on the CCDS-YOLO model. The
results of the ablation experiment are shown in Table 4.

Table 4. Ablation experiments.

NO. Model P R mAP@.5 mAP@0.5:0.9

1 YOLOV5s 87.1 86.0 89.0 61.3
2 YOLOV5s + CBAM 89.0 87.2 89.5 61.9
3 YOLOV5s + Decoupled head 90.2 87.6 90.4 65.8
4 YOLOV5s + CRD-FPN 90.4 87.4 90.6 62.3
5 YOLOV5s + Soft-NMS 87.1 86.0 90.8 61.3
6 YOLOV5s + CRD-FPN + Soft-NMS 91.0 86.8 91.7 66.1

7 YOLOV5s + CRD-FPN + Decoupled
head + Soft-NMS 89.8 87.2 91.9 66.6

8 YOLOV5s + CBAM+ CRD-FPN +
Decoupled head + Soft-NMS 90.5 88.0 92.3 68.0

Experiment 1 is the experimental result of the basic model of YOLOV5s, which is used
as a comparison benchmark for the improved model later. YOLOv5s’s detection mAP@0.5
value is 89.0%, the mAP@0.5:0.95 value is 61.3%, the P is 87.1%, and the R is 86.0%.

This paper replaces the detection head part’s NMS with the Soft-NMS. Although
other indicators have not improved, mAP@0.5 increases by 1.8%. Soft-NMS avoids the
phenomenon that most coincidence boxes are deleted directly and reduces the misdetection



Electronics 2023, 12, 3497 15 of 22

of compact and dense targets. The mAP@0.5 value is greatly improved. From experiment 6,
when using the Soft-NMS and CRD-FPN modules at the same time, the experimental effect
is the most significant. Various indicators have been greatly improved because CoordConv
can better extract spatial location information. Under the premise of ensuring normal
convolution, CoordConv adds two additional channels to transmit the i and j coordinates,
which reduces the influence of noise and greatly improves the model’s performance.

In Experiment 7, based on the previous experiment, the original detection head is
replaced with the decoupled head, which provides the most suitable feature information
for the two different detection tasks of classification and regression. Finally, this paper
adds the CBAM to the feature extraction part of the backbone. The experiment proves that
adding the CBAM enhances the feature extraction ability and reduces the missing detection
caused by unknown feature information extraction. Compared to YOLOv5s, the model
detection mAP@0.5 increases by 3.3%, mAP@0.5:0.95 increases by 6.7%, the P increases
by 3.4%, and the R increases by 2%. These results indicate that the CCDS-YOLO model is
generally superior to YOLOv5 in the ability to identify SAR multi-category targets.

4.3.2. Comparison Experiments

To thoroughly evaluate the CCDS-YOLO’s detection capabilities, this section conducts
a comprehensive performance test of the model. This paper employs nine object detection
models that are currently popular, namely Faster R-CNN, RetinaNet, YOLOv5s, YOLOv5n,
YOLOv5m, YOLOv5l, YOLOX-s, YOLOv7-tiny, and YOLOv7-x. It conducts comparative
experiments with the proposed CCDS-YOLO model on the filtered MSAR dataset and
ensures that the dataset division and experimental environment of each model are the same.
Table 5 shows the experimental results.

Table 5. Experimental results of different models.

Model Backbone Precision Recall mAP@0.5 Parameters GFLOPS Time

RetinaNet ResNet 50.4 83.3 67.6 37 M 198 4.2 h
Faster R-CNN ResNet50 45.6 78.9 76.1 41.2 M 201 9.3 h
YOLOv7-tiny MX + CBL + SPPCSP 80.9 78.7 83.1 6.1 M 13 8.5 h

YOLOX-s CSPDarknet 83.4 80.7 86.3 9 M 26.8 12 h
YOLOv5n CBS + CSP + FPN 87.7 81.8 86.4 1.8 M 4.1 3 h
YOLOv5s CBS + CSP + FPN 87.1 86.0 89.0 7.0 M 15.8 4.3 h
YOLOv5m CBS + CSP + FPN 88.3 85.4 91.0 21 M 47.9 5.8 h
YOLOv5l CBS + CSP + FPN 90.8 86.0 91.4 46 M 107 6.8 h

YOLOv7-x CBS + ELAN + MP + SPPCSPC 89.4 88.2 91.6 71 M 188 31 h
CCDS-YOLO CBS + CSP+ CRD-FPN 90.5 88.0 92.3 16 M 34 4 h

Considering that this paper needs to deal with SAR images and limited satellite carry-
ing resources, and that it cannot occupy too much resource space while ensuring real-time
detection capabilities, this paper selects some models for model comparison experiments.
Among them, more single-stage algorithms are chosen for comparison. The experimental
results are shown in Figure 10. The experimental results prove that CCDS-YOLO achieves
the best detection effect, with a mAP value of 92.3%. Compared to numerous mainstream
object detection models, CCDS-YOLO achieves the highest mAP@0.5, with fewer parame-
ters, making it more suitable for applications in the multi-class SAR target detection domain.
This is because the improved model has a more effective and accurate feature information
extraction ability, enhancing the detection ability of compact, dense, and multi-scale objects.
Compared to the baseline model, YOLOv5s, the mAP@0.5 value of CCDS-YOLO increases
from 89.0% to 92.3%, and the detection effect of CCDS-YOLO is also better than other
comparison models.
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4.3.3. Anti-Interference Experiments

In order to prove the stability of the CCDS-YOLO model, this paper conducts anti-
interference experiments. This paper adds Gaussian noise to the dataset, where sigma is
set to 8, 16, 22, 28, and 34.

Because of its characteristics, SAR images will produce noise effects under the influ-
ence of the environment and climate, and the additional Gaussian noise will bring great
difficulties to the SAR image detection, which will lead to missed detection and false
detection. This paper uses CCDS-YOLO, YOLOv5s, and the single-stage representative
algorithm Faster R-CNN to make effective comparison experiments. The experimental
results are shown in Figure 11. It can be seen that in the case of intense noise interference,
Group (a) represents the ground truth of data without added noise, depicting the actual sit-
uation. Groups (b), (c), and (d), respectively, represent the detection results of CCDS-YOLO,
YOLOv5s, and Faster R-CNN under the condition of added noise. The yellow circle in the
figure represents missed detection, and the red circle represents false detection. In group
(b), it can be observed that the overall detection performance of CCDS-YOLO is nearly
consistent with the ground truth values. In groups (c) and (d), YOLOv5s and Faster R-CNN
both exhibit numerous instances of missed detection and false detection. For example, in
the first row of the result images, both YOLOv5s and Faster R-CNN missed some ship
targets. In the third row of Figure 11, the red circle denotes an erroneous detection by Faster
R-CNN, in which coastal rocks have been incorrectly identified as a ship. The results of the
anti-interference experiments indicate that, in comparison to other models, CCDS-YOLO
exhibits stronger resistance to interference.

This paper used six comparison models to verify the noise data. The results of the
anti-interference experiment are shown in Figure 12, the CCDS-YOLO model is relatively
less affected by noise, and the downward trend is more gradual. The CBAM is embedded in
the model, which can extract more feature information; the CRD-FPN module can enhance
the integration of spatial features to improve the detection model’s capability; and the
decoupled head and Soft-NMS enable the model to output more effective feature maps and
effectively avoid deleting the correct detection frame, improving the stability of the model.
It turns out that CCDS-YOLO is more suitable for processing SAR image detection tasks.
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4.4. Visualization

According to the experimental results, this paper compares the results of the basic
YOLOv5s and the improved model, CCDS-YOLO, in Figure 13. The figure indicates a
3.3% improvement in the overall mAP@0.5 of CCDS-YOLO, along with a significant 13.5%
increase in the detection accuracy, specifically for planes. The plane detection scenes in the
dataset are usually densely distributed, and other targets on land will interfere with the
detection. This paper introduces the Soft-NMS algorithm to avoid the phenomenon that
overlapping frames are easily missed effectively and make it easier for the model to detect
dense, small objects.
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In order to observe the advantages of the improved model more intuitively, this paper
uses the real label frame picture as the standard and compares the test results of YOLOv5s,
Faster R-CNN, RetinaNet, YOLOv7-tiny, and the enhanced CCDS-YOLO. Figure 14 presents
the SAR image detection effect of different models. In Figure 14, the yellow circle represents
missed detection, and the red circle represents false detection. Group (a) represents the
ground truth of the data. From group (b) to group (e), this paper shows the detection
effects of YOLOv7-tiny, Faster R-CNN, RetinaNet, and YOLOv5s. Group (f) shows the
detection effect of the CCDS-YOLO model. Observing the images, it becomes evident that
CCDS-YOLO accurately identifies various types of targets, showcasing excellent detection
performance. For instance, in the comparison of result images in the first row, it is evident
that the detection results of other models in groups (b) to (e) are not satisfactory. These
models are unable to detect the actual plane targets and misidentify the image background
as a plane. However, in group (f), CCDS-YOLO accurately detects the correct plane targets
without any occurrences of false positives. In conclusion, compared with other mainstream
models, CCDS-YOLO has better performance in multi-category target detection.

The comparison figure reveals that YOLOv5s, along with other models, exhibits a poor
ability to collect feature information. This often leads to failure in identifying small targets,
such as planes, ships, and oilcans, or results in misidentifying them as other types. Most
notably, complex scenes such as coasts and mountains can affect the model’s detection
capability, causing it to detect background objects as targets that need to be identified.
The CCDS-YOLO model effectively avoids the above problems. The CBAM improves the
accuracy of the model to extract target feature information, enhances the anti-interference
ability of the model, and reduces the false detection rate of the model. The CRD-FPN
module and the improved detection network can enable the model to obtain more effective
spatial position information, help the model to locate various small targets, and thus more
accurately detect targets of multiple scales.
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tiny; (c) Faster R-CNN; (d) RetinaNet; (e) YOLOv5s; (f) CCDS-YOLO. The yellow circle in the figure
represents missed detection, and the red circle represents false detection.

This paper chooses the GradCam method to visualize the output of the model. The
heat map, shown in Figure 15, helps to compare the visualization results of CCDS-YOLO
with those of the basic model, YOLOv5s, providing a more intuitive view of the differences
in feature processing between CCDS-YOLO and the basic model. In the result images, the
blue area represents regions of low attention, the yellow area indicates regions of moderate
attention, and the red area signifies the highest attention. Group (a) represents the ground
truth of the data. Group (b) shows the feature extraction heat map of YOLOv5s. YOLOv5s
focuses more attention on background objects while ignoring the target to be detected. In
group (c), the CCDS-YOLO model can focus more attention on the target object and less
on the background. For instance, in the result images of the first row, YOLOv5s allocates
greater attention to the coastal background, thereby neglecting to emphasize the oilcans,
which is the intended target. This indicates that YOLOv5s may incorrectly identify the
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background, such as the coastline or rocks, as detection targets, leading to occurrences of
false positives. The CCDS-YOLO model proposed in this paper can focus more on the
oilcans while minimizing emphasis on the background. In summary, the CCDS-YOLO
model effectively extracts features from the recognition target and mitigates the influence
of complex backgrounds on detection.
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5. Conclusions

The multi-category SAR image dataset in complex scenes contains multiple categories
of targets, creating challenges due to the large-scale span of object detection and the compact
arrangement of targets in the pictures. This paper proposes a CCDS-YOLO model to solve
the above problems. The model is embedded with CBAM, which enhances feature capture
and improves multi-scale object detection. CCDS-YOLO introduces a CRD-FPN module
based on CoordConv to obtain more spatial location information while maintaining a
lightweight design. CCDS-YOLO also uses the decoupled head to replace the original
detection head, which provides more effective feature information for both classification
tasks and regression tasks, improving the overall performance of the model. After the
model generates feature information, the Soft-NMS method is employed to address existing
problems in traditional NMS. The CCDS-YOLO model has achieved a notable level of
detection accuracy while also retaining its lightweight advantages. In comparison to the
baseline model, YOLOv5s, the mAP@0.5 value of CCDS-YOLO on the filtered MSAR
dataset increases by 3.3%, and the detection mAP@0.5:0.95 value increases by 6.7%, which
ensures the lightweight advantages and improves the detection capability of the model.

The experiments prove that, in complex scenes, the CCDS-YOLO model proposed
in this paper can effectively detect strategically important targets, such as planes, ships,
oilcans, and bridges, in SAR images. The lightweight CCDS-YOLO model also makes it
easier to deploy on satellites and has better applicability.
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