Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,528)

Search Parameters:
Keywords = decision-making time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2650 KB  
Article
A Data-Driven Approach to Lean and Digital Process Re-Modeling for Sustainable Textile Production: A Case Study
by Florcita Matias, Susana Miranda, Orkun Yildiz, Pedro Chávez and José C. Alvarez
Sustainability 2025, 17(19), 8888; https://doi.org/10.3390/su17198888 - 6 Oct 2025
Abstract
This study presents a data-driven framework that integrates lean management and digital business process modelling to enhance sustainability in textile manufacturing. Conducted in a company producing industrial safety textiles from Peru, this research applies lean tools within a digital BPM structure supported by [...] Read more.
This study presents a data-driven framework that integrates lean management and digital business process modelling to enhance sustainability in textile manufacturing. Conducted in a company producing industrial safety textiles from Peru, this research applies lean tools within a digital BPM structure supported by real-time data tracking. The integrated approach led to increased production efficiency (from 79% to 86%), reduced setup times, and improved operational agility. The digital infrastructure empowered operators and supported informed decision-making. This work contributes to Industrial Engineering, Business Administration, and MIS by offering a holistic model that bridges lean principles with Industry 4.0 technologies. The findings, though context-specific, provide actionable insights for manufacturers aiming for smart and sustainable operations. Future research should validate the proposed framework across diverse industrial contexts and assess its longitudinal impact on lean performance outcomes. Full article
Show Figures

Figure 1

36 pages, 4428 KB  
Article
Federated Reinforcement Learning with Hybrid Optimization for Secure and Reliable Data Transmission in Wireless Sensor Networks (WSNs)
by Seyed Salar Sefati, Seyedeh Tina Sefati, Saqib Nazir, Roya Zareh Farkhady and Serban Georgica Obreja
Mathematics 2025, 13(19), 3196; https://doi.org/10.3390/math13193196 - 6 Oct 2025
Abstract
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive [...] Read more.
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS), a Hybrid Routing framework that integrates multiple advanced techniques. At the node level, tabular Q-learning enables each sensor node to act as a reinforcement learning agent, making next-hop decisions based on discretized state features such as residual energy, distance to sink, congestion, path quality, and security. At the network level, Federated Reinforcement Learning (FRL) allows the sink node to aggregate local Q-tables using adaptive, energy- and performance-weighted contributions, with Polyak-based blending to preserve stability. The binary Hunger Games Search (HGS) metaheuristic initializes Cluster Head (CH) selection and routing, providing a well-structured topology that accelerates convergence. Security is enforced as a constraint through a lightweight trust and anomaly detection module, which fuses reliability estimates with residual-based anomaly detection using Exponentially Weighted Moving Average (EWMA) on Round-Trip Time (RTT) and loss metrics. The framework further incorporates energy-accounted control plane operations with dual-format HELLO and hierarchical ADVERTISE/Service-ADVERTISE (SrvADVERTISE) messages to maintain the routing tables. Evaluation is performed in a hybrid testbed using the Graphical Network Simulator-3 (GNS3) for large-scale simulation and Kali Linux for live adversarial traffic injection, ensuring both reproducibility and realism. The proposed AFRL-HGS framework offers a scalable, secure, and energy-efficient routing solution for next-generation WSN deployments. Full article
20 pages, 1043 KB  
Article
Multi-Criteria Decision-Making Algorithm Selection and Adaptation for Performance Improvement of Two Stroke Marine Diesel Engines
by Hla Gharib and György Kovács
J. Mar. Sci. Eng. 2025, 13(10), 1916; https://doi.org/10.3390/jmse13101916 - 5 Oct 2025
Abstract
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five [...] Read more.
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five primary methodological categories: Scoring-Based, Distance-Based, Pairwise Comparison, Outranking, and Hybrid/Intelligent System-Based methods. The goal is to identify the most suitable algorithm for real-time performance optimization of two stroke marine diesel engines. Using Diesel-RK software, calibrated for marine diesel applications, simulations were performed on a variant of the MAN-B&W-S60-MC-C8-8 engine. A refined five-dimensional parameter space was constructed by systematically varying five key control variables: Start of Injection (SOI), Dwell Time, Fuel Mass Fraction, Fuel Rail Pressure, and Exhaust Valve Timing. A subset of 4454 high-potential alternatives was systematically evaluated according to three equally important criteria: Specific Fuel Consumption (SFC), Nitrogen Oxides (NOx), and Particulate Matter (PM). The MCDM algorithms were evaluated based on ranking consistency and stability. Among them, Proximity Indexed Value (PIV), Integrated Simple Weighted Sum Product (WISP), and TriMetric Fusion (TMF) emerged as the most stable and consistently aligned with the overall consensus. These methods reliably identified optimal engine control strategies with minimal sensitivity to normalization, making them the most suitable candidates for integration into automated marine engine decision-support systems. The results underscore the importance of algorithm selection and provide a rigorous basis for establishing MCDM in emission-constrained maritime environments. This study is the first comprehensive, simulation-based evaluation of fourteen MCDM algorithms applied specifically to the optimization of two stroke marine diesel engines using Diesel-RK software. Full article
(This article belongs to the Special Issue Marine Equipment Intelligent Fault Diagnosis)
Show Figures

Figure 1

10 pages, 649 KB  
Article
Toward Supportive Decision-Making for Ureteral Stent Removal: Development of a Morphology-Based X-Ray Analysis
by So Hyeon Lee, Young Jae Kim, Tae Young Park and Kwang Gi Kim
Bioengineering 2025, 12(10), 1084; https://doi.org/10.3390/bioengineering12101084 - 5 Oct 2025
Abstract
Purpose: Timely removal of ureteral stents is critical to prevent complications such as infection, discomfort and stent encrustation or fragmentation, as well as stone formation associated with neglected stents. Current decisions, however, rely heavily on subjective interpretation of postoperative imaging. This study introduces [...] Read more.
Purpose: Timely removal of ureteral stents is critical to prevent complications such as infection, discomfort and stent encrustation or fragmentation, as well as stone formation associated with neglected stents. Current decisions, however, rely heavily on subjective interpretation of postoperative imaging. This study introduces a semi-automated image-processing algorithm that quantitatively evaluates stent morphology, aiming to support objective and reproducible decision-making in minimally invasive urological care. Methods: Two computational approaches were developed to analyze morphological changes in ureteral stents following surgery. The first method employed a vector-based analysis, using the FitLine function to derive unit vectors for each stent segment and calculating inter-vector angles. The second method applied a slope-based analysis, computing gradients between coordinate points to evaluate global straightening of the ureter over time. Results: The vector-angle method did not demonstrate significant temporal changes (p = 0.844). In contrast, the slope-based method identified significant ureteral straightening (p < 0.05), consistent with clinical observations. These results confirm that slope-based quantitative analysis provides reliable insight into postoperative morphological changes. Conclusions: This study presents an algorithm-based and reproducible imaging analysis method that enhances objectivity in postoperative assessment of ureteral stents. By aligning quantitative image processing with clinical decision support, the approach contributes to precision medicine and addresses the absence of standardized criteria for stent removal. Full article
(This article belongs to the Special Issue Artificial Intelligence-Based Medical Imaging Processing)
19 pages, 2825 KB  
Article
The Impact of Information Layout and Auxiliary Instruction Display Mode on the Usability of Virtual Fitting Interaction Interfaces
by Xingmin Lin and Peiling Pan
Information 2025, 16(10), 862; https://doi.org/10.3390/info16100862 - 4 Oct 2025
Abstract
With the widespread adoption of virtual fitting technology in e-commerce and fashion, optimizing user experience through interface design has become increasingly critical. However, research on the usability of virtual fitting interaction interfaces remains limited. Current interfaces frequently suffer from disorganized information layouts and [...] Read more.
With the widespread adoption of virtual fitting technology in e-commerce and fashion, optimizing user experience through interface design has become increasingly critical. However, research on the usability of virtual fitting interaction interfaces remains limited. Current interfaces frequently suffer from disorganized information layouts and ambiguous auxiliary instructions, reducing efficiency and immersion. This study systematically investigates the effects of information layout (matrix layout, list layout, horizontal layout) and auxiliary instruction display mode (positive polarity: dark content on light background; negative polarity: light content on dark background) on user task performance and subjective experience. A between-subjects experiment was conducted with 60 participants across six conditions. Participants performed a series of tasks, and data were collected on task completion time, subjective ratings, and Technology Acceptance Model responses. Analyses were conducted using two-way ANOVA. The main findings were as follows: (1) The matrix layout demonstrated higher efficiency in multi-target search and complex decision-making tasks, and also received higher subjective ratings for perceived ease of use. (2) The positive polarity display mode demonstrated better performance in single-information search and cognitively intensive tasks, coupled with higher subjective ratings for interface rationality and information clarity. (3) A significant interaction effect was identified between information layout and display mode. The matrix layout combined with positive polarity improved efficiency, whereas the list layout with negative polarity impaired task performance. The horizontal layout was also rated lower for operational fluency. These findings provide practical guidance for designing virtual fitting interfaces that enhance both performance and subjective user experience. Full article
Show Figures

Figure 1

18 pages, 1124 KB  
Article
Viable and Functional: Long-Term −80 °C Cryopreservation Sustains CD34+ Integrity and Transplant Success
by Ibrahim Ethem Pinar, Muge Sahin, Vildan Gursoy, Tuba Ersal, Ferah Budak, Vildan Ozkocaman and Fahir Ozkalemkas
J. Clin. Med. 2025, 14(19), 7032; https://doi.org/10.3390/jcm14197032 - 4 Oct 2025
Abstract
Background: Cryopreservation of hematopoietic stem cells (HSCs) at −80 °C using uncontrolled-rate freezing is frequently employed in resource-constrained settings, yet concerns remain regarding long-term viability and clinical efficacy. Reliable post-thaw assessment is essential to ensure graft quality and engraftment success. Methods: This single-center, [...] Read more.
Background: Cryopreservation of hematopoietic stem cells (HSCs) at −80 °C using uncontrolled-rate freezing is frequently employed in resource-constrained settings, yet concerns remain regarding long-term viability and clinical efficacy. Reliable post-thaw assessment is essential to ensure graft quality and engraftment success. Methods: This single-center, retrospective study evaluated 72 cryopreserved stem cell products from 25 patients stored at −80 °C for a median of 868 days. Viability was assessed using both acridine orange (AO) staining and 7-AAD (7-aminoactinomycin D) flow cytometry at three time points: collection (T0), pre-infusion (T1), and delayed post-thaw evaluation (T2). Associations between viability loss, storage duration, and clinical engraftment outcomes were analyzed. Results: Median post-thaw viability remained high (94.8%) despite a moderate time-dependent decline (~1.02% per 100 days; R2 = 0.283, p < 0.001). Mean viability loss at T2 was 9.2% (AO) and 6.6% (flow cytometry). AO demonstrated greater sensitivity to delayed degradation, with a significant difference between methods (p < 0.001). Engraftment kinetics were preserved in most patients, with neutrophil and platelet recovery primarily influenced by disease type rather than product integrity. Notably, storage duration and donor age were not significantly associated with engraftment outcomes or CD34+ cell dose. Conclusion: Long-term cryopreservation at −80 °C maintains HSC viability sufficient for durable engraftment, despite gradual decline. While transplant outcomes are primarily dictated by disease biology and remission status, AO staining provides enhanced sensitivity for detecting delayed cellular damage. Notably, our viability-loss model offers a practical framework for predicting product quality, potentially supporting graft selection and clinical decision-making in real-world, resource-constrained transplant settings. Full article
(This article belongs to the Special Issue Clinical Trends and Prospects in Laboratory Hematology)
25 pages, 3956 KB  
Review
Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management
by Emmanuel Bicamumakuba, Md Nasim Reza, Hongbin Jin, Samsuzzaman, Kyu-Ho Lee and Sun-Ok Chung
Sensors 2025, 25(19), 6134; https://doi.org/10.3390/s25196134 - 3 Oct 2025
Abstract
Management of smart greenhouses represents a transformative advancement in precision agriculture, enabling sustainable intensification of food production through the integration of multi-sensor networks, intelligent control, and sophisticated data filtering techniques. Unlike conventional greenhouses that rely on manual monitoring, smart greenhouses combine environmental sensors, [...] Read more.
Management of smart greenhouses represents a transformative advancement in precision agriculture, enabling sustainable intensification of food production through the integration of multi-sensor networks, intelligent control, and sophisticated data filtering techniques. Unlike conventional greenhouses that rely on manual monitoring, smart greenhouses combine environmental sensors, Internet of Things (IoT) platforms, and artificial intelligence (AI)-driven decision making to optimize microclimates, improve yields, and enhance resource efficiency. This review systematically investigates three key technological pillars, multi-sensor monitoring, intelligent control, and data filtering techniques, for smart greenhouse environment management. A structured literature screening of 114 peer-reviewed studies was conducted across major databases to ensure methodological rigor. The analysis compared sensor technologies such as temperature, humidity, carbon dioxide (CO2), light, and energy to evaluate the control strategies such as IoT-based automation, fuzzy logic, model predictive control, and reinforcement learning, along with filtering methods like time- and frequency-domain, Kalman, AI-based, and hybrid models. Major findings revealed that multi-sensor integration enhanced precision and resilience but faced changes in calibration and interoperability. Intelligent control improved energy and water efficiency yet required robust datasets and computational resources. Advanced filtering strengthens data integrity but raises concerns of scalability and computational cost. The distinct contribution of this review was an integrated synthesis by linking technical performance to implementation feasibility, highlighting pathways towards affordable, scalable, and resilient smart greenhouse systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 10238 KB  
Article
A Geospatial Framework for Spatiotemporal Crash Hotspot Detection Using Space–Time Cube Modeling and Emerging Pattern Analysis
by Samar Younes and Amr Oloufa
Urban Sci. 2025, 9(10), 411; https://doi.org/10.3390/urbansci9100411 - 3 Oct 2025
Abstract
Traffic crashes remain a critical public safety issue and are among the leading causes of mortality worldwide. Understanding, analyzing, and forecasting crash trends are essential for implementing effective countermeasures and reducing injury severity. In response to the growing number of crashes and their [...] Read more.
Traffic crashes remain a critical public safety issue and are among the leading causes of mortality worldwide. Understanding, analyzing, and forecasting crash trends are essential for implementing effective countermeasures and reducing injury severity. In response to the growing number of crashes and their associated economic and social costs, this study presents a geospatial analytical framework for prioritizing and classifying roadway segments based on crash trends. The framework focuses on a major freeway corridor in the United States, covering a four-year period across 20 counties. This methodology employs spatiotemporal analysis, which integrates both spatial (geographic) and temporal (time-based) dimensions to better understand how crash patterns evolve over time and space. A central component of the analysis is Space–Time Cube (STC) modeling, a three-dimensional GIS-based visualization, and an analytical approach that organizes data into spatial locations (x and y) across a sequence of temporal bins (z-axis) to reveal patterns that may not be evident in a two-dimensional analysis. Additionally, emerging pattern analysis, specifically Emerging Hotspot Analysis (EHA), is used to identify statistically significant trends in crash frequency over time. The results indicate a significant spatial clustering of crashes, with high-risk segments predominantly located in densely populated urban areas with high traffic volumes. Crash hotspots were classified into five distinct categories: persistent, intensifying, new, sporadic, and diminishing, enabling transportation agencies to tailor interventions based on temporal dynamics. The proposed geospatial framework enhances decision making for roadway safety improvements and can be adapted for use in other regional corridors to support infrastructure investment and advance public safety. Full article
(This article belongs to the Special Issue Intelligent GIS Application in Cities)
Show Figures

Figure 1

27 pages, 918 KB  
Review
Optimizing Fetal Surveillance in Fetal Growth Restriction: A Narrative Review of the Role of the Computerized Cardiotocographic Assessment
by Bianca Mihaela Danciu and Anca Angela Simionescu
J. Clin. Med. 2025, 14(19), 7010; https://doi.org/10.3390/jcm14197010 - 3 Oct 2025
Abstract
Background/Objectives: Fetal growth restriction (FGR) is a leading cause of perinatal morbidity and mortality. Accurate surveillance and timely delivery are critical to improving outcomes. This narrative review examines the role of computerized cardiotocography (cCTG) and short-term variation (STV) interpretation in the monitoring of [...] Read more.
Background/Objectives: Fetal growth restriction (FGR) is a leading cause of perinatal morbidity and mortality. Accurate surveillance and timely delivery are critical to improving outcomes. This narrative review examines the role of computerized cardiotocography (cCTG) and short-term variation (STV) interpretation in the monitoring of FGR and its integration with Doppler velocimetry and the biophysical profile (BPP). Methods: A comprehensive literature search of PubMed, Scopus, and Web of Science was performed for studies published up to 2021 using combinations of terms related to FGR, CTG, STV, and Doppler surveillance. Eligible sources included original studies, systematic reviews, and international guidelines. Case reports, intrapartum-only monitoring, and studies involving major anomalies were excluded. Results: Reduced STV consistently correlates with fetal compromise, abnormal Doppler findings, and adverse perinatal outcomes. In early-onset FGR (<32 weeks), ductus venosus abnormalities often coincide with or precede STV reduction; combined use supports optimal timing of delivery. In late-onset FGR (≥32 weeks), STV changes are less pronounced and require integration with cerebroplacental ratio, variability indices, and trend-based interpretation. Longitudinal evaluation offers greater prognostic value than isolated measurements. However, heterogeneity in thresholds, fragmented outcome data, and system-specific definitions limit standardization and comparability across studies. Conclusions: cCTG provides an objective and adjunct to Doppler and BPP in the surveillance of FGR, a tool for obstetrician needs. Its greatest utility lies in serial, integrated assessment, supported by gestational age-specific reference ranges. Future advances should include standardized STV thresholds, large outcome-linked databases, and artificial intelligence-driven tools to refine decision-making and optimize delivery timing. Full article
(This article belongs to the Special Issue Recent Advances in Prenatal Diagnosis and Maternal Fetal Medicine)
Show Figures

Graphical abstract

25 pages, 12200 KB  
Article
BIM-Based Integration and Visualization Management of Construction Risks in Water Pumping Station Projects
by Yanyan Xu, Meiru Li, Guiping Huang, Qi Liu, Xueyan Zou, Xin Xu, Zhengyu Guo, Cong Li and Gang Lai
Buildings 2025, 15(19), 3573; https://doi.org/10.3390/buildings15193573 - 3 Oct 2025
Abstract
Water pumping stations are essential components of national water infrastructure, yet their construction involves complex, high-risk processes, and traditional risk management approaches often show significant limitations in practice. To address this challenge, this study proposes a Building Information Modeling (BIM)-based approach that integrates [...] Read more.
Water pumping stations are essential components of national water infrastructure, yet their construction involves complex, high-risk processes, and traditional risk management approaches often show significant limitations in practice. To address this challenge, this study proposes a Building Information Modeling (BIM)-based approach that integrates structured risk information into an interactive nD BIM environment. We first developed an extended Risk Breakdown Matrix (eRBM), which systematically organizes risk factors, assessment levels, and causal relationships. This is linked to the BIM model through a customized BIM–risk integration framework. Subsequently, the framework is further implemented and quantitatively validated via a Navisworks plug-in. The system incorporates three core components: (1) a structured risk information model, (2) a visualization mechanism for dynamic, spatiotemporal risk representation and (3) risk influence path analysis using the Decision-Making Trial and Evaluation Laboratory–Interpretive Structural Modeling (DEMATEL–ISM) method. The plug-in allows users to access risk information on demand and monitor its evolution over time and space during the construction process. This study makes contributions by innovatively integrating risk information with BIM and developing a data-driven visualization tool for decision support, thereby enhancing project managers’ ability to anticipate, prioritize, and mitigate risks throughout the construction lifecycle of water pumping station projects. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 1588 KB  
Article
Toward the Theoretical Foundations of Industry 6.0: A Framework for AI-Driven Decentralized Manufacturing Control
by Andrés Fernández-Miguel, Susana Ortíz-Marcos, Mariano Jiménez-Calzado, Alfonso P. Fernández del Hoyo, Fernando E. García-Muiña and Davide Settembre-Blundo
Future Internet 2025, 17(10), 455; https://doi.org/10.3390/fi17100455 - 3 Oct 2025
Abstract
This study advances toward establishing the theoretical foundations of Industry 6.0 by developing a comprehensive framework that integrates artificial intelligence (AI), decentralized control systems, and cyber–physical production environments for intelligent, sustainable, and adaptive manufacturing. The research employs a tri-modal methodology (deductive, inductive, and [...] Read more.
This study advances toward establishing the theoretical foundations of Industry 6.0 by developing a comprehensive framework that integrates artificial intelligence (AI), decentralized control systems, and cyber–physical production environments for intelligent, sustainable, and adaptive manufacturing. The research employs a tri-modal methodology (deductive, inductive, and abductive reasoning) to construct a theoretical architecture grounded in five interdependent constructs: advanced technology integration, decentralized organizational structures, mass customization and sustainability strategies, cultural transformation, and innovation enhancement. Unlike prior conceptualizations of Industry 6.0, the proposed framework explicitly emphasizes the cyclical feedback between innovation and organizational design, as well as the role of cultural transformation as a binding element across technological, organizational, and strategic domains. The resulting framework demonstrates that AI-driven decentralized control systems constitute the cornerstone of Industry 6.0, enabling autonomous real-time decision-making, predictive zero-defect manufacturing, and strategic organizational agility through distributed intelligent control architectures. This work contributes foundational theory and actionable guidance for transitioning from centralized control paradigms to AI-driven distributed intelligent manufacturing control systems, establishing a conceptual foundation for the emerging Industry 6.0 paradigm. Full article
(This article belongs to the Special Issue Artificial Intelligence and Control Systems for Industry 4.0 and 5.0)
Show Figures

Figure 1

37 pages, 10740 KB  
Article
Contextual Real-Time Optimization on FPGA by Dynamic Selection of Chaotic Maps and Adaptive Metaheuristics
by Rabab Ouchker, Hamza Tahiri, Ismail Mchichou, Mohamed Amine Tahiri, Hicham Amakdouf and Mhamed Sayyouri
Appl. Sci. 2025, 15(19), 10695; https://doi.org/10.3390/app151910695 - 3 Oct 2025
Abstract
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in [...] Read more.
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in real-time systems. In contrast to conventional methods based on a single chaotic map, our scheme brings together six separate chaotic generators in simultaneous operation, orchestrated by an adaptive voting system based on past results. The system, in conjunction with the Secretary Bird Optimization Algorithm (SBOA), constantly adjusts its optimization approach according to the changing profile of the objective function. This delivers first-rate, timely solutions with improved convergence, resistance to local minima, and a high degree of adaptability to a variety of decision-making contexts. Simulations carried out on reference standards and engineering problems have demonstrated the scalability, responsiveness, and efficiency of the proposed model. These characteristics make it particularly suitable for use in embedded intelligence applications in sectors such as intelligent production, robotics, and IoT-based infrastructures. The suggested solution was tested using post-synthesis simulations on Vivado 2022.2 and experimented on three concrete engineering challenges: welded beam design, pressure equipment design, and tension/compression spring refinement. In each situation, the adaptive selection process dynamically determined the most suitable chaotic map, such as the logistics map for the Welded Beam Design Problem (WBDP) and the Tent map for the Pressure Vessel Design Problem (PVDP). This led to ideal results that exceed both conventional static methods and recent references in the literature. The post-synthesis results on the Nexys 4 DDR (Artix-7 XC7A100T, Digilent Inc., Pullman, WA, USA) show that the initial Q16.16 implementation exceeded the device resources (128% LUTs and 100% DSPs), whereas the optimized Q4.8 representation achieved feasible deployment with 80% LUT utilization, 72% DSP usage, and 3% FF occupancy. This adjustment reduced resource consumption by more than 25% while maintaining sufficient computational accuracy. Full article
Show Figures

Figure 1

53 pages, 3207 KB  
Review
Cognitive Bias Mitigation in Executive Decision-Making: A Data-Driven Approach Integrating Big Data Analytics, AI, and Explainable Systems
by Leonidas Theodorakopoulos, Alexandra Theodoropoulou and Constantinos Halkiopoulos
Electronics 2025, 14(19), 3930; https://doi.org/10.3390/electronics14193930 - 3 Oct 2025
Abstract
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business [...] Read more.
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business environments. Despite the growing integration of big data analytics into executive workflows, existing research lacks a comprehensive examination of how AI-driven methodologies can systematically mitigate biases while maintaining transparency and trust. This paper addresses these gaps by analyzing how big data analytics, artificial intelligence (AI), machine learning (ML), and explainable AI (XAI) contribute to reducing heuristic-driven errors in executive reasoning. Specifically, it explores the role of predictive modeling, real-time analytics, and decision intelligence systems in enhancing objectivity and decision accuracy. Furthermore, this study identifies key organizational and technical barriers—such as biases embedded in training data, model opacity, and resistance to AI adoption—that hinder the effectiveness of data-driven decision-making. By reviewing empirical findings from A/B testing, simulation experiments, and behavioral assessments, this research examines the applicability of AI-powered decision support systems in strategic management. The contributions of this paper include a detailed analysis of bias mitigation mechanisms, an evaluation of current limitations in AI-driven decision intelligence, and practical recommendations for fostering a more data-driven decision culture. By addressing these research gaps, this study advances the discourse on responsible AI adoption and provides actionable insights for organizations seeking to enhance executive decision-making through big data analytics. Full article
(This article belongs to the Special Issue Feature Papers in Artificial Intelligence)
Show Figures

Figure 1

21 pages, 636 KB  
Article
Applying the Agent-Deed-Consequence (ADC) Model to Smart City Ethics
by Daniel Shussett and Veljko Dubljević
Algorithms 2025, 18(10), 625; https://doi.org/10.3390/a18100625 - 3 Oct 2025
Abstract
Smart cities are an emerging technology that is receiving new ethical attention due to recent advancements in artificial intelligence. This paper provides an overview of smart city ethics while simultaneously performing novel theorization about the definition of smart cities and the complicated relationship [...] Read more.
Smart cities are an emerging technology that is receiving new ethical attention due to recent advancements in artificial intelligence. This paper provides an overview of smart city ethics while simultaneously performing novel theorization about the definition of smart cities and the complicated relationship between (smart) cities, ethics, and politics. We respond to these ethical issues by providing an innovative representation of the agent-deed-consequence (ADC) model in symbolic terms through deontic logic. The ADC model operationalizes human moral intuitions underpinning virtue ethics, deontology, and utilitarianism. With the ADC model made symbolically representable, human moral intuitions can be built into the algorithms that govern autonomous vehicles, social robots in healthcare settings, and smart city projects. Once the paper has introduced the ADC model and its symbolic representation through deontic logic, it demonstrates the ADC model’s promise for algorithmic ethical decision-making in four dimensions of smart city ethics, using examples relating to public safety and waste management. We particularly emphasize ADC-enhanced ethical decision-making in (economic and social) sustainability by advancing an understanding of smart cities and human-AI teams (HAIT) as group agents. The ADC model has significant merit in algorithmic ethical decision-making, especially through its elucidation in deontic logic. Algorithmic ethical decision-making, if structured by the ADC model, successfully addresses a significant portion of the perennial questions in smart city ethics, and smart cities built with the ADC model may in fact be a significant step toward resolving important social dilemmas of our time. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

31 pages, 1452 KB  
Article
A User-Centric Context-Aware Framework for Real-Time Optimisation of Multimedia Data Privacy Protection, and Information Retention Within Multimodal AI Systems
by Ndricim Topalli and Atta Badii
Sensors 2025, 25(19), 6105; https://doi.org/10.3390/s25196105 - 3 Oct 2025
Abstract
The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements, and obfuscate user faces uniformly. This research [...] Read more.
The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., “always hide logos”). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop