Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management
Abstract
1. Introduction
2. Methods
3. Results
3.1. Multi-Sensor Monitoring in Smart Greenhouse Management
3.2. Intelligent Control Techniques in Smart Greenhouse Management
| Technology/Method | Key Parameters | Advantages | Limitations | Applications | Ref. |
|---|---|---|---|---|---|
| IoT-based monitoring | Temperature, humidity, CO2, light for real time monitoring | Monitoring and scalable | Network stability is not stable | Greenhouse monitoring | [67,68,69] |
| Fuzzy control logic | HVAC modulation | Smooth transitions and handle vague data | Limited prediction | An environment with frequent fluctuations | [70] |
| Rule-based automation | Threshold-based triggers | Transparent and low cost | Not predictive and lacks adaptability | Irrigation and carbon dioxide control | [71] |
| Model predictive control | Forecast-based climate regulation | Optimize energy and predictive accuracy | Computationally demanding | Large and commercial greenhouse | [72,73] |
| Reinforcement learning | Adaptive HVAC and anomaly detection | Highly adaptable | Require large datasets | Complex and dynamic environment | [72,73] |
| Edge cloud hybrid | Local real-time and global optimization | Low latency, resilient to disconnect | High setup complexity | Networked smart greenhouse systems | [74,75,76] |
| Mobile/remote IoT control | Remote access and alerts | Convenient and user-friendly | Requires strong connectivity | Farmer-oriented monitoring, quick response | [77] |
| Predictive analytics and fusion | Historical trend and variability analysis | Long-term insights | Sensitive to data quality | Climate forecasting and decision support | [76,84,85] |
3.3. Data Processing and Filtering for Smart Greenhouse Management
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Paranjape, R. A systematic review of optimal and practical methods in design, construction, control, energy management and operation of smart greenhouses. IEEE Access 2023, 12, 2830–2853. [Google Scholar] [CrossRef]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Bhujel, A.; Basak, J.K.; Khan, F.; Arulmozhi, E.; Jaihuni, M.; Sihalath, T.; Lee, D.; Park, J.; Kim, H.T. Sensor systems for greenhouse microclimate monitoring and control: A review. J. Biosyst. Eng. 2020, 45, 341–361. [Google Scholar] [CrossRef]
- Ouammi, A.; Choukai, O.; Zejli, D.; Sayadi, S. A decision support tool for the optimal monitoring of the microclimate environments of connected smart greenhouses. IEEE Access 2020, 8, 212094–212105. [Google Scholar] [CrossRef]
- Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A.; Hasrane, I. Design, technology, and management of greenhouse: A review. J. Clean. Prod. 2022, 373, 133753. [Google Scholar] [CrossRef]
- Reads, C. Multi-Sensor Fusion for Autonomous Resilient Perception Exploiting Classical and Deep Learning Techniques. Ph.D. Thesis, University of Tor Vergata, Rome, Italy, July 2024. [Google Scholar]
- Raptis, T.P.; Passarella, A.; Conti, M. Data management in industry 4.0: State of the art and open challenges. IEEE Access 2019, 7, 97052–97093. [Google Scholar] [CrossRef]
- Azizi, S.; Rabiee, R.; Nair, G.; Olofsson, T. Effects of positioning of multi-sensor devices on occupancy and indoor environmental monitoring in single-occupant offices. Energies 2021, 14, 6296. [Google Scholar] [CrossRef]
- Roldán, J.J.; Garcia-Aunon, P.; Garzón, M.; de León, J.; del Cerro, J.; Barrientos, A. Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors 2016, 16, 1018. [Google Scholar] [CrossRef]
- Fascista, A. Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef]
- Jesus, G.; Casimiro, A.; Oliveira, A. A survey on data quality for dependable monitoring in wireless sensor networks. Sensors 2017, 17, 2010. [Google Scholar] [CrossRef]
- Younis, M.; Senturk, I.F.; Akkaya, K.; Lee, S.; Senel, F. Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Comput. Netw. 2014, 58, 254–283. [Google Scholar] [CrossRef]
- Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion 2017, 35, 1339–1351. [Google Scholar] [CrossRef]
- Rehder, J.; Siegwart, R.; Furgale, P. A general approach to spatiotemporal calibration in multisensor systems. IEEE Trans. Robot. 2016, 32, 383–398. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Adžemović, M.; Tadić, P.; Petrović, A.; Nikolić, M. Beyond Kalman filters: Deep learning-based filters for improved object tracking. Mach. Vis. Appl. 2025, 36, 20. [Google Scholar] [CrossRef]
- Krishnamurthi, R.; Kumar, A.; Gopinathan, D.; Nayyar, A.; Qureshi, B. An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors 2020, 20, 6076. [Google Scholar] [CrossRef] [PubMed]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy-efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Gao, H.; Zhangzhong, L.; Zheng, W.; Chen, G. How can agricultural water production be promoted? A review on machine learning for irrigation. J. Clean. Prod. 2023, 414, 137687. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Rahman, S.A.; Khan, S.A.; Iqbal, S.; Rehman, M.M.; Kim, W.Y. Eco-Friendly, High-Performance Humidity Sensor Using Purple Sweet-Potato Peel for Multipurpose Applications. Chemosensors 2023, 11, 457. [Google Scholar] [CrossRef]
- Araújo, T.; Silva, L.; Moreira, A. Evaluation of Low-Cost Sensors for Weather and Carbon Dioxide Monitoring in Internet of Things Context. Internet Things 2020, 1, 286–308. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Zheng, L.; Zheng, C.; Wang, Y. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment. Sensors 2016, 16, 1941. [Google Scholar] [CrossRef]
- Roslan, L.; Jamali, A.; Sim, C.Y.; Jimmy, M.L.; Abg Kamaruddin, A.M.N.; Zulhusmi, M.Z.M.A. Real-Time Monitoring of Modular Carbon Capture Machines with Sensor Networks and Node-RED. In Proceedings of the IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 30–31 July 2024; IEEE: New York, NY, USA, 2024; pp. 146–149. [Google Scholar]
- Beyaz, A.; Gül, V. Determination of Low-Cost Arduino-Based Light Intensity Sensors Effectiveness for Agricultural Applications. Braz. Arch. Biol. Technol. 2022, 65, e22220172. [Google Scholar] [CrossRef]
- Sánchez Sutil, F.; Cano-Ortega, A. Smart Public Lighting Control and Measurement System Using LoRa Network. Electronics 2020, 9, 124. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart Technologies for Promotion of Energy Efficiency, Utilization of Sustainable Resources, and Waste Management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- Rodríguez, S.; Gualotuña, T.; Grilo, C. A System for the Monitoring and Predicting Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks. Procedia Comput. Sci. 2017, 121, 306–313. [Google Scholar] [CrossRef]
- Chaudhary, D.D.; Nayse, S.P.; Waghmare, L.M. Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. Int. J. Wirel. Mob. Netw. 2011, 3, 140–149. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D.; Fang, Y. Methodologies of Control Strategies for Improving Energy Efficiency in Agricultural Greenhouses. J. Clean. Prod. 2020, 274, 122695. [Google Scholar] [CrossRef]
- Wardani, I.K.; Ichniarsyah, A.N.; Telaumbanua, M.; Priyonggo, B.; Fil’Aini, R.; Mufidah, Z.; Dewangga, D.A. The Feasibility Study: Accuracy and Precision of DHT 22 in Measuring the Temperature and Humidity in the Greenhouse. IOP Conf. Ser. Earth Environ. Sci. 2023, 1230, 012146. [Google Scholar] [CrossRef]
- Prskalo, H.; Trstenjak, J.; Trstenjak, B. Smart Greenhouse Based on the Arduino Platform. In Proceedings of the 31st International DAAAM Virtual Symposium “Intelligent Manufacturing & Automation”, Vienna, Austria, 21–24 October 2020. [Google Scholar]
- Liu, Y.; Wang, M. Wireless Greenhouse Environment Monitoring System Based on LoRa Network. J. Food Sci. Technol. 2019, 4, 8. [Google Scholar]
- Chodorek, A.; Chodorek, R.R.; Yastrebov, A. Weather Sensing in an Urban Environment with the Use of a UAV and WebRTC-Based Platform: A Pilot Study. Sensors 2021, 21, 17113. [Google Scholar] [CrossRef] [PubMed]
- Fanani, N.Z.; Afianah, N.; Putri, S.L.; Kautsar, S.; Nari, M.I.; Rofi’i, A.; Purnomo, F.E.; Atmajaya, A.W.W. Teleoperation System on Differential Mobile-Robot for Online Greenhouse Monitoring. In Proceedings of the International Seminar on Intelligent Technology and Its Applications (ISITIA), Mataram, Indonesia, 10–12 July 2024; IEEE: New York, NY, USA, 2024; pp. 583–588. [Google Scholar]
- Cornei, D.; Fosalau, C.; Cornei, L. A Cheap and Practical IoT Solution for Agricultural Data Monitoring. In Proceedings of the 13th IEEE International Conference and Expo on Electrical Power Engineering (EPEi), Iasi, Romania, 17–19 October 2024; IEEE: New York, NY, USA, 2024; pp. 47–52. [Google Scholar]
- Soheli, S.J.; Jahan, N.; Hossain, M.B.; Adhikary, A.; Khan, A.R.; Wahiduzzaman, M. Smart Greenhouse Monitoring System Using Internet of Things and Artificial Intelligence. Wireless Pers. Commun. 2022, 124, 3603–3634. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Q.; Kong, Q.; Cai, W. Wireless Temperature & Humidity Monitor and Control System. In Proceedings of the 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012; IEEE: New York, NY, USA, 2012; pp. 2246–2250. [Google Scholar]
- Collado, E.; Valdés, E.; García, A.; Sáez, Y. Design and Implementation of a Low-Cost IoT-Based Agroclimatic Monitoring System for Greenhouses. AIMS Electron. Electr. Eng. 2021, 5, 251–283. [Google Scholar] [CrossRef]
- Stepanenko, V.; Dovgal, V.; Gura, D.; Dyachenko, R.; Lipilin, D. Analysis of the Current State of the Issue of Greenhouse Gas Emission Monitoring. E3S Web Conf. 2024, 531, 4004. [Google Scholar] [CrossRef]
- Hernandez-Morales, C.A.; Luna-Rivera, J.M.; Villarreal-Guerrero, F.; Delgado-Sanchez, P.; Guadiana-Alvarado, Z.A. IoT-Based Spatial Monitoring and Environment Prediction System for Smart Greenhouses. IEEE Lat. Am. Trans. 2023, 21, 602–611. [Google Scholar] [CrossRef]
- Ragnarsson, P.; Thorsteinsdottir, B.; Thorbergsson, H.; Gudmundsson, K. Measuring Temperature and CO2 Emissions from Soil Respiration Using a Real-Time System. In Proceedings of the 2021 30th Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE), Prague, Czech Republic, 1–4 September 2021; Volume 21, pp. 1–4. [Google Scholar]
- Herts, A.I.; Tsidylo, I.M.; Herts, N.V.; Tolmachev, S.T. Cloud Service ThingSpeak for Monitoring the Surface Layer of the Atmosphere Polluted by Particulate Matters. CEUR Workshop Proc. 2019, 21, 363–376. [Google Scholar] [CrossRef]
- Astutik, Y.; Murad; Putra, G.M.D.; Setiawati, D.A. Remote Monitoring Systems in Greenhouse Based on NodeMCU ESP8266 Microcontroller and Android. AIP Conf. Proc. 2019, 21, 2199. [Google Scholar]
- Ittaqullah, A.; Amiroh, K.; Widyantara, H. Monitoring System and Control of Air Quality and Light Intensity at ITTelkom Surabaya Greenhouse with Fuzzy Logic. Conf. Softw. Eng. Inf. Technol. 2022, 22, 132–137. [Google Scholar]
- Rezvani, S.M.E.; Abyaneh, H.Z.; Shamshiri, R.R.; Balasundram, S.K.; Dworak, V.; Goodarzi, M.; Sultan, M.; Mahns, B. IoT-based sensor data fusion for determining optimality degrees of microclimate parameters in commercial greenhouse production of tomato. Sensors 2020, 20, 6474. [Google Scholar] [CrossRef]
- Zamudio, M.A.; Bautista-Valencia, R.; Morales-Saldana, J.; Luna-Rivera, R.; Castillo-Atoche, A. Development of a Low-Cost Monitoring System for the Measurement of DC and AC Electrical Parameters in Grid-Connected Photovoltaic Systems Based on IEC Standards. J. Phys. Conf. Ser. 2023, 21, 2538. [Google Scholar] [CrossRef]
- Gupta, D. Low-Cost Data Logger and Monitoring System for a Small Solar PV Energy System. Meml. Univ. Res. Repos. 2018, 21, 125. [Google Scholar]
- Bicamumakuba, E.; Habineza, E.; Reza, M.N.; Chung, S.O. IoT-enabled LoRaWAN gateway for monitoring and predicting spatial environmental parameters in smart greenhouses: A review. Precis. Agric. Sci. Technol. 2025, 7, 28–46. [Google Scholar]
- Watjanatepin, N.; Srisongkram, W.; Wongsuriya, W.; Sukthang, K.; Boonmee, C.; Kiatsookkanatorn, P. Automated agricultural greenhouse with PV energy using IoT-based monitoring system. Int. J. Renew. Energy Res. 2023, 13, 1581–1591. [Google Scholar]
- Khudhair, A.B.; Hussein, F.I.; Obeidi, M.A. Creating a LabVIEW Sub VI for the INA219 Sensor Detecting Extremely Low-Level Electrical Quantities. Al-Khwarizmi Eng. J. 2023, 19, 88–97. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Helou, M.A.; Khan, F.S.; Abid, A.; Alvi, A. Internet of Things in Greenhouse Agriculture: A Survey on Enabling Technologies, Applications, and Protocols. IEEE Access 2022, 10, 53374–53397. [Google Scholar] [CrossRef]
- Shilpa, B.; Radha, R.; Movva, P. Comparative Analysis of Wireless Communication Technologies for IoT Applications. In Artificial Intelligence and Technologies; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; Volume 806, pp. 383–394. [Google Scholar]
- Shahraki, A.; Taherkordi, A.; Haugen, Ø.; Eliassen, F. Clustering Objectives in Wireless Sensor Networks: A Survey and Research Direction Analysis. Comput. Netw. 2020, 180, 107376. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Kabir, M.A. Comparison among short range wireless networks: Bluetooth, Zig Bee & Wi-Fi. Daffodil Int. Univ. J. Sci. Technol. 2016, 11, 1–8. [Google Scholar]
- Liu, Z.; Li, Y.; Zhao, L.; Liang, R.; Wang, P. Comparative Evaluation of the Performance of ZigBee and LoRa Wireless Networks in Building Environment. Electronics 2022, 11, 21. [Google Scholar] [CrossRef]
- Ding, J.; Nemati, M.; Ranaweera, C.; Choi, J. IoT Connectivity Technologies and Applications: A Survey. IEEE Access 2020, 8, 67646–67673. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Kamel, M.; Hamouda, W.; Youssef, A. NOMA-Assisted Machine-Type Communications in UDN: State-of-the-Art and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1276–1304. [Google Scholar] [CrossRef]
- Bali, M.S.; Gupta, K.; Bali, K.K.; Singh, P.K. Towards Energy Efficient NB-IoT: A Survey on Evaluating Its Suitability for Smart Applications. Mater. Today Proc. 2020, 49, 3227–3234. [Google Scholar] [CrossRef]
- Gbadamosi, S.A.; Hancke, G.P.; Abu-Mahfouz, A.M. Building upon NB-IoT Networks: A Roadmap Towards 5G New Radio Networks. IEEE Access 2020, 8, 188641–188672. [Google Scholar] [CrossRef]
- Elbouchikhi, E.; Zia, M.F.; Benbouzid, M.; El Hani, S. Overview of Signal Processing and Machine Learning for Smart Grid Condition Monitoring. Electronics 2021, 10, 21. [Google Scholar] [CrossRef]
- Xia, S.; Nan, X.; Cai, X.; Lu, X. Data Fusion Based Wireless Temperature Monitoring System Applied to Intelligent Greenhouse. Comput. Electron. Agric. 2022, 192, 106576. [Google Scholar] [CrossRef]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A Decision Support System Based on Multisensor Data Fusion for Sustainable Greenhouse Management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, T.; Wang, W.; Jia, X.; Wang, J.; Klemeš, J.J. Energy-Saving Design and Control Strategy Towards Modern Sustainable Greenhouse: A Review. Renew. Sustain. Energy Rev. 2022, 164, 112602. [Google Scholar] [CrossRef]
- Ouhami, M.; Hafiane, A.; Es-Saady, Y.; El Hajji, M.; Canals, R. Computer Vision, IoT and Data Fusion for Crop Disease Detection Using Machine Learning: A Survey and Ongoing Research. Remote Sens. 2021, 13, 2486. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Faheem, M.; Noor, R.S.; Shaikh, S.A.; Solangi, K.A.; Raza, S.M. Different Sensor-Based Intelligent Spraying Systems in Agriculture. Sens. Actuators A Phys. 2020, 316, 11226. [Google Scholar] [CrossRef]
- Sumalan, R.L.; Stroia, N.; Moga, D.; Muresan, V.; Lodin, A.; Vintila, T.; Popescu, C.A. A Cost-Effective Embedded Platform for Greenhouse Environment Control and Remote Monitoring. Agronomy 2020, 10, 7. [Google Scholar] [CrossRef]
- Nsoh, B.; Katimbo, A.; Guo, H.; Heeren, D.M.; Nakabuye, H.N.; Qiao, X.; Ge, Y.; Rudnick, D.R.; Wanyama, J.; Bwambale, E.; et al. Internet of Things-Based Automated Solutions Utilizing Machine Learning for Smart and Real-Time Irrigation Management: A Review. Sensors 2024, 24, 7480. [Google Scholar] [CrossRef]
- Maraveas, C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2023, 13, 1. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Deng, L.; Bozdar, B.; Li, J.; Chachar, S.; Chachar, Z.; Jahan, I.; Talpur, A.; Gishkori, M.S.; et al. Advancing Horizons in Vegetable Cultivation: A Journey from Age-Old Practices to High-Tech Greenhouse Cultivation—A Review. Front. Plant Sci. 2024, 15, 1357153. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, J.Y.; Hwang, K.S.; Cho, W.J.; Kim, H.J.; Jung, D.H. Machine Learning-Powered Forecasting of Climate Conditions in Smart Greenhouse Containing Netted Melons. Agronomy 2024, 14, 5. [Google Scholar] [CrossRef]
- Pang, Y.; Ou, S.; Cai, Z.; Gao, Y. Posterior Error Energy Minimization Based Combined FxNLMS and FxLMS Algorithm for Active Noise Control. IEEE Access 2024, 12, 30754–30764. [Google Scholar] [CrossRef]
- Mohagheghi, A. Intelligent Control and Monitoring for Energy-Efficient Horticultural Lighting. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2022. [Google Scholar]
- Song, C.; Liu, P.; Liu, X.; Liu, L.; Yu, Y. Configuration Optimization of Temperature–Humidity Sensors Based on Weighted Hilbert–Schmidt Independence Criterion in Chinese Solar Greenhouses. Agriculture 2024, 14, 2. [Google Scholar] [CrossRef]
- Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.C.; Westerdahl, D.; Louie, P.K.K. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- West, S.R.; Ward, J.K.; Wall, J. Trial Results from a Model Predictive Control and Optimisation System for Commercial Building HVAC. Energy Build. 2014, 72, 271–279. [Google Scholar] [CrossRef]
- Çam, N.Y.; Ezan, M.A.; Biçer, Y. An Integrated Transient Model in TRNSYS for Thermal Management of the Tomato Growth Process in a Greenhouse with a PV-Aided Heat Pump-Assisted HVAC System. Int. J. Thermofluids 2024, 22, 100592. [Google Scholar] [CrossRef]
- Peng, Y.; Shen, H.; Tang, X.; Zhang, S.; Zhao, J.; Liu, Y.; Nie, Y. Energy Consumption Optimization for Heating, Ventilation and Air Conditioning Systems Based on Deep Reinforcement Learning. IEEE Access 2023, 11, 88265–88277. [Google Scholar] [CrossRef]
- Verma, A.; Singh, D.K. Comparative Analysis of HVAC System and Energy Analysis. Int. J. Publ. Res. 2018, 6, 155–161. [Google Scholar]
- Kelman, A.; Borrelli, F. Bilinear Model Predictive Control of an HVAC System Using Sequential Quadratic Programming. IFAC Proc. Vol. 2011, 44, 9869–9874. [Google Scholar] [CrossRef]
- Ahmad, U.; Nasirahmadi, A.; Hensel, O.; Marino, S. Technology and Data Fusion Methods to Enhance Site-Specific Crop Monitoring. Agronomy 2022, 12, 555. [Google Scholar] [CrossRef]
- Podder, I.; Fischl, T.; Bub, U. Smart Calibration and Monitoring: Leveraging Artificial Intelligence to Improve MEMS-Based Inertial Sensor Calibration. Complex Intell. Syst. 2024, 10, 7451–7474. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, K.; Gupta, D.; Rani, S.; Dhiman, G. An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces. Comput. Model. Eng. Sci. 2024, 138, 2029–2059. [Google Scholar] [CrossRef]
- Rizwan, A.; Khan, A.N.; Ibrahim, M.; Ahmad, R.; Iqbal, N.; Kim, D.H. Optimal Environment Control and Fruits Delivery Tracking System Using Blockchain for Greenhouse. Comput. Electron. Agric. 2024, 220, 108889. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A Review on Optimized Control Systems for Building Energy and Comfort Management of Smart Sustainable Buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Priyanka, E.B.; Thangavel, S.; Mohanasundaram, R.; Anand, R. Solar Powered Integrated Multi Sensors to Monitor Inland Lake Water Quality Using Statistical Data Fusion Technique with Kalman Filter. Sci. Rep. 2024, 14, 25202. [Google Scholar] [CrossRef]
- Kush, J.C. Integrating Sensor Technologies with Conversational AI: Enhancing Context-Sensitive Interaction Through Real-Time Data Fusion. Sensors 2025, 25, 249. [Google Scholar] [CrossRef]
- Xiang, Q.; Tan, X.; Ding, Q.; Zhang, Y. A Compact Bandpass Filter with Widely Tunable Frequency and Simple Bias Control. Electronics 2024, 13, 411. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Qi, Z. Remote Sensing Data Assimilation in Crop Growth Modeling from an Agricultural Perspective: New Insights on Challenges and Prospects. Agronomy 2024, 14, 1920. [Google Scholar] [CrossRef]
- Elabbassi, I.; Khala, M.; Elyanboiy, N.; Eloutassi, O.; El Hassouani, Y. Evaluating and Comparing Machine Learning Approaches for Effective Decision Making in Renewable Microgrid Systems. Results Eng. 2024, 21, 101888. [Google Scholar] [CrossRef]
- Contreras-Castillo, J.; Guerrero-Ibañez, J.A.; Santana-Mancilla, P.C.; Anido-Rifón, L. SAgric-IoT: An IoT-Based Platform and Deep Learning for Greenhouse Monitoring. Appl. Sci. 2023, 13, 1961. [Google Scholar] [CrossRef]
- Ullah, I.; Fayaz, M.; Kim, D.H. Improving Accuracy of the Kalman Filter Algorithm in Dynamic Conditions Using ANN-Based Learning Module. Symmetry 2019, 11, 94. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. A Review on Machine Learning Forecasting Growth Trends and Their Real-Time Applications in Different Energy Systems. Sustain. Cities Soc. 2020, 54, 102010. [Google Scholar] [CrossRef]
- Liang, W.; Maesoumi, M.; Basem, A.; Jasim, D.J.; Sultan, A.J.; Al-Rubaye, A.H.; Zhang, J. Are Hybrid Approaches Combining EKF-UKF and Artificial Neural Networks Key to Unlocking the Full Potential of Sustainable Energy Technologies and Reducing Environmental Footprint? Heliyon 2024, 10, e36746. [Google Scholar] [CrossRef]
- Rezaie-Balf, M.; Attar, N.F.; Mohammadzadeh, A.; Murti, M.A.; Ahmed, A.N.; Fai, C.M.; Nabipour, N.; Alaghmand, S.; El-Shafie, A. Physicochemical Parameters Data Assimilation for Efficient Improvement of Water Quality Index Prediction: Comparative Assessment of a Noise Suppression Hybridization Approach. J. Clean. Prod. 2020, 271, 122576. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, H.; Zhang, S.; Wang, Y.; Chow, D. Modeling and Optimization of Environment in Agricultural Greenhouses for Improving Cleaner and Sustainable Crop Production. J. Clean. Prod. 2021, 285, 124843. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop Reflectance Monitoring as a Tool for Water Stress Detection in Greenhouses: A Review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Smetanin, N.; Belinskaya, A.; Lebedev, M.; Ossadtchi, A. Digital Filters for Low-Latency Quantification of Brain Rhythms in Real Time. J. Neural Eng. 2020, 17, 046022. [Google Scholar] [CrossRef]
- Mazher, N. Machine Learning Approaches for Dynamic System Parameter Estimation in Sensor Networks. Master’s Thesis, University of Gujrat, Gujrat, Pakistan, 2024. [Google Scholar]
- Schneider, L.S.; Krauss, P.; Schiering, N.; Syben, C.; Schielein, R.; Maier, A. Datengetriebene Modellierung in der Messtechnik–Eine Kurze Einführung, Aktuelle Entwicklungen und Zukunftsperspektiven. Tech. Mess. 2024, 91, 480–503. [Google Scholar] [CrossRef]
- Mostafaei, H.; Ghamami, M. State of the Art in Automated Operational Modal Identification: Algorithms, Applications, and Future Perspectives. Machines 2025, 13, 39. [Google Scholar] [CrossRef]
- Mehmood, M.Y.; Oad, A.; Abrar, M.; Munir, H.M.; Hasan, S.F.; Muqeet, H.A.U.; Golilarz, N.A. Edge Computing for IoT-Enabled Smart Grid. Secur. Commun. Netw. 2021, 2021, 5524025. [Google Scholar] [CrossRef]
- Kelly, B. The Impact of Edge Computing on Real-Time Data Processing. Int. J. Comput. Eng. 2024, 5, 44–58. [Google Scholar] [CrossRef]
- Kalyani, Y.; Collier, R. A Systematic Survey on the Role of Cloud, Fog, and Edge Computing Combination in Smart Agriculture. Sensors 2021, 21, 5922. [Google Scholar] [CrossRef]
- Koteish, K.; Harb, H.; Dbouk, M.; Zaki, C.; Abou Jaoude, C. AGRO: A Smart Sensing and Decision-Making Mechanism for Real-Time Agriculture Monitoring. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7059–7069. [Google Scholar] [CrossRef]
- Shrestha, M.M.; Wei, L. Review—Perspectives on the Roles of Real-Time Nitrogen Sensing and IoT Integration in Smart Agriculture. J. Electrochem. Soc. 2024, 171, 027526. [Google Scholar] [CrossRef]
- Maraveas, C.; Bartzanas, T. Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering 2021, 3, 954–970. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Khabusi, S.P. Artificial Intelligence of Things (AIoT) Advances in Aquaculture: A Review. Processes 2025, 13, 73. [Google Scholar] [CrossRef]
- Ardeti, V.A.; Kolluru, V.R.; Varghese, G.T.; Patjoshi, R.K. An Overview on State-of-the-Art Electrocardiogram Signal Processing Methods: Traditional to AI-Based Approaches. Expert Syst. Appl. 2023, 217, 119561. [Google Scholar] [CrossRef]
- Algarni, A.; Acarer, T.; Ahmad, Z. An Edge Computing-Based Preventive Framework with Machine Learning Integration for Anomaly Detection and Risk Management in Maritime Wireless Communications. IEEE Access 2024, 12, 53646–53663. [Google Scholar] [CrossRef]
- Adli, H.K.; Remli, M.A.; Wan Salihin Wong, K.N.S.; Ismail, N.A.; González-Briones, A.; Corchado, J.M.; Mohamad, M.S. Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. Sensors 2023, 23, 3752. [Google Scholar] [CrossRef]
- Bua, C.; Adami, D.; Giordano, S. GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses. Electronics 2024, 13, 1366. [Google Scholar] [CrossRef]
- Louta, M.; Banti, K.; Karampelia, I. Emerging Technologies for Sustainable Agriculture: The Power of Humans and the Way Ahead. IEEE Access 2024, 12, 98492–98529. [Google Scholar] [CrossRef]
- Maraveas, C.; Karavas, C.S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]







| Category | Sensor Model | Power Consumption (mW) | Data Transfer Range (m) | Accuracy | Applications | Ref. |
|---|---|---|---|---|---|---|
| Temperature sensors | DHT22 | ~0.3–1.5 | ~20 | ±0.5 °C, ±2% | Thermal monitoring | [31,32] |
| DS18B20 | ~7.5 | ~100 | ±0.5 °C | Soil heating | [33] | |
| BME280 | ~0.012 | ~1000 | ±1 °C, ±3% | Environment monitor | [34] | |
| Humidity sensors | SHT31 | ~5.6 | ~1000 | ±2% | Air quality monitoring | [35,36] |
| DHT11 | ~1.5–2 | ~20 | ±1°C, ±1% | Basic monitoring setups | [37,38,39] | |
| CO2 sensors | MH-Z19B | ~300–750 | ~100 | ±50 ppm, ±3% | CO2 supplementation | [40,41,42] |
| Sense Air S8 | ~150 | ~200 | ±70 ppm, ±3% | Plant optimization | [43] | |
| Light sensors | BH1750 | ~0.36 | ~1000 | ±20% (Lux) | LED grow lights | [44,45] |
| TSL2591 | ~1.3 | ~1000 | ±10% (Lux) | Solar energy | [25] | |
| Energy sensors | ACS712 | ~50–60 | ~500 | ±1.5% | Energy optimization | [47,48] |
| PZEM-004T | ~100 | ~500 | ±1% (V and I) | Solar power monitor | [49,50] | |
| INA219 | ~3–5 | ~100 | ±1% (V and I) | Small IoT devices | [51] |
| Technology Type | Technology/ Method | Key Parameters/Issues Addressed | Application Scenarios | Impact on Greenhouse Monitoring | Limitations | Ref. |
|---|---|---|---|---|---|---|
| Traditional filters | Moving Average/exponential smoothing/median filters | Noise reduction, signal stability | Basic climate control with moderate sensor noise | Reduces fluctuations, stabilizes temperature/humidity signals | Limited adaptability; poor handling of dynamic/nonlinear changes | [86,87] |
| Frequency-domain filters (Low-pass, high-pass, band-pass) | Separation of preferred signals from high-frequency noise | High-interference environments (e.g., fan motors, electrical noise) | Improves signal precision for downstream control | Requires prior knowledge of noise spectrum; limited adaptability | [88] | |
| Statistical/Probabilistic filters | Kalman filter | Dynamic data fusion, anomaly detection, predictive corrections | Multi-sensor fusion for temperature, humidity, and CO2 | Increases sensor reliability, improves prediction accuracy | Sensitive to model assumptions (linear/Gaussian); requires tuning | [89] |
| Particle filter | Handling of nonlinear and non-Gaussian processes | Fault tolerance in distributed sensing; recovery from sensor failures | Enables robust estimation under uncertainty | High computational cost; not ideal for real-time low-power devices | ||
| AI and hybrid methods | AI-powered filtering (ML, DNNs) | Fault detection, anomaly diagnosis, predictive analytics | Large-scale sensor networks with complex patterns | Enables predictive maintenance, decision support | Requires large datasets, high computation | [90,91] |
| Kalman + ANN hybrid | Noise reduction, missing data handling, improved prediction accuracy | Environments with strong variability (light, humidity, soil conditions) | Enhances actuator control (e.g., fans, heaters) | Complexity in integration; training required | [92,93,94] | |
| Ensemble hybrid (ITD + NN) | Improved forecasting, reduced RMSE (Klang: 24%, Langat: 34%) | Energy optimization and climate forecasting | Optimizes resource use, enhances sustainability | Model complexity, parameter sensitivity | [95,96,97] | |
| Edge and cloud-based | Edge computing and cloud analytics | Latency reduction, bandwidth efficiency, anomaly identification | Large-scale smart greenhouse IoT networks | Ensures efficient real-time data handling and resilience | Dependent on connectivity; may raise privacy issues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicamumakuba, E.; Reza, M.N.; Jin, H.; Samsuzzaman; Lee, K.-H.; Chung, S.-O. Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management. Sensors 2025, 25, 6134. https://doi.org/10.3390/s25196134
Bicamumakuba E, Reza MN, Jin H, Samsuzzaman, Lee K-H, Chung S-O. Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management. Sensors. 2025; 25(19):6134. https://doi.org/10.3390/s25196134
Chicago/Turabian StyleBicamumakuba, Emmanuel, Md Nasim Reza, Hongbin Jin, Samsuzzaman, Kyu-Ho Lee, and Sun-Ok Chung. 2025. "Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management" Sensors 25, no. 19: 6134. https://doi.org/10.3390/s25196134
APA StyleBicamumakuba, E., Reza, M. N., Jin, H., Samsuzzaman, Lee, K.-H., & Chung, S.-O. (2025). Multi-Sensor Monitoring, Intelligent Control, and Data Processing for Smart Greenhouse Environment Management. Sensors, 25(19), 6134. https://doi.org/10.3390/s25196134

