Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = d-SPE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2206 KB  
Article
Efficiently Monitoring Trace Nitrophenol Pollutants in Water Through the Dispersive Solid-Phase Extraction Based on Porous Organic Polymer-Modified Cellulose Nanofiber Membrane
by Xiaoyu He, Wangcheng Lan, Yuancai Lv, Xiaojing Li and Chen Tian
Chemosensors 2026, 14(2), 31; https://doi.org/10.3390/chemosensors14020031 - 29 Jan 2026
Abstract
Monitoring trace nitrophenol pollutants in water has garnered considerable attention. A porous organic polymer-modified cellulose nanofiber membrane (COP-99@DCA) was fabricated via in situ growth of a porous organic polymer on an electrospun cellulose nanofiber membrane. The resulting brown COP-99@DCA composite possessed abundant functional [...] Read more.
Monitoring trace nitrophenol pollutants in water has garnered considerable attention. A porous organic polymer-modified cellulose nanofiber membrane (COP-99@DCA) was fabricated via in situ growth of a porous organic polymer on an electrospun cellulose nanofiber membrane. The resulting brown COP-99@DCA composite possessed abundant functional groups, including C-F, C-O, and hydroxyl groups, and exhibited excellent thermal and chemical stability. Furthermore, when employed as a sorbent in dispersive solid-phase microextraction (d-SPME), COP-99@DCA efficiently enriched trace nitrophenols in water. Under optimal enrichment and desorption conditions, the enrichment efficiencies for five nitrophenol congeners ranged from 97.24% to 102.46%. Mechanistic investigations revealed that the efficient enrichment of trace nitrophenols by COP-99@DCA was primarily governed by hydrogen bonding, π-π stacking, and hydrophobic interactions. Coupled with solid-phase extraction (SPE) pre-treatment, high-performance liquid chromatography (HPLC) enabled the sensitive detection of trace nitrophenols. The established calibration curves exhibited favorable linearity, with low limits of quantitation (LOQs) ranging from 0.5 to 1 μg/L and low limits of detection (LODs) between 0.08 and 0.1 μg/L. Moreover, practical applications in real water samples confirmed the outstanding enrichment performance of COP-99@DCA. At spiked concentrations of 5 and 10 μg/L, the recovery rates were 85.35–113.55% and 92.17–110.46%, respectively. These results demonstrate the great potential of COP-99@DCA for practical water sample analysis. Collectively, these findings provide a novel strategy for the design of pre-treatment materials for the analysis of trace organic pollutants. Full article
Show Figures

Figure 1

20 pages, 3043 KB  
Article
Fibrous Mesoporous Silica KCC-1 Functionalized with 3,5-Di-tert-butylsalicylaldehyde as an Efficient Dispersive Solid-Phase Extraction Sorbent for Pb(II) and Co(II) from Water
by Sultan K. Alharbi, Yassin T. H. Mehdar, Manal A. Almalki, Khaled A. Thumayri, Khaled M. AlMohaimadi, Bandar R. Alsehli, Awadh O. AlSuhaimi and Belal H. M. Hussein
Nanomaterials 2026, 16(1), 58; https://doi.org/10.3390/nano16010058 - 31 Dec 2025
Viewed by 432
Abstract
The accurate determination of trace metals in aqueous matrices necessitates robust sample preparation techniques that enable selective preconcentration of analytes while ensuring compatibility with subsequent instrumental analysis. Dispersive solid-phase extraction (d-SPE), a suspension-based variant of conventional solid-phase extraction (SPE), facilitates rapid sorbent–analyte interactions [...] Read more.
The accurate determination of trace metals in aqueous matrices necessitates robust sample preparation techniques that enable selective preconcentration of analytes while ensuring compatibility with subsequent instrumental analysis. Dispersive solid-phase extraction (d-SPE), a suspension-based variant of conventional solid-phase extraction (SPE), facilitates rapid sorbent–analyte interactions and enhances mass transfer efficiency through direct dispersion of the sorbent in the sample solution. This approach offers significant advantages over traditional column-based SPE, including faster extraction kinetics and greater operational simplicity. When supported by appropriately engineered sorbents, d-SPE exhibits considerable potential for the selective enrichment of trace metal analytes from complex aqueous matrices. In this work, a fibrous silica-based chelating material, DSA-KCC-1, was synthesized by grafting 3,5-Di-tert-butylsalicylaldehyde (DSA) onto aminopropyl-modified KCC-1. The dendritic KCC-1 scaffold enables fast dispersion and short diffusion pathways, while the immobilized phenolate–imine ligand introduces defined binding sites for transition-metal uptake. Characterization by FTIR, TGA, BET, FESEM/TEM, XRD, and elemental analysis confirmed the successfulness of functionalization and preservation of the fibrous mesostructured. Adsorption studies demonstrated chemisorption-driven interactions for Pb(II) and Co(II) from water, with Langmuir-type monolayer uptake and pseudo-second-order kinetic behavior. The nano-adsorbent exhibited a markedly higher affinity for Pb(II) than for Co(II), with maximum adsorption capacities of 99.73 and 66.26 mg g−1, respectively. Integration of the DSA-KCC-1 nanosorbent into a d-SPE–ICP-OES workflow enabled the reliable determination of trace levels of the target ions, delivering low limits of detection, wide linear calibration ranges, and stable performance over repeated extraction cycles. Analysis of NIST CRM 1643d yielded results in good agreement with the certified values, while the method demonstrated high tolerance toward common coexisting ions. The combined structural features of the KCC-1 support and the Schiff-base ligand indicate the suitability of DSA-KCC-1 for d-SPE workflows and demonstrate the potential of this SPE format for selective preconcentration of trace metal ions in aqueous matrices. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 826 KB  
Review
Multi-Detection of Veterinary Medicines in Animal Feed for Production: A Review
by Ana Lúcia Lopes, Marta Leite, Maria Beatriz P. P. Oliveira and Andreia Freitas
Antibiotics 2025, 14(12), 1233; https://doi.org/10.3390/antibiotics14121233 - 7 Dec 2025
Cited by 1 | Viewed by 898
Abstract
Background/Objectives: The inappropriate use of veterinary medicines in feed for food-producing animals can compromise food safety. Intensive animal production is associated with the inappropriate use of antibiotics in feed, at subtherapeutic concentrations, to promote animal growth. It is therefore crucial to develop [...] Read more.
Background/Objectives: The inappropriate use of veterinary medicines in feed for food-producing animals can compromise food safety. Intensive animal production is associated with the inappropriate use of antibiotics in feed, at subtherapeutic concentrations, to promote animal growth. It is therefore crucial to develop an effective multi-detection method to ensure that this feed complies with the requirements of European Commission Regulations. This control is essential to ensure consumer protection, as adequate supervision contributes to reducing antimicrobial resistance, a growing concern worldwide. Methods: A literature search was conducted using scientific databases, namely PubMed, ScienceDirect, Scopus and Google Scholar, as well as European Union Regulations. Results: It was observed that the most used standard solution solvents are methanol, acetonitrile, ultrapure water, or mixtures of these solvents. For extraction, the most frequently used solvents include trichloroacetic acid combined with McIlvaine buffer or with acetonitrile, and acetonitrile or methanol combined with formic acid or with ethylenediaminetetraacetic acid disodium (Na2EDTA). For extraction and purification of the analyte, several steps were verified, such as solid-phase extraction (SPE), dispersive solid-phase extraction (d-SPE), liquid–liquid extraction (LLE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), protein precipitation through freezing and dilution prior to analysis. Liquid chromatography coupled with mass spectrometry is the preferred choice, especially for multiple detection methods. Conclusions: Based on this data, the foundation is established for the development of an appropriate method for the simultaneous extraction of multiple classes of antibiotics, which is applicable to feed different food-production animals. Full article
Show Figures

Figure 1

21 pages, 2202 KB  
Article
Mesoporous Silica Nanoparticles Functionalized with Bisphenol A for Dispersive Solid-Phase Extraction of 3-Chloroaniline from Water Matrices: Material Synthesis and Sorption Optimization
by Sultan K. Alharbi, Bandar R. Alsehli, Awadh O. AlSuhaimi, Khaled A. Thumayri, Khaled M. AlMohaimadi, Yassin T. H. Mehdar, Manal A. Almalki and Belal H. M. Hussein
Nanomaterials 2025, 15(23), 1751; https://doi.org/10.3390/nano15231751 - 22 Nov 2025
Cited by 2 | Viewed by 582
Abstract
Aromatic amines such as 3-chloroaniline (3-CA) are toxic, persistent, and environmentally relevant water contaminants. Their reliable determination in aqueous systems has therefore become increasingly important. The monitoring of trace levels of these pollutants in complex water matrices typically necessitates a preconcentration step, most [...] Read more.
Aromatic amines such as 3-chloroaniline (3-CA) are toxic, persistent, and environmentally relevant water contaminants. Their reliable determination in aqueous systems has therefore become increasingly important. The monitoring of trace levels of these pollutants in complex water matrices typically necessitates a preconcentration step, most achieved via solid-phase extraction (SPE). However, conventional SPE sorbents often suffer from limited surface reactivity and slow adsorption kinetics, which compromise their performance at ultra-low concentrations. In contrast, nanomaterials offer a promising upgrade due to their high surface area, tunable chemistry, and rapid mass transfer behavior. In this work, mesoporous silica nanoparticles (MSNs) were synthesized via a green sol–gel route from sodium silicate precursor using polyethylene glycol template and then chemically functionalized with bisphenol A (BPA) to produce BPA-MSNs with π-rich and hydrogen-bonding active sites. Characterization using XRD, BET, FTIR, SEM/EDX, and TGA confirmed the successful synthesis and surface modification of the nanosorbent. BPA-MSNs achieved a maximum adsorption capacity of 30.2 mg/g toward 3-CA, fitting Langmuir and Jovanovic isotherm models. Kinetic analysis followed a pseudo-first-order model, indicating physisorption enhanced by π–π stacking and hydrogen bonding. The optimized dispersive SPE (D-SPE) method allowed a low detection limit (LOD = 0.016 mg/L), recovery of 73–85%, and precision below 5.3% RSD in tap, bottled, synthetic municipal wastewater and groundwater samples. The sorbent retained >90% efficiency over five reuse cycles, demonstrating strong potential as a reusable nanosorbent for preconcentration and remediation of aromatic amines in and treatment water analysis. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 5231 KB  
Article
Trace Aflatoxins Extraction in Pistachio, Maize and Rice Based on β-Cyclodextrin-Doped Cu-Carboxylated Graphene Oxide Nanocomposite
by Amr A. Yakout, Wael H. Alshitari, Hassan M. Albishri, Faten M. Ali Zainy and Adel M. Alshutairi
Toxins 2025, 17(11), 562; https://doi.org/10.3390/toxins17110562 - 17 Nov 2025
Viewed by 598
Abstract
Aflatoxins remain among the most challenging food contaminants to monitor due to their structural diversity, low abundance, and the chemical complexity of cereal- and nut-based matrices. In this study, a multifunctional Cu/β-cyclodextrin@carboxylated graphene oxide (Cu/β-CD@CGO) nanocomposite was synthesized through a green, two-step procedure [...] Read more.
Aflatoxins remain among the most challenging food contaminants to monitor due to their structural diversity, low abundance, and the chemical complexity of cereal- and nut-based matrices. In this study, a multifunctional Cu/β-cyclodextrin@carboxylated graphene oxide (Cu/β-CD@CGO) nanocomposite was synthesized through a green, two-step procedure and employed as a high-affinity nanosorbent for trace extraction of AFB1, AFB2, AFG1, and AFG2. The architecture integrates three complementary components: β-cyclodextrin for inclusion-driven molecular recognition, copper nanoparticles that establish coordination interactions with lactone-bearing aflatoxins, and CGO nanosheets that supply extensive π-rich surfaces and abundant carboxyl functionalities. Comprehensive characterization (FTIR, Raman, XPS, SEM, EDX-mapping, and HRTEM) confirmed the formation of a uniform, porous hybrid network. Under optimized d-SPE conditions, the nanocomposite enabled quantitative recovery (92.0–108.5%) of aflatoxins from pistachio, maize, and rice extracts while achieving sub-ng kg−1 detection limits and excellent reproducibility. The results demonstrate that the Cu/β-CD@CGO platform provides a robust, selective, and sustainable alternative to conventional immunoaffinity or polymeric sorbents, offering strong potential for routine surveillance of aflatoxins in complex food systems. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

568 KB  
Proceeding Paper
Efficient LC-MS/MS for Routine Fungicide Residue Analysis in Complex Matrices
by Miroslava Kuzniarová, Martina Micháliková and Milena Dömötörová
Chem. Proc. 2025, 18(1), 88; https://doi.org/10.3390/ecsoc-29-26677 - 11 Nov 2025
Viewed by 142
Abstract
A sensitive LC-MS/MS method was developed and validated for simultaneous determination of fungicides from various chemical classes, including strobilurins, triazoles, benzimidazoles, carbamates, and others. Target analytes included azoxystrobin, boscalid, carbendazim, cyazofamid, prochloraz, and tebuconazole. Sample preparation used optimized QuEChERS extraction with d-SPE cleanup [...] Read more.
A sensitive LC-MS/MS method was developed and validated for simultaneous determination of fungicides from various chemical classes, including strobilurins, triazoles, benzimidazoles, carbamates, and others. Target analytes included azoxystrobin, boscalid, carbendazim, cyazofamid, prochloraz, and tebuconazole. Sample preparation used optimized QuEChERS extraction with d-SPE cleanup to minimize matrix interferences. Chromatographic separation employed a C18 column with gradient elution, while detection used ESI in positive/negative modes with sMRM. Validation (SANTE/11312/2021) showed the deviation of the back-calculated concentrations of the calibration standards from the true concentrations were less than ±20%, recoveries 70–120%, RSD < 20%, and LOQs ≤ 10 µg/kg. The method supports routine monitoring of fungicide residues for regulatory compliance. Full article
Show Figures

Figure 1

32 pages, 4265 KB  
Article
PEGylation Enhances Colloidal Stability and Promotes Ligand-Mediated Targeting of LAF–Xenopeptide mRNA Complexes
by Paul Folda, Eric Weidinger, Johanna Seidl, Mina Yazdi, Jana Pöhmerer, Melina Grau, David P. Minde, Mayar Ali, Ceren Kimna and Ernst Wagner
Polymers 2025, 17(22), 2979; https://doi.org/10.3390/polym17222979 - 9 Nov 2025
Cited by 1 | Viewed by 1386
Abstract
For complexation of mRNA into polyplexes, double-pH-responsive lipo-xenopeptides (XP), comprising tetraethylene pentamino succinic acid (Stp) and lipoamino fatty acids (LAFs), were combined with PEGylated lipids, either DMG-PEG 2 kDa (DMG-PEG) or azido-group-containing DSPE-PEG 2 kDa (DSPE-PEG-N3), to increase colloidal stability and to facilitate [...] Read more.
For complexation of mRNA into polyplexes, double-pH-responsive lipo-xenopeptides (XP), comprising tetraethylene pentamino succinic acid (Stp) and lipoamino fatty acids (LAFs), were combined with PEGylated lipids, either DMG-PEG 2 kDa (DMG-PEG) or azido-group-containing DSPE-PEG 2 kDa (DSPE-PEG-N3), to increase colloidal stability and to facilitate ligand-mediated targeted mRNA delivery. LAF-XPs mixed with DMG-PEG at low (1.5% and 3%) molar ratios improved colloidal stability and retained transfection efficiency. PEGylation also enabled the formulation of otherwise unstable carrier complexes and prevented aggregation induced by salt, proteins, and serum. PEGylation of more positively charged Stp-LAF2 mRNA polyplexes decreased fibrinogen adsorption. More neutral, LAF-rich Stp-LAF4 polyplexes exhibited low fibrinogen binding without PEGylation. Intravenous administration of these stabilized mRNA complexes demonstrated enhanced biosafety while preserving transfection efficiency. DSPE-PEG-N3 was selected for cell targeting after strain-promoted azide-alkyne cycloaddition (SPAAC)-mediated click-coupling of DBCO-modified ligands. Higher PEG ratios (10% and 20%) provided effective shielding but reduced transfection efficiency, a drawback known as the “PEG dilemma”. Functionalization with an EGFR-targeting ligand restored transfection in EGFR-positive cell lines in a ligand-specific manner. High transfection efficiency is consistent with a lipophilic-to-hydrophilic polarity switch of LAF-XP carriers upon endosomal protonation, triggering dissociation of the PEG lipids and deshielding of the polyplex. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

17 pages, 2674 KB  
Article
Preparation and Performance of Phthalocyanine @ Copper Iodide Cluster Nanoparticles for X-Ray-Induced Photodynamic Therapy
by Wei Xie, Yunan Li, Guoyan Tang, Zhihua Li, Mengyu Yao, Biyuan Zheng, Xingshu Li and Jian-Dong Huang
Molecules 2025, 30(21), 4229; https://doi.org/10.3390/molecules30214229 - 29 Oct 2025
Viewed by 916
Abstract
The efficacy of X-ray-induced photodynamic therapy (X-PDT) for deep tumors is often hindered by conventional scintillators, typically rare-earth nanoparticles plagued by long-term toxicity and suboptimal scintillation yields. Here, we introduce a copper iodide (Cu-I) cluster, Cu2I2(PPh3)2 [...] Read more.
The efficacy of X-ray-induced photodynamic therapy (X-PDT) for deep tumors is often hindered by conventional scintillators, typically rare-earth nanoparticles plagued by long-term toxicity and suboptimal scintillation yields. Here, we introduce a copper iodide (Cu-I) cluster, Cu2I2(PPh3)2(pz), composed of earth-abundant elements, as an efficient and biocompatible energy transducer for X-PDT. A theranostic nanoplatform, CuI@PcNP, was engineered by co-encapsulating the Cu-I cluster and a phthalocyanine photosensitizer (Pc4OH) within a 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2K) matrix, which confers excellent physiological stability. This nano-architecture ensures nanoscale proximity between the cluster (donor) and photosensitizer (acceptor), facilitating efficient (58%) Förster resonance energy transfer (FRET) while overcoming aggregation-induced quenching. Upon X-ray irradiation, the platform effectively converted X-rays to visible light, activating Pc4OH to generate potent reactive oxygen species (ROS) and inducing significant dose-dependent cytotoxicity in human hepatocellular carcinoma (HepG2) cells. In a murine hepatoma model, enabling image-guided X-PDT that resulted in a 77.4% tumor inhibition rate with negligible systemic toxicity. Collectively, this work pioneers the integration of phthalocyanine with Cu-I clusters, providing a stable and versatile nanoplatform for image-guided X-PDT. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

19 pages, 1224 KB  
Article
Loop-Structured PEG-Lipoconjugate Enhances siRNA Delivery Mediated by Liner-PEG Containing Liposomes
by Daniil V. Gladkikh, Elena V. Shmendel, Darya M. Makarova, Mikhail A. Maslov, Marina A. Zenkova and Elena L. Chernolovskaya
Molecules 2025, 30(20), 4127; https://doi.org/10.3390/molecules30204127 - 19 Oct 2025
Cited by 1 | Viewed by 811
Abstract
Therapeutics involving small interfering RNA (siRNA) have enormous potential for treating a number of diseases, but their effective delivery to target cells remains a major challenge. We studied the influence of the structure and combination of targeted (folate conjugated, F13) and shield lipoconjugates [...] Read more.
Therapeutics involving small interfering RNA (siRNA) have enormous potential for treating a number of diseases, but their effective delivery to target cells remains a major challenge. We studied the influence of the structure and combination of targeted (folate conjugated, F13) and shield lipoconjugates (P1500, diP1500) on the ability of cationic liposomal formulations based on the 2X3-DOPE system to deliver siRNA into cells in vitro and in vivo. The loop-structured PEG lipoconjugate equipped with two hydrophobic anchor groups (diP1500) demonstrated superior performance across multiple evaluation criteria. The F13/diP1500 composition maintained a compact particle size (126.0 ± 23.0 nm), while F13/P1500 with the same PEG chain equipped with one anchor group maintained an increased particle size of 241.8 ± 65.7 nm. Most critically, F13/diP1500 preserved substantial positive surface charges (21.6–30.5 mV) across all N/P ratios, demonstrating superior ability in avoid the “PEG dilemma”, whereas F13/P1500 suffered substantial charge neutralization (3.9–9.1 mV). Competitive inhibition with free folate confirmed receptor-mediated cellular accumulation of siRNA mediated by F13 containing liposomal compositions. In vivo biodistribution revealed statistically significant circulation advantages: DSPE-PEG2000/diP1500 achieved the highest plasma concentration at 15 min (1.84 ± 0.01 pmol/mL), representing the first direct in vivo comparison of compositions with PEG lipoconjugates of the same length, but formed different structures in the liposomes due to the presence of one or two anchor groups. Our findings provide critical insights for the rational design of targeted liposomal delivery systems, highlighting the importance of balanced optimization between folate targeting functionality and PEG shielding for effective siRNA delivery both in vitro and in vivo. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Graphical abstract

16 pages, 2196 KB  
Article
Liposomal Fluopsin C: Physicochemical Properties, Cytotoxicity, and Antibacterial Activity In Vitro and over In Vivo MDR Klebsiella pneumoniae Bacteremia Model
by Mickely Liuti Dealis Gomes, Leandro Afonso, Kawany Roque Basso, Leonardo Cruz Alves, Enri Josué Navia Macías, Sueli Fumie Yamada-Ogatta, Ana Carolina Guidi, João Carlos Palazzo de Mello, Fábio Goulart Andrade, Luís Fernando Cabeça, Martha Viviana Torres Cely and Galdino Andrade
Antibiotics 2025, 14(9), 948; https://doi.org/10.3390/antibiotics14090948 - 19 Sep 2025
Viewed by 871
Abstract
Introduction: Antimicrobial resistance has become a global concern, and few new antimicrobials are currently being developed. Fluopsin C has proven broad-spectrum activity, being a promising candidate for new antimicrobial development. To optimize antimicrobial activity, this research aimed at fluopsin C (Flp) encapsulation in [...] Read more.
Introduction: Antimicrobial resistance has become a global concern, and few new antimicrobials are currently being developed. Fluopsin C has proven broad-spectrum activity, being a promising candidate for new antimicrobial development. To optimize antimicrobial activity, this research aimed at fluopsin C (Flp) encapsulation in liposomes to achieve controlled release and reduce cytotoxicity. Methods: Liposomal formulations were prepared by extruding formulations based on soy phosphatidylcholine (SPC) or poly (ethylene glycol)-distearoylphosphatidylethanolamine (DSPE-PEG) plus cholesterol, and were characterized by their size, polydispersity index, zeta potential, encapsulation efficiency, shelf-life stability, in vitro release profile, cytotoxicity, and antimicrobial activity against Klebsiella pneumoniae in vitro and in vivo. Results: The results indicated that the DSPE-PEG DMSO+Flp formulation presented superior physicochemical stability and unaltered antimicrobial activity. In vitro, CC50 decreased by 54%. No lethal dose was obtained in mice within the concentration range tested. The most effective doses in vivo were 2 × 2 mg/kg for free fluopsin C and 1 × 2 mg/kg for DSPE-PEG DMSO+Flp, resulting in a 40% reduction in mortality from bacteremia. Only discrete inflammatory infiltration was detected in the liver, while kidney necrosis ranged from discrete to moderate. Encapsulation of fluopsin C in liposomes showed promising features supporting to use against infections by MDR K. pneumoniae. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

13 pages, 3455 KB  
Article
Three-Dimensional-Printed Polymer–Polymer Composite Electrolytes for All-Solid-State Li Metal Batteries
by Hao Wang, Xin Xiong, Huie Hu and Sijie Liu
Polymers 2025, 17(17), 2369; https://doi.org/10.3390/polym17172369 - 30 Aug 2025
Cited by 1 | Viewed by 1151
Abstract
High-performance batteries for military and extreme environment applications require alternatives to conventional liquid lithium-ion batteries (LIBs), which suffer from poor low-temperature performance and safety risks. All-solid-state lithium batteries (ASSLBs) offer enhanced safety and superior low-temperature capability. In this work, we designed and fabricated [...] Read more.
High-performance batteries for military and extreme environment applications require alternatives to conventional liquid lithium-ion batteries (LIBs), which suffer from poor low-temperature performance and safety risks. All-solid-state lithium batteries (ASSLBs) offer enhanced safety and superior low-temperature capability. In this work, we designed and fabricated composite solid-state electrolytes using polyvinylidene fluoride (PVDF) and polyacrylic acid (PAA) as polymer matrices, N,N-dimethylformamide (DMF) as the solvent, and lithium bis(trifluoromethane sulfonimide) (LiTFSI) as the lithium salt. Composite solutions with varying PAA mass ratios were prepared. Advanced three-dimensional (3D) printing technology enabled the rapid and precise fabrication of electrolyte membranes. An ionic conductivity of about 2.71 × 10−4 S cm−1 at 25 °C, high mechanical strength, and good thermal properties can be achieved through component and 3D printing process optimization. Assembled LiCoO2||PVDF@PAA||Li ASSLBs delivered an initial discharge capacity of 165.3 mAh/g at 0.1 mA cm−2 (room temperature), maintaining 98% capacity retention after 300 cycles. At 0 °C, these cells provided 157.4 mAh/g initial capacity with 85% retention over 100 cycles at 0.1 mA cm−2. This work identifies the optimal PAA ratio for enhanced electrochemical performance and demonstrates the viability of 3D printing for advanced ASSLB manufacturing. Full article
(This article belongs to the Special Issue Advances in Polymeric Additive Manufacturing—2nd Edition)
Show Figures

Figure 1

21 pages, 3027 KB  
Article
Residues of Priority Organic Micropollutants in Eruca vesicaria (Rocket) Irrigated by Reclaimed Wastewater: Optimization of a QuEChERS SPME-GC/MS Protocol and Risk Assessment
by Luca Rivoira, Simona Di Bonito, Veronica Libonati, Massimo Del Bubba, Mihail Simion Beldean-Galea and Maria Concetta Bruzzoniti
Foods 2025, 14(17), 2963; https://doi.org/10.3390/foods14172963 - 25 Aug 2025
Viewed by 905
Abstract
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 [...] Read more.
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 nitro-PAHs, and 14 polychlorinated biphenyls congeners in Eruca vesicaria (rocket) leaves. The method was optimized to address the matrix complexity of leafy vegetables and included a two-step dispersive solid-phase extraction (d-SPE) cleanup and aqueous dilution prior to SPME. Validation showed excellent performance, with MDLs between 0.1 and 6.7 µg/kg, recoveries generally between 70 and 120%, and precision (RSD%) below 20%. The greenness of the protocol was assessed using the AGREE metric, yielding a score of 0.60. Application to rocket samples irrigated with treated wastewater revealed no significant accumulation of target pollutants compared to commercial samples. All PCB and N-PAH congeners were below detection limits, and PAH concentrations were low and mostly limited to lighter compounds. Human health risk assessment based on toxic equivalent concentrations confirmed that estimated cancer risk (CR) values 10−9–10−8 were well below accepted safety thresholds. These findings support the safe use of reclaimed water for leafy crop irrigation under proper treatment conditions and highlight the suitability of the method for trace-level food safety monitoring. Full article
Show Figures

Figure 1

23 pages, 3226 KB  
Article
Advanced Flow Detection Cell for SPEs for Enhancing In Situ Water Monitoring of Trace Levels of Cadmium
by Giulia Mossotti, Davide Girelli, Matilde Aronne, Giulio Galfré, Andrea Piscitelli, Luciano Scaltrito, Sergio Ferrero and Valentina Bertana
Water 2025, 17(16), 2384; https://doi.org/10.3390/w17162384 - 12 Aug 2025
Viewed by 3513
Abstract
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely [...] Read more.
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely intervention to safeguard public health and environmental safety. The rationale behind this work is to address the critical need for an in situ monitoring system for cadmium (Cd) in freshwater sources, particularly those adjacent to agricultural fields. Cd(II) is a highly toxic heavy metal that poses a significant threat to agricultural ecosystems and human health due to its rapid bioaccumulation in plants and subsequent entry into the food chain. The developed analytic device is composed of a commercial mercury salt-modified graphite screen-printed electrode (SPE) with a custom-designed innovative polydimethylsiloxane (PDMS) flow detection cell. The flow cell was prototyped using 3D printing and replica moulding, with its design and performance validated through COMSOL Multiphysics simulations to optimize inflow conditions and ensure maximum analyte dispersion on the working electrode surface. Chemical detection was performed using square wave voltammetry, demonstrating a linear response for Cd(II) concentrations of 0 to 20 µg/L. The system exhibited robust analytical performance, enabling 25–30 daily analyses with consistent sensitivity within the Limit of Detection (LoD) set by the law of 3 µg/L. Full article
Show Figures

Figure 1

16 pages, 1365 KB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 1697
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

24 pages, 3848 KB  
Article
Synthesis and Biological Evaluation of Herceptin-Conjugated Liposomes Loaded with Lipocalin-2 siRNA for the Treatment of Inflammatory Breast Cancer
by Marienid Flores-Colón, Mariela Rivera-Serrano, Esther A. Peterson-Peguero, Pablo E. Vivas-Rivera, Fatima Valiyeva and Pablo E. Vivas-Mejía
Pharmaceuticals 2025, 18(7), 1053; https://doi.org/10.3390/ph18071053 - 17 Jul 2025
Cited by 1 | Viewed by 1237
Abstract
Background: Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that accounts for 1–5% of BC patients and regularly affects women under 40 years of age. Approximately 50% of IBC cases are HER2+ and can be treated with the [...] Read more.
Background: Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that accounts for 1–5% of BC patients and regularly affects women under 40 years of age. Approximately 50% of IBC cases are HER2+ and can be treated with the monoclonal antibody-based therapy Herceptin (trastuzumab). However, resistance to Herceptin develops within a year, and effective second-line targeted therapies are currently unavailable for IBC patients. Lipocalin-2 (LCN2) is a promising therapeutic target for IBC due to its role in promoting tumor invasiveness, angiogenesis, and the inflammatory tumor microenvironment characteristic of IBC. Objective: We developed Herceptin-conjugated liposomes loaded with LCN2-targeted small-interference RNA (siRNA) for HER2+ IBCs. Methods: We synthesized DSPE-PEG(2000)-maleimide-Herceptin in a three-step process and formulated the liposomes together with DOPC, PEG(2000)-PE, cholesterol, and siRNA. Results: Dynamic light scattering confirmed the liposome size distribution, which was 66.7 nm for the Herceptin-conjugated liposome versus 43.0 nm in a non-functionalized liposome. Here, we report efficient internalization of this formulation into HER2+ IBC cells, reducing LCN2 levels by 30% and disrupting tumor emboli formation. RNA sequencing revealed 139 genes that were differentially expressed upon LCN2 knockdown, with 25 canonical pathways identified through Ingenuity Pathway Analysis. Conclusions: These findings suggest that LCN2-targeted siRNA within Herceptin-targeted liposomes represents a promising therapeutic strategy for IBC. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop