Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = d° ferromagnetism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2101 KiB  
Article
Structural and Ferromagnetic Response of B2-Type Al45Mn41.8X13.2 (X = Fe, Co, Ni) Alloys
by Esmat Dastanpour, Haireguli Aihemaiti, Shuo Huang, Valter Ström, Lajos Károly Varga and Levente Vitos
Magnetochemistry 2025, 11(8), 67; https://doi.org/10.3390/magnetochemistry11080067 - 6 Aug 2025
Abstract
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate [...] Read more.
To our knowledge, no magnetic B2 phase in the Al–Mn system of near-equiatomic compositions has been reported so far. Here, we investigate the structural and magnetic characteristics of Al45Mn41.8X13.2 (X = Fe, Co or Ni) alloys. We demonstrate that adding 13.2 atomic percent magnetic 3d metal to AlMn stabilizes a ferromagnetic B2 structure, where Al and X occupy different sublattices. We employ density functional theory calculations and experimental characterizations to underscore the role of the late 3d metals for the phase stability of the quasi-ordered ternary systems. We show that these alloys possess large local magnetic moments primarily due to Mn atoms partitioned to the Al-free sublattice. The revealed magneto-chemical effect opens alternative routes for tailoring the magnetic properties of B2 intermetallic compounds for various magnetic applications. Full article
(This article belongs to the Special Issue Advances in Functional Materials with Tunable Magnetic Properties)
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
A Soft Reconfigurable Inverted Climbing Robot Based on Magneto-Elastica-Reinforced Elastomer
by Fuwen Hu, Bingyu Zhao and Wenyu Jiang
Micromachines 2025, 16(8), 855; https://doi.org/10.3390/mi16080855 - 25 Jul 2025
Viewed by 334
Abstract
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable [...] Read more.
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable deformations. Furthermore, the 3D-printed magneto-elastica-reinforced elastomer actuators are assembled into several typical robotic patterns: linear configuration, parallel configuration, and triangular configuration. As a proof of concept, a few of the basic locomotive modes are demonstrated including squirming-type crawling at a speed of 1.11 mm/s, crawling with turning functions at a speed of 1.11 mm/s, and omnidirectional crawling at a speed of 1.25 mm/s. Notably, the embedded magnetic balls produce magnetic adhesion on the ferromagnetic surfaces, which enables the soft mobile robot to climb upside-down on ferromagnetic curved surfaces. In the experiment, the inverted ceiling-based inverted crawling speed is 2.17 mm/s, and the inverted freeform surface-based inverted crawling speed is 3.40 mm/s. As indicated by the experimental results, the proposed robot has the advantages of a simple structure, low cost, reconfigurable multimodal motion ability, and so on, and has potential application in the inspection of high-value assets and operations in confined environments. Full article
(This article belongs to the Special Issue Development and Applications of Small-Scale Soft Robotics)
Show Figures

Figure 1

24 pages, 3701 KiB  
Article
Multifunctional REE Selective Hybrid Membranes Based on Ion-Imprinted Polymers and Modified Multiwalled Carbon Nanotubes: A Physicochemical Characterization
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Waldemar Kaszuwara, Mariusz Nyc, Rafał Molak, Jakub Jaroszewicz and Spas D. Kolev
Int. J. Mol. Sci. 2025, 26(15), 7136; https://doi.org/10.3390/ijms26157136 - 24 Jul 2025
Viewed by 302
Abstract
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), [...] Read more.
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), X-ray micro-tomography, and Fourier transform infrared spectroscopy (FTIR). The hybrid membranes were also studied in terms of their mechanical and rheological properties. The key element of the proper preparation of hybrid membranes using the casting method in an external magnetic field was to synthesize membrane components with appropriate magnetic properties. It was found that they showed tunable weak ferromagnetic properties, and the increase in modified nanotube addition caused the rise in the membrane’s saturation magnetization, which for Nd-selective hybrid membranes reached 0.44 emu/g. Also, the increase in thermooxidative stability was noted after introducing functionalized nanotubes into polymer matrices, which, in the case of Gd-selective membranes, were stable even up to 730 °C. The rise in the modified MWCNT addition and selection of appropriate REE ion-imprinted polymers improved mechanical (Rm and E values increase even twice) and rheological parameters (almost double growth of E′ and E″ values) of the tested membranes. Synthesized hybrid membranes showed a high rejection of matrix components and an increase in retention ratio with rising MWCNT-REEIIP addition, ultimately reaching 94.35%, 92.12%, and 90.11% for Nd, Pr, and Gd, respectively. The performed analysis confirmed homogeneous dispersion, phase compatibility, network integration, formation of a complex 3D microstructure, and improved operational stability of created hybrid membranes, which is significant for their future applications in Nd, Pr, and Gd recovery from coal fly ash extracts. Full article
Show Figures

Graphical abstract

18 pages, 6739 KiB  
Article
Analytical Modeling of an Ironless Axial Flux Machine for Sizing Purposes
by Víctor Ballestín-Bernad, Guillermo Sanz-Sánchez, Jesús Sergio Artal-Sevil and José Antonio Domínguez-Navarro
Electronics 2025, 14(14), 2901; https://doi.org/10.3390/electronics14142901 - 20 Jul 2025
Viewed by 208
Abstract
This paper presents a novel analytical model of a double-stator single-rotor (DSSR) ironless axial flux machine (IAFM), with no iron either in the rotor or in the stator, that has cylindrical magnets in the rotor. The model is based on sizing equations that [...] Read more.
This paper presents a novel analytical model of a double-stator single-rotor (DSSR) ironless axial flux machine (IAFM), with no iron either in the rotor or in the stator, that has cylindrical magnets in the rotor. The model is based on sizing equations that include the peak no-load flux density as a determining parameter, and then static simulations using the finite element method show that the 3D magnetic field created by cylindrical magnets can be generally fitted with an empirical function. The analytical model is validated throughout this work with finite element simulations and experiments over a prototype, showing a good agreement. It is stated that the integration of the magnetic field for different rotor positions, using the empirical approach presented here, gives accurate results regarding the back-electromotive force waveform and harmonics, with a reduced computation time and effort compared to the finite element method and avoiding complex formulations of previous analytical models. Moreover, this straightforward approach facilitates the design and comparison of IAFMs with other machine topologies, as sizing equations and magnetic circuits developed for conventional electrical machines are not valid for IAFMs, because, here, the magnetic field circulates entirely through air due to the absence of ferromagnetic materials. Furthermore, the scope of this paper is limited to a DSSR-IAFM, but the method can be directly applied to single-sided IAFMs and could be refined to deal with single-stator double-rotor IAFMs. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Figure 1

17 pages, 2381 KiB  
Review
From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
by Mengjiao Wu, Xiaoling Lei and Haiping Fang
Solids 2025, 6(3), 38; https://doi.org/10.3390/solids6030038 - 15 Jul 2025
Viewed by 283
Abstract
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those [...] Read more.
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those of conventional three-dimensional crystals. This unconventional crystallization is attributed to the cation–π interaction between ions and the π-conjugated system of the graphene surface. Consequently, their physical and chemical properties—including their electrical, optical, magnetic, and mechanical characteristics—often differ markedly from those of conventional crystals. This review summarizes the recent progress made in the fabrication and analysis of the structures, distinctive features, and applications of these 2D unconventional stoichiometry crystals on graphene surfaces in ambient conditions. Their special properties, including their piezoelectricity, metallicity, heterojunction, and room-temperature ferromagnetism, are given particularly close attention. Finally, some significant prospects and further developments in this exciting interdisciplinary field are proposed. Full article
Show Figures

Figure 1

21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 289
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

14 pages, 2510 KiB  
Article
DFT Study of Hydrostatic Pressure Effects up to 1.0 GPa on the Electronic and Magnetic Properties of Laves Phases ErAl2 and ErNi2
by Tomás López-Solenzal, José Luis Sánchez Llamazares, José Luis Enríquez-Carrejo and César Fidel Sánchez-Valdés
Metals 2025, 15(6), 680; https://doi.org/10.3390/met15060680 - 19 Jun 2025
Viewed by 332
Abstract
This study employs DFT+U calculations to investigate the ferromagnetic properties of ErAl2 and ErNi2 Laves phases under an external hydrostatic pressure P (0 GPa ≤ P ≤ 1.0 GPa). The calculated magnetic moments per formula unit for both crystalline structures align [...] Read more.
This study employs DFT+U calculations to investigate the ferromagnetic properties of ErAl2 and ErNi2 Laves phases under an external hydrostatic pressure P (0 GPa ≤ P ≤ 1.0 GPa). The calculated magnetic moments per formula unit for both crystalline structures align with experimentally reported values: 4.40 μB/f.u. in the hard magnetization <001> axis for ErAl2 and 5.56 μB/f.u. in the easy magnetization <001> axis for ErNi2. The DFT results indicate that the magnetic moment remains unchanged up to 1 GPa of hydrostatic pressure, with no structural instabilities observed, as evidenced by a nearly constant formation energy for ErAl2 and ErNi2 alloys. The simulations confirm that the magnetic behavior of ErAl2 is primarily driven by the electrons localized in the f orbitals. In contrast, for ErNi2, both d and f orbitals significantly contribute to the total magnetic moment. Finally, the electronic specific heat coefficient was calculated and reported as a function of hydrostatic pressure up to P = 1.0 GPa for each Laves phase. Full article
(This article belongs to the Special Issue Study on the Preparation and Properties of Metal Functional Materials)
Show Figures

Graphical abstract

22 pages, 9995 KiB  
Article
Skin-Inspired Magnetoresistive Tactile Sensor for Force Characterization in Distributed Areas
by Francisco Mêda, Fabian Näf, Tiago P. Fernandes, Alexandre Bernardino, Lorenzo Jamone, Gonçalo Tavares and Susana Cardoso
Sensors 2025, 25(12), 3724; https://doi.org/10.3390/s25123724 - 13 Jun 2025
Cited by 1 | Viewed by 731
Abstract
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with [...] Read more.
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with their environment. This study aimed to develop a biomimetic, skin-inspired tactile sensor device capable of sensing applied force, characterizing it in three dimensions, and determining the point of application. The device was designed as a 4 × 4 matrix of tunneling magnetoresistive sensors, which provide a higher sensitivity in comparison to the ones based on the Hall effect, the current standard in tactile sensors. These detect magnetic field changes along a single axis, wire-bonded to a PCB and encapsulated in epoxy. This sensing array detects the magnetic field from an overlayed magnetorheological elastomer composed of Ecoflex and 5 µm neodymium–iron–boron ferromagnetic particles. Structural integrity tests showed that the device could withstand forces above 100 N, with an epoxy coverage of 0.12 mL per sensor chip. A 3D movement stage equipped with an indenting tip and force sensor was used to collect device data, which was then used to train neural network models to predict the contact location and 3D magnitude of the applied force. The magnitude-sensing model was trained on 31,260 data points, being able to accurately characterize force with a mean absolute error ranging between 0.07 and 0.17 N. The spatial sensitivity model was trained on 171,008 points and achieved a mean absolute error of 0.26 mm when predicting the location of applied force within a sensitive area of 25.5 mm × 25.5 mm using sensors spaced 4.5 mm apart. For points outside the testing range, the mean absolute error was 0.63 mm. Full article
(This article belongs to the Special Issue Smart Magnetic Sensors and Application)
Show Figures

Figure 1

11 pages, 3461 KiB  
Article
Magnetotransport Measurements in Overdoped Mn:Bi2Te3 Thin Films
by Angadjit Singh, Varun S. Kamboj, Crispin H. W. Barnes and Thorsten Hesjedal
Crystals 2025, 15(6), 557; https://doi.org/10.3390/cryst15060557 - 11 Jun 2025
Viewed by 797
Abstract
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to [...] Read more.
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to be highly mobile and to cause phase segregation. In this study, we present a detailed magnetotransport investigation of Mn-overdoped Bi2Te3 thin films using field-effect transistor architectures. Building on our previous structural investigations of these samples, we examine how high Mn content influences their electronic transport properties. From our earlier studies, we know that high Mn doping concentrations lead to the formation of secondary phases, which significantly alter weak antilocalization behavior and suppress topological surface transport. To probe the gate response of these doped films over extended areas, we fabricate field-effect transistor structures, and we observe uniform electrostatic control of conduction across the magnetic phase. Inspired by recent developments in intrinsic topological systems such as the MnTe-Bi2Te3 septuple-layer compounds, we explore the influence of embedded ferromagnetic chalcogenide inclusions as an alternative route to engineer magnetic topological states and potentially expand the operational temperature range of QAHE-enabled devices. Full article
(This article belongs to the Special Issue Advances in Thin-Film Materials and Their Applications)
Show Figures

Figure 1

18 pages, 5082 KiB  
Article
Research on 3D Magnetic Memory Signals Induced by Circular Hole Defects
by Bin Yang, Zhifeng Liu and Yang Gao
Magnetochemistry 2025, 11(6), 46; https://doi.org/10.3390/magnetochemistry11060046 - 25 May 2025
Viewed by 838
Abstract
Metal magnetic memory testing technology can not only detect macroscopic defects in ferromagnetic materials but also rapidly and conveniently detect early damage and stress concentration areas of components. Therefore, it is widely used in the nondestructive testing of ferromagnetic materials. However, the mechanism [...] Read more.
Metal magnetic memory testing technology can not only detect macroscopic defects in ferromagnetic materials but also rapidly and conveniently detect early damage and stress concentration areas of components. Therefore, it is widely used in the nondestructive testing of ferromagnetic materials. However, the mechanism of magnetic memory detection is not yet clarified, and experimental research is unsystematic. Previous studies mainly focus on the normal and tangential components of magnetic memory signals (MMSs), and the third directional component is rarely considered, resulting in problems such as missed detection and misjudgement in practical applications. In this research, specimens without and with a circular hole defect were designed, and the correlation between the 3D MMS and the defect size, as well as the applied load, were investigated using tensile tests. Magnetic parameters were defined to characterize the stress and defect-induced abnormal magnetic change. The effects of applied load and defect size on magnetic parameters were discussed. The experimental results showed that the peak–valley difference in the 3D MMS increases with increasing load and defect size, and the peak–valley spacing in the 3D MMS is not influenced by applied load but increases with increasing defect size. The 3D MMS gradient exhibits a good correlation with the equivalent stress along the loading direction. Additionally, the applied load and defect size were quantitatively evaluated by utilizing the Lissajous figure area generated from the X and Z components of the 3D MMS. Finally, a nonlinear fitting equation for defect size evaluation was presented. This study can provide a theoretical basis for the quantitative detection and evaluation of defect size and stress in engineering applications. Full article
(This article belongs to the Special Issue Latest Updates in Soft Magnetic Materials)
Show Figures

Figure 1

20 pages, 2054 KiB  
Review
Solid-State Materials for Opto-Spintronics: Focus on Ferromagnets and 2D Materials
by Ana-Maria Florea (Raduta), Stefan Caramizoiu, Ana-Maria Iordache, Stefan-Marian Iordache and Bogdan Bita
Solids 2025, 6(2), 25; https://doi.org/10.3390/solids6020025 - 20 May 2025
Viewed by 2342
Abstract
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as [...] Read more.
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as ferromagnetic semiconductors, two-dimensional (2D) transition metal dichalcogenides (TMDCs), and topological insulators. It examines the unique properties of ferromagnetic and antiferromagnetic materials and their ability to interact with light to affect spin dynamics, offering potential for improved sensing and quantum computing. By combining opto-spintronics with solid-state systems, spintronic devices could become faster and more efficient, leading to new technological advancements and scalable technologies. Full article
Show Figures

Figure 1

30 pages, 4446 KiB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 684
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

15 pages, 4030 KiB  
Article
The Defect Charge Effect on Magnetic Anisotropy Energy and Dzyaloshinskii–Moriya Interaction of the I Vacancy and 3d Transition Metal Co-Doped Monolayer CrI3
by Guangtian Ji, Qingqing Yang, Kun Zhang, Jueming Yang, Guixian Ge and Wentao Wang
Condens. Matter 2025, 10(2), 29; https://doi.org/10.3390/condmat10020029 - 14 May 2025
Viewed by 1410
Abstract
Recently, significant effort has been devoted to enhancing magnetic anisotropy energy (MAE) and the Dzyaloshinskii–Moriya interaction (DMI) in two-dimensional (2D) ferromagnetic materials through various tuning approaches. Among these methods, defect engineering is one of the most effective strategies. However, the influence of these [...] Read more.
Recently, significant effort has been devoted to enhancing magnetic anisotropy energy (MAE) and the Dzyaloshinskii–Moriya interaction (DMI) in two-dimensional (2D) ferromagnetic materials through various tuning approaches. Among these methods, defect engineering is one of the most effective strategies. However, the influence of these charged defects on the MAE and DMI is unclear. Therefore, we systematically investigate the defect effect on the MAE and DMI of I vacancy-doped (vI-CrI3), 3d-transition-metal-doped (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) (3d-TMi@CrI3), and vI-TM co-doped (3d-TMi@vI-CrI3) monolayer CrI3 using first-principles calculations. Our results indicate that Cr-rich conditions can promote the defect formation of vI-CrI3, 3d-TMi@CrI3, and 3d-TMi@vI-CrI3 systems and demonstrate that 49 types of charged systems are stable. Among these systems, the Cui@vI-CrI3 in the +1 charge state (Cui@vI-CrI3) system has a smaller defect formation energy, exhibiting a large MAE exceeding 30 meV, and the ratio (D/J) of the antisymmetric magnetic exchange parameter (D) to the Heisenberg exchange parameter (J) reaches 1.04. The large MAE originates from the transition from single-ion anisotropy (SIA) to covalent interaction anisotropy (CIA) due to the coupling variation between the py and px orbitals of I atoms near the Fermi level caused by charge states. The enhancement of the DMI is due to the electrostatic potential differences between the I-top and I-bottom layers, which are conducive to forming stable chiral spin textures. This study provides insight into the defect charge state modulating the magnetism of 2D magnetic materials. Full article
Show Figures

Graphical abstract

14 pages, 5161 KiB  
Article
First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures
by Guiyuan Hua, Xuming Wu, Xujin Ge, Tianhang Zhou and Zhibin Shao
Molecules 2025, 30(10), 2156; https://doi.org/10.3390/molecules30102156 - 14 May 2025
Viewed by 485
Abstract
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC [...] Read more.
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC) is a common limitation in most 2D ferromagnetic materials, and research on the topological properties of nontrivial 2D spin-gapless materials is still limited. We predict a novel spin-gapless semiconductor of monolayer h-VN, which has a high Curie temperature (~543 K), 100% spin polarization, and nontrivial topological properties. A nontrivial band gap is opened in the spin-gapless state when considering the spin–orbit coupling (SOC); it can increase with the intensity of spin–orbit coupling and the band gap increases linearly with SOC. By calculating the Chern number and edge states, we find that when the SOC strength is less than 250%, the monolayer h-VN is a quantum anomalous Hall insulator with a Chern number C = 1. In addition, the monolayer h-VN still belongs to the quantum anomalous Hall insulators with its tensile strain. Interestingly, the quantum anomalous Hall effect with a non-zero Chern number can be maintained when using h-BN as the substrate, making the designed structure more suitable for experimental implementation. Our results provide an ideal candidate material for achieving the QAHE at a high Curie temperature. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Graphical abstract

11 pages, 1943 KiB  
Article
First-Principles Investigation of Structural, Electronic, and Magnetic Properties of BiFeO3 and Bi2Fe4O9 Nanostructures
by Ikbel Mallek-Zouari, Youness Kaddar, Wael Ben Taazayet, Omar Mounkachi, El-Kebir Hlil, Najeh Thabet Mliki and Amine El Moutaouakil
Int. J. Mol. Sci. 2025, 26(10), 4671; https://doi.org/10.3390/ijms26104671 - 14 May 2025
Cited by 1 | Viewed by 640
Abstract
The structural, electronic, and magnetic properties of bismuth ferrite (BiFeO3) and Bi2Fe4O9 nanostructures were investigated using Density Functional Theory (DFT) within the Generalized Gradient Approximation (PBE-GGA) plus U approach. The PBE-GGA + U calculations predict band [...] Read more.
The structural, electronic, and magnetic properties of bismuth ferrite (BiFeO3) and Bi2Fe4O9 nanostructures were investigated using Density Functional Theory (DFT) within the Generalized Gradient Approximation (PBE-GGA) plus U approach. The PBE-GGA + U calculations predict band gaps of 2.4 eV for BiFeO3 and 2.3 eV for Bi2Fe4O9, closely aligning with experimental data. The analysis of partial and total density of states reveals strong hybridization between iron 3d and oxygen 2p states, with a significant contribution from Fe 3d orbitals in both structures. Additionally, nanostructure and crystal symmetry are crucial in influencing the magnetic properties of BiFeO3 and Bi2Fe4O9. Our calculations indicate that the antiferromagnetic phase is energetically more favorable than the ferromagnetic phase in both materials. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Back to TopTop